TL;DR – geometry of numbers, again

Important points

- The main conceptual point is that the geometry of numbers we encountered in the general setting of division algebras over Q and their orders can be made explicit enough for applications in the case of number fields.
- A key player, given the ring of integers \mathcal{O}_K of some number field K, is the lattice \mathcal{O}_K in the real vector space $K \times_{\mathbb{Q}} \mathbb{R}$. It may be endowed with a natural euclidean norm.
- The euclidean norm above is defined using the natural norms on \mathbb{R} and \mathbb{C} beware of factors of 2 at the complex places !
- The covolume of the lattice above is $\sqrt{d_K}$, where d_K is the absolute discriminant.
- Minkowski's theorem provides nonzero elements of an ideal in \mathcal{O}_K , and provides ideals of small norms in any given class in the ideal class group. It may be used to compute the ideal class group.
- Conversely, the discriminant may be bounded through the inequalities above. We obtain two important results. First, any number field ramifies somewhere over Q (Minkowski). Second, given a set of primes S in Z, and a degree d, there are only finitely many extensions of Q of degree at most d, unramified outside S (Hermite).

References

Standard references apply.