

Département de Mathématiques et Statistiques

Applications de l'Analyse à la Géométrie et Introduction à l Algèbre Linéaire

(MAA006)

Devoir 3 à rendre pour la séance numéro 10, le 17 avril 2018

Exercice 1 - Perpendiculaire commune à deux droites

On se donne un repère orthonormé de l'espace euclidien \mathcal{E}_{\ni} . On considère la droite D contenant le point A(1, 2, 3) et dirigée par le vecteur u(1, 1, 1). On se donne également la droite D' passant par B(-2, 0, 1) et dirigée par le vecteur v(1, 2, 1).

- a) Les droites D et D' sont-elles parallèles ?
- b) Les droites D et D' sont-elles coplanaires ?
- c) Calculer $w = u \times v$.
- d) Montrer qu'il existe une unique droite Δ dirigée par w et coupant les droites D et D' en des points I et I'. La droite Δ est la perpendiculaire commune aux droites D et D'.
- e) Calculer les coordonnées des points I et I' et la distance II'.
- f) Montrer que quel que soit $M \in D$ et $M' \in D'$, on a $d(M, M') \ge d(I, I')$.

Exercice 2 - Division vectorielle

On se donne deux vecteurs a et b de l'espace vectoriel euclidien E_3 de dimension trois. On suppose que le vecteur a est non nul : $a \neq 0$. On cherche à résoudre l'équation (1) $a \times x = b$ d'inconnue $x \in E_3$. Le problème (1) est appelé "division vectorielle".

- a) Si α , β et γ sont des vecteurs arbitraires de E_3 , rappeler la formule du double produit vectoriel pour expliciter $\alpha \times (\beta \times \gamma)$.
- b) Montrer que si les vecteurs a et b ne sont pas orthogonaux, l'équation (1) n'a pas de solution.
- c) On suppose dans cette question b=0. Montrer qu'alors tout vecteur x solution de l'équation (1) est colinéaire au vecteur a: il existe $\lambda \in \mathbb{R}$ tel que $x=\lambda a$.
- d) Si les vecteurs a et b sont non nuls tous deux et si leur produit scalaire (a, b) est nul, résoudre l'équation (1). On pourra se placer dans le repère $(a, b, a \times b)$ qui est orthogonal mais non orthonormé.

François Dubois, 03 avril 2018.