le c**nam**

Applications de l'Analyse à la Géométrie et Introduction à l'Algèbre Linéaire

Cours 12

Introduction à l'intégrale double

- Propriétés fondamentales de l'intégrale simple [rappels] On se donne deux nombres réels a < b et une fonction $f: [a, b] \longrightarrow \mathbb{R}$. L'intégrale simple $\int_a^b f(x) dx de f$ sur l'intervalle [a, b], notée également $\int_{[a, b]} f$, est un nombre réel qui satisfait aux propriétés fondamentales décrites ci-dessous.
 - ★ Longueur. Si f(x) = 1 pour tout x, alors $\int_a^b dx = b a$.
- * Linéarité. Si f et g sont deux fonctions $[a, b] \longrightarrow \mathbb{R}$ et λ un nombre réel, on a $\int_a^b \left(f(x) + g(x) \right) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$ et $\int_a^b \left(\lambda f(x) \right) dx = \lambda \int_a^b f(x) dx$.

 * Positivité. Si f est une fonction positive, c'est à dire $f(x) \ge 0$ pour tout x, alors l'intégrale est positive : $\int_a^b f(x) dx \ge 0$. On remarque que cette propriété est en défaut si on ne suppose pas a < b.
- \star Additivité par rapport au domaine (relation de Chasles). Si a < c < b, alors $\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$. Les propriétés précédentes s'étendent tout naturellement pour l'intégrale double, ce qui n'est

pas tout à fait le cas des propriétés qui suivent.

- Propriétés spécifiques de l'intégrale simple [rappels]
- Théorème fondamental de l'Analyse et intégration par parties. On suppose f fonction continue de [a, b] dans \mathbb{R} . Alors l'application ψ définie par $\psi(x) = \int_a^x f(\xi) \, \mathrm{d}\xi$ est une fonction dérivable de la variable x et $\frac{d}{dx} \left(\int_a^x f(\xi) d\xi \right) = f(x)$. En conséquence, $\int_a^b \frac{df}{dx} d\xi =$ f(b) - f(a). En pratique, on exprime ce résultat de la façon suivante : si on se donne une primitivite F de la fonction f (c'est à dire F' = f), alors $\int_a^b f(x) \, \mathrm{d}x = F(b) - F(a)$.
- Changement de variable. On suppose l'intervalle [a, b] paramétré par une fonction φ bijective croissante régulière de $[\alpha, \beta]$ dans [a, b]: $x = \varphi(t)$ avec $t \in [\alpha, \beta]$. Alors $\int_a^b f(x) \, dx = \int_\alpha^\beta f(\varphi(t)) \varphi'(t) \, dt.$ $\star \quad \text{Calcul de surfaces. Si la fonction } f \text{ est positive de } [a, b] \text{ dans } \mathbb{R} \text{ (toujours avec}$ $a < b), \text{ alors l'intégrale } \int_a^b f(x) \, dx \text{ est égale à l'aire } |\Omega| \text{ du domaine } \Omega \text{ entre les abscisses } a$
- et *b* d'une part, l'axe des abscisses et la courbe y = f(x) d'autre part : $\Omega = \{(x, y) \in \mathbb{R}^2, a \le x \le b, 0 \le y \le f(x)\}$. On a $\int_a^b f(x) dx = |\Omega|$.
- Propriétés fondamentales de l'intégrale double

On se donne une partie bornée Ω du plan \mathbb{R}^2 et une fonction $f:\Omega \longrightarrow \mathbb{R}$ bornée. L'intégrale double de la fonction f dans le domaine Ω est un nombre réel qui, quand il existe, se note $\int_{\Omega} f(x, y) dx dy$ ou parfois $\iint_{\Omega} f(x, y) dx dy$ et souvent plus simplement $\int_{\Omega} f dx dy$ ou même $\int_{\Omega} f$.

FRANÇOIS DUBOIS

- * Surface; intégrale double de la fonction "un". Si on prend pour domaine Ω le rectangle $]a,b[\times]c,d[$ du plan \mathbb{R}^2 (avec a < b et c < d), l'intégrale double de la fonction $f(x,y) \equiv 1$ est simplement la surface (b-a)(d-c) du rectangle : $\int_{]a,b[\times]c,d[} \mathrm{d}x\,\mathrm{d}y = (b-a)(d-c)$. De façon générale, si Ω désigne une partie bornée du plan, c'est à dire si Ω est inclus dans un rectangle assez grand, l'intégrale double sur Ω de la fonction $f(x,y) \equiv 1$ est la surface $|\Omega|$ du domaine : $\int_{\Omega} \mathrm{d}x\,\mathrm{d}y = |\Omega|$.
- \star Linéarité. On suppose connue l'intégrale double $\int_{\Omega} f(x, y) \, dx \, dy$ de la fonction f et on se donne un nombre λ . Alors $\int_{\Omega} (\lambda f)(x, y) \, dx \, dy = \lambda \int_{\Omega} f(x, y) \, dx \, dy$. Si on se donne aussi l'intégrale double $\int_{\Omega} g(x, y) \, dx \, dy$ de la fonction g, alors $\int_{\Omega} (f+g)(x, y) \, dx \, dy = \int_{\Omega} f(x, y) \, dx \, dy + \int_{\Omega} g(x, y) \, dx \, dy$.
- * Positivité. On suppose la fonction f positive sur Ω : $f(x, y) \ge 0$, $\forall (x, y) \in \Omega$. Alors $\int_{\Omega} f(x, y) \, \mathrm{d}x \, \mathrm{d}y \ge 0$. Si $f \le g$ sur Ω c'est à dire $f(x, y) \le g(x, y)$ pour tout $(x, y) \in \Omega$, alors $\int_{\Omega} f(x, y) \, \mathrm{d}x \, \mathrm{d}y \le \int_{\Omega} g(x, y) \, \mathrm{d}x \, \mathrm{d}y$ [exercice].
- \star Additivité par rapport au domaine. On suppose l'ensemble Ω décomposé en une réunion finie de parties Ω_i "plus simples", $\Omega = \bigcup_{i=1}^N \Omega_i$ de sorte que l'intersection $\Omega_i \cap \Omega_j$ est de surface nulle si $i \neq j$: $|\Omega_i \cap \Omega_j| = 0$. Alors l'intégrale sur Ω est la somme des intégrales sur chacun des morceaux Ω_i : $\int_{\Omega} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \sum_{i=1}^N \int_{\Omega_i} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$.
- Intégrale d'une fonction étagée

On se donne une décomposition de Ω comme ci-dessus et une fonction f "étagée" sur Ω , c'est à dire constante sur chacune des parties Ω_i : $\forall i = 1, ..., N$, $\exists \lambda_i \in \mathbb{R}$, $\forall (x, y) \in \Omega_i$, $f(x, y) = \lambda_i$. Le calcul de l'intégrale de f sur Ω est explicite : $\int_{\Omega} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \sum_{i=1}^{N} \lambda_i |\Omega_i|$ [exercice].

• Intégrale d'une fonction continue

On désigne toujours par Ω une partie bornée de \mathbb{R}^2 et par $f \in C^0(\overline{\Omega})$ une fonction continue sur Ω et jusqu'au bord inclus :

 $\forall X \in \overline{\Omega}, \ \forall \varepsilon > 0, \ \exists \eta > 0, \ \forall Y \in \overline{\Omega}, \ |X - Y| < \eta \Longrightarrow |f(X) - f(Y)| < \varepsilon.$ Alors l'intégrale de f sur Ω est bien définie ; c'est un nombre réel ou éventuellement complexe.

Pour établir ce résultat, on utilise l'uniforme continuité de f et on l'approche par des fonctions étagées. Pour tout $\varepsilon > 0$, il existe f_{ε} étagée sur Ω de sorte que $f_{\varepsilon} - \varepsilon \le f \le f_{\varepsilon} + \varepsilon$ sur Ω . Alors le nombre $\int_{\Omega} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$ satisfait nécessairement aux inégalités

$$\int_{\Omega} f_{\varepsilon}(x, y) \, dx \, dy - \varepsilon \, |\Omega| \le \int_{\Omega} f(x, y) \, dx \, dy \le \int_{\Omega} f_{\varepsilon}(x, y) \, dx \, dy + \varepsilon \, |\Omega|.$$

On montre alors d'une part que le nombre $\int_{\Omega} f(x, y) dx dy$ est bien défini et d'autre part qu'on peut l'approcher en calculant l'intégrale d'une fonction étagée qui approche la fonction f.

• Théorème de Fubini

On se donne un domaine Ω de \mathbb{R}^2 borné (ce qui signifie que Ω peut être inclus dans un rectangle assez grand). On se donne une fonction bornée de Ω dans \mathbb{R} à valeurs réelles ou éventuellement complexes : $\exists M \geq 0, \forall (x,y) \in \Omega, |f(x,y)| \leq M$. Alors l'intégrale de la valeur absolue de f est finie : $\iint_{\Omega} |f(x,y)| \, \mathrm{d}x \, \mathrm{d}y < \infty$. De plus, l'intégrale double de f dans le domaine Ω existe bien, on a l'inégalité $|\iint_{\Omega} f(x,y) \, \mathrm{d}x \, \mathrm{d}y| \leq \iint_{\Omega} |f(x,y)| \, \mathrm{d}x \, \mathrm{d}y$ et on peut toujours intégrer cette fonction de deux variables "dans l'ordre que l'on veut".

De façon plus précise, si Ω est compris entre deux courbes de la forme $y = \varphi(x)$ comme à la

figure 1, c'est à dire $\Omega = \{(x,y) \in \mathbb{R}^2, a \le x \le b, \varphi_-(x) \le y \le \varphi_+(x)\}$, on a $\int_\Omega f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_a^b \mathrm{d}x \left[\int_{\varphi_-(x)}^{\varphi_+(x)} \mathrm{d}y \, f(x,y) \right]$. Si Ω est compris entre deux courbes de la forme $x = \psi(y)$ comme à la figure 2, c'est à dire $\Omega = \{(x,y) \in \mathbb{R}^2, c \le y \le d, \psi_-(y) \le x \le \psi_+(y)\}$, on a $\int_\Omega f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_c^d \mathrm{d}y \left[\int_{\psi_-(y)}^{\psi_+(y)} \, \mathrm{d}x \, f(x,y) \right]$. Dans le cas où le domaine Ω peut être paramétré de l'une ou l'autre manière, on calcule

l'intégrale double par l'une quelconque des relations précédentes et

$$\int_{\Omega} f(x, y) \, dx \, dy = \int_{a}^{b} dx \left[\int_{\varphi_{-}(x)}^{\varphi_{+}(x)} dy \, f(x, y) \right] = \int_{c}^{d} dy \left[\int_{\psi_{-}(y)}^{\psi_{+}(y)} dx \, f(x, y) \right].$$

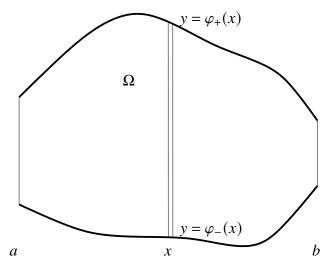


Figure 1. Calcul de l'intégrale double dans le domaine Ω , d'abord par intégration de la fonction f par rapport à y entre $\varphi_{-}(x)$ et $\varphi_{+}(x)$, puis par intégration en x entre a et b du résultat obtenu.

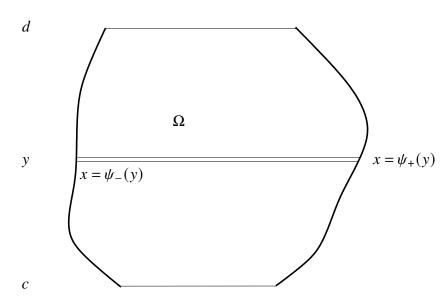


Figure 2. Calcul de l'intégrale double dans le domaine Ω , d'abord par intégration de la fonction f par rapport à x entre $\psi_{-}(y)$ et $\psi_{+}(y)$, puis par intégration en y entre c et d du résultat obtenu.

FRANÇOIS DUBOIS

• Un premier exemple d'utilisation du théorème de Fubini

On se donne deux nombres réels a < b et une application intégrable $f: [a, b] \longrightarrow \mathbb{R}$. On suppose la fonction f positive : $\forall x \in [a, b], f(x) \ge 0$. On considère le domaine $\Omega = \{(x, y) \in \mathbb{R}^2, a \le x \le b, 0 \le y \le f(x)\}$ déjà introduit dans le cas de l'étude de l'intégrale simple. Alors le théorème de Fubini (prendre $\varphi_- = 0$ et $\varphi_+ = f$) permet de conclure que $|\Omega| = \int_a^b f(x) \, \mathrm{d}x$. On retrouve ainsi le lien entre l'intégrale simple et le calcul de surfaces.

• Un second exemple d'utilisation du théorème de Fubini

On peut vérifier la conclusion du théorème de Fubini en considérant la fonction f égale à 1 dans le demi-disque $D = \{(x, y) \in \mathbb{R}^2, y \ge 0, x^2 + y^2 \le 1\}$ et égale à 0 ailleurs. Les deux calculs précédents de l'intégrale double de f sur \mathbb{R}^2 redonnent la surface |D| du demi-disque D, à savoir $\frac{\pi}{2}$.

• Un troisième exemple d'utilisation du théorème de Fubini

On se donne deux réels a et b strictement positifs et le triangle

 $T=\{(x,y)\in\mathbb{R}^2,x\geq 0,y\geq 0,\frac{x}{a}+\frac{y}{b}\leq 1\}$. On pose f(x,y)=x-y. On vérifie d'abord que l'intégrale de la fonction |f| sur le triangle T est finie puisque $|f(x,y)|\leq a+b$ si $(x,y)\in T$. On peut vérifier sur cet exemple [exercice!] que les deux intégrales simples successives $\int_0^a \mathrm{d}x \left[\int_0^{b(1-x/a)} \mathrm{d}y \, (x-y)\right]$ et $\int_0^b \mathrm{d}y \left[\int_0^{a(1-y/b)} \mathrm{d}x \, (x-y)\right]$ sont égales et valent $\frac{ab}{6} \, (a-b)$, valeur de l'intégrale double de la fonction f dans le triangle T.

Exercices

- Domaines rectangulaires
- a) Soit *D* le domaine $D = \{(x, y) \in \mathbb{R}^2, 0 \le x \le 1, 0 \le y \le 2\}$. Calculer l'intégrale double $\int_D x y \, dx \, dy$. [1]
- b) Même question avec l'intégrale $\int \int_D x \sin(x+y) dx dy$ dans le domaine $D = \{(x, y) \in \mathbb{R}^2, 0 \le x \le \pi, 0 \le y \le \frac{\pi}{2}\}.$ $[\pi 2]$
- Calcul d'aire

Soit a < b et h trois nombres réels strictement positifs. On note A et B les points de coordonnées (0,a) et (h,b). On appelle P le parallélogramme bordé par l'axe des abscisses, les droites x = 0, x = h et la droite AB.

- a) A l'aide d'un calcul intégral classique, rappeler la valeur de l'aire de P.
- b) Par un calcul d'intégrale double, retrouver ce résultat en utilisant le théorème de Fubini et une intégration d'abord selon y puis ensuite selon x.
- c) Reprendre le calcul précédent en utilisant d'abord une intégration selon x puis une intégration selon y. $\left[\frac{1}{2}h(a+b)\right]$
- Echange de l'ordre d'intégration

On se donne une fonction f définie pour x et y réels. Ecrire l'expression de l'intégrale double $\int_0^1 dy \int_y^{\sqrt{y}} dx \ f(x, y) = \int_2^2 dx \int_2^2 dy \ f(x, y)$ obtenue après échange de l'ordre des intégrales.

[remarquer que
$$\Omega = \{(x, y) \in \mathbb{R}^2, 0 \le y \le 1, y \le x \le \sqrt{y}\}$$
]