le cnam

Applications de l'Analyse à la Géométrie et Introduction à l'Algèbre Linéaire

Cours 13 Changement de variable dans une intégrale double

• Changement de variable dans une intégrale double : premiers pas On se donne pour fixer les idées le carré unité $K = [0, 1] \times [0, 1]$ et deux réels strictement positifs a et b. Avec la transformation linéaire F définie par $x = a\xi$, $y = b\eta$, le carré unité se transforme en un rectangle $Q = [0, a] \times [0, b]$ (voir la Figure 1). Si on intègre la fonction $f \equiv 1$ dans le rectangle Q, on trouve $|Q| = \int_Q dx dy = ab$ alors que si on intègre cette même fonction $f \equiv 1$ dans le carré K, on trouve $|K| = \int_K d\xi d\eta = 1$. On introduit la matrice (constante) J_F de l'application linéaire $F : J_F = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. Son déterminant $\det J_F$ vaut ab et on constate qu'on a $\int_Q dx dy = \int_K |\det J_F| d\xi d\eta$.

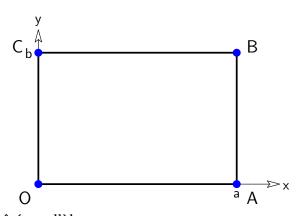


Figure 1. Rectangle à côté parallèle aux axes

• Changement de variable dans une intégrale double : un premier parallélogramme On transforme la carré unité K avec une transformation linéaire F définie maintenant par $x=a\xi+c\eta,\ y=b\eta.$ Alors le carré unité se transforme en un parallélogramme Q dont on peut donner les coordonnées des quatre sommets : O(0,0) [$\xi=\eta=0$], A(a,0) [$\xi=1,\eta=0$], B(a+c,b) [$\xi=\eta=1$] et C(c,b) [$\xi=0,\eta=1$]. La surface du parallélogramme Q est égale a sa base multipliée par la hauteur, soit ab. Par ailleurs, la matrice J_F de l'application linéaire F vaut maintenant $J_F=\begin{pmatrix} a & c \\ 0 & b \end{pmatrix}$. Son déterminant $\det J_F$ vaut toujours ab et on a encore $\int_O dx \, dy = \int_K |\det J_F| \, d\xi \, d\eta$.

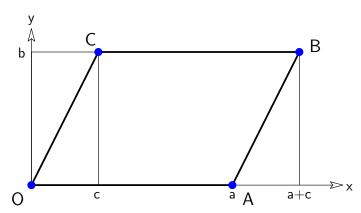


Figure 2. Parallélogramme: premier cas simple

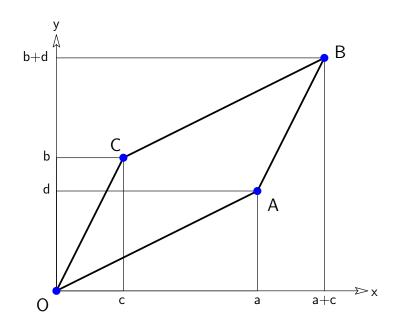


Figure 3. Parallélogramme: second cas

• Changement de variable dans une intégrale double : un second parallélogramme On pose maintenant le changement de variables $(\xi,\eta) \longmapsto (x,y)$ via l'application linéaire F définie par $x=a\xi+c\eta,\ y=d\xi+b\eta,$ avec a,b,c et d strictement positifs pour fixer les idées. Alors le carré unité K se transforme en un autre parallélogramme Q. Les coordonnées de ses quatre sommets sont les suivantes : O(0,0) [$\xi=\eta=0$], A(a,d) [$\xi=1,\eta=0$], B(a+c,b+d) [$\xi=\eta=1$] et C(c,b) [$\xi=0,\eta=1$]. Si le quadrangle OABC a une orientation directe (il tourne dans le sens contraire des aiguilles d'une montre) [nous conseillons au lecteur de faire un dessin!], alors la surface du parallélogramme Q se calcule avec une approche graphique [exercice!] et on a |Q|=ab-dc. Si le quadrangle OABC a une orientation rétrograde [nous conseillons au lecteur de faire un autre dessin!], alors on voit que |Q|=-ab+dc. Dans tous les cas, |Q|=|ab-dc|. La matrice J_F de l'application linéaire F vaut maintenant $J_F=\begin{pmatrix} a & c \\ d & b \end{pmatrix}$ et $\det J_F=ab-dc$. On remarque que pour calculer la surface de ce second parallélogramme, il

suffit d'écrire $\int_Q dx dy = \int_K |\det J_F| d\xi d\eta$.

Ce résultat se généralise [exercice !] si on remplace le carré unité par tout autre carré de côté $\Delta x > 0$.

• Changement de variable dans une intégrale double : quadrangle curviligne

On transforme le carré unité $K = [0, 1] \times [0, 1]$ avec une application non linéaire Φ qu'on suppose de classe C^1 , bijective de K sur $Q = \Phi(K)$ et on suppose l'application réciproque Φ^{-1} continue de Q sur K. On découpe le carré K en $N \times N$ petits carrés $K_{i,j}$ de côté $\Delta x = \frac{1}{N}$: $K_{i,j} = [\xi_i, \xi_{i+1}] \times [\eta_j, \eta_{j+1}]$, avec $\xi_i = (i-1)\Delta x$ et $\eta_j = (j-1)\Delta x$. On introduit les points $M_{i,j} = \Phi(\xi_i, \eta_j)$ et les quadrangles $Q_{i,j} = \Phi(K_{i,j})$. On a alors $\int_Q dx dy = \sum_{1 \le i, j \le N} \int_{Q_{i,j}} dx dy = \sum_{1 \le i, j \le N} \int_{\Phi(K_{i,j})} dx dy$. On approche l'application Φ dans le carré $K_{i,j}$ par une application affine tangente $F_{i,j}$ au point (ξ_i, η_j) :

 $\Phi(\xi, \eta) \approx F_{i,j}(\xi, \eta) \equiv \Phi(\xi_i, \eta_j) + d\Phi(\xi_i, \eta_j).(\xi - \xi_i, \eta - \eta_j)$. Alors on peut approcher avec une bonne précision l'aire du quadrangle curviligne $Q_{i,j}$ par celle du parallélogramme

 $P_{i,j} = F_{i,j}(K_{i,j})$ obtenu en remplaçant Φ par $F_{i,j} \colon \int_{\Phi(K_{i,j})} \mathrm{d}x \, \mathrm{d}y \approx \int_{P_{i,j}} \mathrm{d}x \, \mathrm{d}y$. Mais on a vu que pour un parallélogramme $P_{i,j}$ quelconque, on a $\int_{P_{i,j}} \mathrm{d}x \, \mathrm{d}y = \int_{K_{i,j}} |\det J_{F_{i,j}}| \, \mathrm{d}\xi \, \mathrm{d}\eta$. Dans le cas présent, $J_{F_{i,j}} = \mathrm{d}\Phi(\xi_i, \eta_j)$ et on a $\int_Q \mathrm{d}x \, \mathrm{d}y \approx \sum_{1 \le i,j \le N} \int_{K_{i,j}} |\det \Phi(\xi_i, \eta_j)| \, \mathrm{d}\xi \, \mathrm{d}\eta$.

Si l'entier N tend vers l'infini, la somme du membre de droite de la dernière expression converge vers $\int_K |\det d\Phi(\xi,\eta)| d\xi d\eta$ et on a finalement $|Q| = \int_Q dx dy = \int_K |\det d\Phi(\xi,\eta)| d\xi d\eta$.

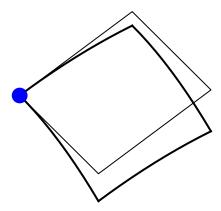


Figure 4. Autour du point $M_{i,j} = \Phi(\xi_i, \eta_j)$ (en bleu), le quadrangle curviligne $Q_{i,j}$ (en trait fort) est bien approché par le parallélogramme $P_{i,j}$ (en traits fins) associé à l'application affine tangente $F_{i,j}$ si on a suffisamment découpé le carré initial.

• Changement de variable dans une intégrale double : cas général

Comme ci-dessus, on transforme le carré unité $K = [0, 1] \times [0, 1]$ avec une fonction non linéaire Φ de classe C^1 , bijective de K sur $Q = \Phi(K)$ et l'application réciproque est supposée continue de Q sur K. On se donne maintenant une fonction f intégrable au sens de Riemann dans Q et on cherche à écrire l'intégrale $\int_Q f(x, y) \, \mathrm{d}x \, \mathrm{d}y$ avec une intégrale dans le carré K.

On reprend les notations du paragraphe précédent et on pose $f_{i,j} = f(\Phi(\xi_i, \eta_j))$: c'est une

FRANÇOIS DUBOIS

approximation de la fonction f dans le (petit) quadrangle curviligne $Q_{i,j}$. On a alors $\int_Q f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \sum_{1 \leq i,j \leq N} \int_{Q_{i,j}} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \sum_{1 \leq i,j \leq N} \int_{\Phi(K_{i,j})} f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$ Pour chaque quadrangle curviligne $Q_{i,j}$, on a $\int_{\Phi(K_{i,j})} f(x,y) \, \mathrm{d}x \, \mathrm{d}y \approx f_{i,j} \int_{\Phi(K_{i,j})} \mathrm{d}x \, \mathrm{d}y$ et on a vu au paragraphe précédent que $\int_{\Phi(K_{i,j})} \mathrm{d}x \, \mathrm{d}y \approx \int_{P_{i,j}} \mathrm{d}x \, \mathrm{d}y = \int_{K_{i,j}} |\det \Phi(\xi_i,\eta_j)| \, \mathrm{d}\xi \, \mathrm{d}\eta.$ On en déduit que $\int_{\Phi(K_{i,j})} f(x,y) \, \mathrm{d}x \, \mathrm{d}y \approx \sum_{1 \leq i,j \leq N} \int_{K_{i,j}} f(\Phi(\xi_i,\eta_j)) |\det \Phi(\xi_i,\eta_j)| \, \mathrm{d}\xi \, \mathrm{d}\eta.$ Si l'entier N tend vers l'infini, cette dernière somme converge vers l'intégrale

 $\int_K f(\Phi(\xi,\eta)) |\det d\Phi(\xi,\eta)| d\xi d\eta$. On en déduit la forme finale de la formule de changement de variable dans une intégrale double :

 $\int_Q f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_K f(\Phi(\xi,\eta)) \, |\det \mathrm{d}\Phi(\xi,\eta)| \, \mathrm{d}\xi \, \mathrm{d}\eta.$ Le tout est de ne pas oublier le jacobien $J(\xi,\eta) \equiv |\det \mathrm{d}\Phi(\xi,\eta)|$, valeur absolue du déterminant de la matrice jacobienne des dérivées partielles $\mathrm{d}\Phi(\xi,\eta)$!

On admet que le résultat précédent se généralise au cas d'un ouvert quelconque K de \mathbb{R}^n pour un entier n quelconque ≥ 1 et une fonction f mesurable sur $Q = \Phi(K)$ et intégrable sur Q, c'est à dire telle que $\int_O |f(x,y)| \, \mathrm{d}x \, \mathrm{d}y < \infty$.

A titre d'exercice, le lecteur peut chercher à retrouver la formule "usuelle" de changement de variable dans le cas de la dimension un comme cas particulier de la relation précédente!

• Coordonnées polaires dans le plan

Les variables ξ et η sont notées r et θ et l'application Φ de changement de variable $(r,\theta) \longmapsto (x,y)$ est définie par $x=r\cos\theta$ et $y=r\sin\theta$. La matrice jacobienne de cette transformation peut se calculer sans difficulté particulière et on a, si on suppose r>0: $J(r,\theta)=r$. On a alors $\int_{Q} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_{K} f(r\cos,r\sin\theta) \, r \, \mathrm{d}r \, \mathrm{d}\theta$ lorsque $Q=\Phi(K)$.

Exercices

- Domaine circulaire
- a) On se donne R > 0. Soit D le domaine $D = \{(x, y) \in \mathbb{R}^2, x^2 + y^2 \le R^2\}$. Calculer l'intégrale double $I = \iint_D x^3 y^2 dx dy$.
- b) Même question avec l'intégrale qui s'écrit avec la même expression algébrique mais dans le domaine $D_+ = \{(x, y) \in \mathbb{R}^2, x \ge 0, \ x^2 + y^2 \le R^2\}$: $I_+ = \iint_{D_+} x^3 y^2 \, dx \, dy$. $[0, \frac{4}{105}R^7]$
- Domaine elliptique

Soit a > 0 et b > 0 deux longueurs fixées. On note D l'intersection de l'intérieur de l'ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ avec le premier quadrant $Q_+ = \{(x, y) \in \mathbb{R}^2, x \ge 0, y \ge 0\}$.

- a) Dessiner l'ensemble D.
- b) Effectuer un changement de variables non banal pour transformer l'intégrale double $I = \iint_D x y \, dx \, dy$.
- c) En déduire la surface |D| du quart de domaine elliptique D.
- d) Achever le calcul de l'intégrale *I*.

 $[\pi ab, \frac{1}{8}a^2b^2]$

• Intégrale dans un quadrilatère

On se donne a > 0. On s'intéresse au domaine Ω caractérisé par les inégalités $x \le y \le x + a$ et $a \le y \le 2a$. On se propose de calculer l'intégrale $I = \int_{\Omega} (x^2 + y^2) dx dy$.

APPLICATIONS DE L'ANALYSE À LA GÉOMÉTRIE ET ALGÈBRE LINÉAIRE

- a) Montrer qu'on peut écrire $\Omega = \{(x, y) \in \mathbb{R}^2, x \le y \le x + a, a \le y \le 2a\}.$
- b) Dessiner l'ensemble Ω .

On se propose de transformer l'intégrale I à l'aide du changement de variable u = y, v = y - x.

- c) Montrer que $(x, y) \in \Omega$ si et seulement si $a \le u \le 2a$ et $0 \le v \le a$.
- d) Exprimer les variables x et y en fonction de u et v.
- e) Calculer les dérivées partielles $\frac{\partial x}{\partial u}$, $\frac{\partial x}{\partial v}$, $\frac{\partial y}{\partial u}$ et $\frac{\partial y}{\partial v}$.
- f) En déduire l'expression du jacobien de la transformation $(u, v) \mapsto (x, y)$.
- g) Achever le calcul et montrer que $I = \frac{7}{2}a^4$.
- Entre paraboles et hyperboles

On appelle P_k la parabole d'équation $y = kx^2$ et H_ℓ l'hyperbole d'équation $xy = \ell$.

- a) Dessiner les paraboles P_2 et P_3 .
- b) Sur le même graphe, dessiner les hyperboles H_1 et H_2 .

On note D l'ensemble des points de \mathbb{R}^2 compris entre les paraboles P_2 et P_3 d'une part et entre les hyperboles H_1 et H_2 d'autre part : $D = \{(x, y) \in \mathbb{R}^2, 1 \le xy \le 2, 2x^2 \le y \le 3x^2\}$.

- c) Montrer que l'ensemble D n'est pas vide.
- d) Représenter graphiquement l'ensemble D.

Afin de calculer la surface |D| de l'ensemble D, on se propose d'évaluer l'intégrale $|D| = \int_D dx dy$. On se propose de transformer cette intégrale à l'aide du changement de variable u = xy, $v = \frac{y}{v^2}$.

- e) Montrer que $(x, y) \in D$ si et seulement si $1 \le u \le 2$ et $2 \le v \le 3$.
- f) Exprimer x et y en fonction de u et v.
- g) Calculer les dérivées partielles $\frac{\partial x}{\partial u}$, $\frac{\partial x}{\partial v}$, $\frac{\partial y}{\partial u}$ et $\frac{\partial y}{\partial v}$.
- h) En déduire le jacobien de la transformation $(u, v) \mapsto (x, y)$.
- i) Montrer que $|D| = \frac{1}{3} \log(\frac{3}{2})$, où log désigne le logarithme naturel.