le c**nam**

Analyse et Calcul Matriciel

Cours 5 Séries de fonctions

• Quelques exemples

$$\varphi(x) = \sum_{n \ge 1} \frac{1}{n} e^{inx}, x \in \mathbb{R} \qquad \text{(série de Fourier)}$$

$$e^{x} = \sum_{n \ge 0} \frac{1}{n!} x^{n}, x \in \mathbb{C} \qquad \text{(fonction exponentielle)}$$

$$\zeta(x) = \sum_{n \ge 1} \frac{1}{n^{x}}, x \in \mathbb{C}, \text{Re } x > 1 \qquad \text{(série de Riemann)}$$

• Convergence simple

La série de fonctions $u_n(x)$ pour $n \in \mathbb{N}$ et x appartenant à un intervalle I de \mathbb{R} ou un domaine Ω de \mathbb{C} , avec $u_n(x) \in \mathbb{R}$ ou $u_n(x) \in \mathbb{C}$, converge simplement vers une fonction S de I ou de Ω dans \mathbb{R} ou \mathbb{C} si et seulement si pour tout $x \in I$ ou Ω , la suite numérique $S_n(x) = \sum_{k=0}^n u_k(x)$ converge vers le nombre $S(x) \equiv \sum_{k=0}^\infty u_k(x)$ si l'entier n tend vers $+\infty$.

Convergence uniforme

La série de fonctions $u_n(x)$ pour $n \in \mathbb{N}$ et x appartenant à un intevalle I de \mathbb{R} ou une partie Ω de \mathbb{C} convergence uniformément vers la fonction S de I ou de Ω dans \mathbb{R} ou \mathbb{C} si et seulement si pour tout $\varepsilon > 0$, il existe un entier N tel que pour tout entier $n \geq N$ et pour tout réel $x \in I$ ou tout complexe $x \in \Omega$, on a $|S_n(x) - S(x)| < \varepsilon$.

La convergence uniforme entraîne la convergence simple.

Convergence normale

On dit que la série de fonctions $u_n(x)$ converge normalement sur I ou sur Ω si il existe une série a_n à termes positifs convergente telle que pour tout réel $x \in I$ ou tout complexe $x \in \Omega$, on a $|u_n(x)| \le a_n$.

Soit R > 0 fixé et D_R le disque fermé de centre l'origine et de rayon R: $D_R = \{x \in \mathbb{C}, |x| \leq R\}$. La fonction exponentielle e^x (second exemple) converge normalement dans le disque D_R . Soit $\alpha > 1$ et Γ_{α} le demi plan fermé des complexes de partie réelle supérieure ou égale à α : $\Gamma_{\alpha} = \{x \in \mathbb{C}, \operatorname{Re} x \geq \alpha\}$. Alors la série de Riemann $\zeta(x)$ (troisième exemple) converge

- normalement dans le demi plan Γ_{α} .
- Théorème. La convergence normale entraîne la convergence uniforme.

La convergence normale entraîne la convergence absolue.

• Continuité de la limite uniforme

Si la série de fonctions $u_n(x)$ continues converge uniformément sur l'intervalle I ou dans le domaine Ω , alors la somme $S(x) = \sum_{k=0}^{\infty} u_k(x)$ est continue.

Dérivation terme à terme

On se donne une série de fonctions $u_n(x)$ dérivables sur l'intervalle I. On suppose qu'elle converge simplement vers la fonction $S(x) = \sum_{k=0}^{\infty} u_k(x)$. On suppose de plus que la série des

FRANÇOIS DUBOIS ET CHLOÉ MIMEAU

fonctions dérivées $\frac{\mathrm{d}u_k}{\mathrm{d}x}(x)$ converge uniformément sur I vers une fonction $g(x) = \sum_{k=0}^{\infty} \frac{\mathrm{d}u_k}{\mathrm{d}x}(x)$. Alors la somme S est dérivable et $\frac{\mathrm{d}S}{\mathrm{d}x} = g(x)$: $\frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{k=0}^{\infty} u_k(x) \right) = \sum_{k=0}^{\infty} \frac{\mathrm{d}u_k}{\mathrm{d}x}(x)$. La série dérivée de la fonction exponentielle converge elle aussi normalement sur l'ensemble D_R défini plus haut, pour R > 0 fixé. On établit ainsi par dérivation terme à terme que $\frac{\mathrm{d}}{\mathrm{d}x} e^x = e^x$.

- Echange de l'intégration et de la sommation d'une série uniformément convergente On se donne deux réels a < b et on suppose I = [a, b]. Si la série de fonctions $u_n(x)$ intégrables converge uniformément vers la somme S sur I, alors on peut échanger les symboles d'intégration et de passage à la limite : $\int_a^b \left(\sum_{k=0}^\infty u_k(x)\right) \mathrm{d}x = \sum_{k=0}^\infty \left(\int_a^b u_k(x) \,\mathrm{d}x\right)$.
- Transformation d'Abel

On suppose que le teme général $u_n(x)$ d'une série de fonctions peut s'écrire sous la forme $u_n(x) = a_n(x) b_n(x)$, avec les hypothèses suivantes : (i) les sommes $B_n(x) \equiv b_0(x) + b_1(x) + \dots + b_n(x)$ restent uniformément bornées pour tout n: $\exists M, \forall x \in I, (\text{ou}\,\Omega), |B_n(x)| \leq M$, et (ii) la suite $a_n(x)$ est positive, décroissante et tend vers zéro uniformément sur I (ou Ω) si n tend vers l'infini. Alors la série de teme général $u_n(x)$ converge uniformément sur I (ou Ω). Soit α tel que $0 < \alpha \leq \pi$. Alors la série de Fourier $\varphi(x)$ du premier exemple converge uniformément sur l'intervalle $[\alpha, 2\pi - \alpha]$.