le c**nam**

Analyse et Calcul Matriciel

Cours 6 Séries entières

• Quelques exemples

$$\frac{1}{1+x} = 1 - x + x^2 + \dots + (-1)^k x^k + \dots, \quad |x| < 1 \qquad \text{(série géométrique)}$$

$$e^x = \sum_{n \ge 0} \frac{1}{n!} x^n, \quad x \in \mathbb{C} \qquad \text{(exponentielle)}$$

$$\sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \dots + (-1)^k \frac{x^{2k+1}}{(2k+1)!} + \dots, \quad x \in \mathbb{C} \qquad \text{(sinus)}$$

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \dots + (-1)^k \frac{x^{2k}}{(2k)!} + \dots, \quad x \in \mathbb{C} \qquad \text{(cosinus)}$$

$$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^k \frac{x^{k+1}}{k+1} + \dots, \quad |x| < 1 \qquad \text{(logarithme)}$$

Définition

On se donne une suite réelle ou complexe a_n pour $n \in \mathbb{N}$. La série entière associée s'écrit $\sum_{n \in \mathbb{N}} a_n z^n$. Une question naturelle est de savoir pour quelles valeurs du nombre complexe z cette série de fonctions converge ou diverge.

• Somme et produit

On a par définition
$$\left(\sum_{n\in\mathbb{N}}a_nx^n\right) + \left(\sum_{n\in\mathbb{N}}b_nx^n\right) = \sum_{n\in\mathbb{N}}(a_n+b_n)x^n$$
 et
$$\left(\sum_{n\in\mathbb{N}}a_nx^n\right)\left(\sum_{m\in\mathbb{N}}b_mx^m\right) = \sum_{p\in\mathbb{N}}c_px^p \text{ et } c_p = \sum_{n\geq 0, m\geq 0, n+m=p}a_nb_m = \sum_{j=0}^na_jb_{n-j}.$$

Disque de convergence

Soit z_0 un nombre complexe tel que la suite $a_n z_0^n$ est bornée. Alors pour tout nombre complexe z tel que $|z| < |z_0|$, la série entière $\sum_{n \in \mathbb{N}} a_n z^n$ est absolument convergente.

On se donne une série entière arbitraire $\sum_{n\in\mathbb{N}}a_nx^n$. Il existe R avec $0 \le R \le +\infty$ de sorte que si |z| < R, la série $\sum_{n\in\mathbb{N}}a_nz^n$ est absolument convergente et si |z| > R, la série $\sum_{n\in\mathbb{N}}a_nz^n$ diverge. Le nombre R (éventuellement égal à $+\infty$) s'appelle le rayon de convergence de la série $\sum_{n\in\mathbb{N}}a_nx^n$.

- Calcul du rayon de convergence. Si la suite $|a_n|$ a une limite (éventuellement infinie) pour n tendant vers l'infini, alors $\frac{1}{R} = \lim_{n \to \infty} |a_n|^{\frac{1}{n}}$.
- Convergence normale. Si le rayon de convergence R est strictement positif et si α est un réel tel que $0 < \alpha < R$, la série $\sum_{n \in \mathbb{N}} a_n z^n$ converge normalement pour tout z tel que $|z| \le \alpha$.
- Série dérivée. Les séries $\sum_{n\in\mathbb{N}} a_n z^n$ et $\sum_{n\in\mathbb{N}} n a_n z^{n-1}$ ont même rayon de convergence.
- Convergence uniforme sur un rayon. On suppose le rayon de convergence R strictement positif. On se donne un nombre complexe z_0 tel que $|z_0| = R$ et on suppose que la série $\sum_{n \in \mathbb{N}} a_n z_0^n$ est convergente. Alors la convergence est uniforme sur tout le rayon $[0, z_0] = \{t z_0, 0 \le t \le 1\}$.

On en déduit que la somme de la série alernée $1 - \frac{1}{2} + ... + (-1)^k \frac{1}{k+1} + ...$ est égale à ln 2.