le cnam

Analyse Mathématique pour l'Ingénieur

Cours 14 Transformation de Fourier

• Transformation de Fourier dans l'espace des fonctions intégrables On se donne une fonction intégrable à valeurs complexes : $f \in L^1(\mathbb{R})$, c'est à dire $\int_{-\infty}^{\infty} |f(t)| dt < \infty$. Pour $\omega \in \mathbb{R}$, le nombre complexe $\widehat{f}(\omega) = \int_{-\infty}^{\infty} \exp(-i\omega t) f(t) dt$ est bien défini puisque $f \in L^1(\mathbb{R})$. La fonction $\mathbb{R} \ni \omega \longmapsto \widehat{f}(\omega) \in \mathbb{C}$ s'appelle la transformée de Fourier de la fonction f. On la note aussi $\mathscr{F}f$ et on a $(\mathscr{F}f)(\omega) = \widehat{f}(\omega)$.

Exemples fondamentaux

On se donne a > 0. L'exponentielle causale φ_a est définie par $\varphi_a(t) = H(t) \exp(-at)$. C'est une fonction intégrable sur \mathbb{R} : $\varphi_a \in L^1(\mathbb{R})$ et on a $\widehat{\varphi}_a(\omega) = \frac{1}{a+i\omega}$.

Pour a>0, l'exponentielle causale symétrisée ψ_a s'écrit : $\psi_a(t)=\exp(-|a|t)$. C'est une fonction paire qui est identique à φ_a si $t\geq 0$. On a $\widehat{\psi}_a(\omega)=\frac{2a}{a^2+\omega^2}$. Nous retenons que $(\mathscr{F}(\exp(-a|t|)))(\omega)=\frac{2a}{a^2+\omega^2}$.

Pour T > 0, la porte P_T de largeur T satisfait aux contraintes suivantes : $P_T(t) = 1$ si $|t| \le T/2$ et $P_T(t) = 0$ lorsque t < -T/2 ou t > -T/2. Son intégrale sur \mathbb{R} est bien entendu finie $[P_T \in L^1(\mathbb{R})]$ et on a $\widehat{P}_T(\omega) = \frac{2}{\omega} \sin\left(\frac{\omega T}{2}\right)$.

• Sinus cardinal

Pour $\theta \in \mathbb{R}$ nombre réel différent de zéro, on pose $\sin \theta = \frac{\sin \theta}{\theta}$. On prolonge cette fonction par continuité en $\theta = 0$: $\sin \theta = 0$. Alors $\widehat{P}_T(\omega) = T \operatorname{sinc}\left(\frac{\omega T}{2}\right)$.

• Transformée de Fourier de la gaussienne

Pour $t \in \mathbb{R}$, on pose $g(t) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right)$. C'est la gaussienne centrée réduite. Elle satisfait aux relations [exercice !] $\int_{\mathbb{R}} g(t) dt = 1$, $\int_{\mathbb{R}} t g(t) dt = 0$, $\int_{\mathbb{R}} t^2 g(t) dt = 1$, $\int_{\mathbb{R}} t^3 g(t) dt = 0$, $\int_{\mathbb{R}} t^4 g(t) dt = 3$, etc. Sa transformée de Fourier a une expression classique, et c'est aussi une gaussienne : $\widehat{g}(\xi) = \sqrt{2\pi} g(\xi) = \exp\left(-\frac{\xi^2}{2}\right)$.

Parité

On remarque que si f est paire, sa transformée de Fourier $\mathscr{F}f$ est paire également [exercice].

Linéarité

Si les fonctions f et g sont intégrables, leur somme est aussi intégrable et on a $\mathscr{F}(f+g)=\mathscr{F}f+\mathscr{F}g$. Si λ est un nombre complexe arbitraire et $f\in L^1(\mathbb{R})$, on a $\mathscr{F}(\lambda f)=\lambda \mathscr{F}f$.

• Transformée de Fourier d'un retard et retard de la transformée de Fourier On se donne $a \in \mathbb{R}$. Alors $(\mathscr{F}(f(t-a)))(\omega) = \exp(-ia\omega)(\mathscr{F}f)(\omega)$. De façon analogue, si ω_0 est un réel arbitraire, $(\mathscr{F}f)(\omega-\omega_0) = (\mathscr{F}(\exp(i\omega_0t)f(t)))(\omega)$.

FRANÇOIS DUBOIS

• Changement d'échelle

On se donne a > 0. Alors $(\mathscr{F}(f(at)))(\omega) = \frac{1}{a}(\mathscr{F}f)(\frac{\omega}{a})$.

- La transformée de Fourier d'une fonction intégrable est bornée Pour tout $\omega \in \mathbb{R}$, on a $|\widehat{f}(\omega)| \leq \int_{\mathbb{R}} |f(t)| dt$. En d'autres termes, $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$.
- La transformée de Fourier d'une fonction intégrable est une fonction continue Si $f \in L^1(\mathbb{R})$, la transformée de Fourier $\mathbb{R} \ni \omega \longmapsto \widehat{f}(\omega) \in \mathbb{C}$ est une fonction continue de l'argument ω . On a dans ce cas $\widehat{f} \in \mathscr{C}(\mathbb{R})$. On laisse le lecteur vérifier cette propriété pour les trois exemples fondamentaux rappelés ci-dessus.

La preuve est une utilisation du théorème de convergence dominée : la fonction $\omega \longmapsto f(t) \exp(-i\omega t)$ est continue pour presque toute valeur de $t \in \mathbb{R}$. De plus, elle est dominée par la fonction intégrable |f|: $|f(t) \exp(-i\omega t)| \le |f(t)|$ pour tout $t \in \mathbb{R}$. Donc la fonction intégrée en temps $\omega \longmapsto \int_{\mathbb{R}} f(t) \exp(-i\omega t) dt$ est une fonction continue.

• Une condition suffisante de limite nulle à l'infini

On se donne une fonction f dérivable de sorte que f et sa dérivée f' appartiennent toutes deux à l'espace $L^1(\mathbb{R})$: $\int_{-\infty}^{\infty} (|f(t)| + |f'(t)|) dt < \infty$. Alors la fonction f tend vers zéro à l'infini : $\lim_{t \to +\infty} f(t) = 0$ et $\lim_{t \to -\infty} f(t) = 0$.

• Transformée de Fourier de la dérivée

Si la fonction f et sa dérivée f' sont intégrables sur \mathbb{R} , alors $(\mathscr{F}(f'))(\omega) = i\omega(\mathscr{F}f)(\omega)$. La preuve se fait par intégration par parties. Comme les fonctions f et f' sont dans l'espace $L^1(\mathbb{R})$, la fonction f tend vers zéro et le terme tout intégré est nul. Le résultat proposé s'en déduit alors.

Dérivée de la transformée de Fourier

On suppose que les fonctions f et $\mathbb{R} \ni t \longmapsto t \, f(t) \in \mathbb{C}$ appartiennent à l'espace $L^1(\mathbb{R})$, c'est à dire que l'intégrale $\int_{-\infty}^{+\infty} (1+|t|) \, |f(t)| \, dt$ converge. Alors la transformée de Fourier

 $\mathbb{R} \ni \omega \longmapsto \widehat{f}(\omega) \in \mathbb{C}$ est une fonction dérivable et on a $\frac{\mathrm{d}\widehat{f}}{\mathrm{d}\omega} = -i(\mathscr{F}(t\,f(t)))(\omega)$.

La preuve de ce résultat est une utilisation du théorème de convergence dominée. La dérivée partielle $\frac{\partial}{\partial \omega} \big(f(t) \exp(-i \omega t) \big)$ est majorée en module par |t| |f(t)|. Cette fonction est intégrable et ne dépend pas de la variable ω par rapport à laquelle on dérive. Donc le calcul formel $\frac{\mathrm{d}}{\mathrm{d}\omega} \big(\int_{-\infty}^{\infty} \exp(-i \omega t) f(t) \, \mathrm{d}t \big) = \int_{-\infty}^{\infty} \frac{\partial}{\partial \omega} \big(f(t) \exp(-i \omega t) \big) \, \mathrm{d}t$ est valable, ce qui justifie la relation proposée.

• Transformée de Fourier d'un produit de convolution

On suppose que les fonctions f et g sont toutes deux intégrables sur \mathbb{R} . Alors leur produit de convolution f * g défini par la relation $(f * g)(t) = \int_{\mathbb{R}} f(\theta) g(t - \theta) d\theta$ appartient également à l'espace $L^1(\mathbb{R})$ et on a $\mathscr{F}(f * g) = (\mathscr{F}f)(\mathscr{F}g)$. La transformée de Fourier transforme le produit de convolution en un produit ordinaire.

La preuve de ce résultat demande d'abord de vérifier que le produit de convolution de deux fonctions de $L^1(\mathbb{R})$ appartient encore à $L^1(\mathbb{R})$. Une fois cette propriété établie à l'aide du théorème de Tonnelli, on forme la transformée de Fourier $\widehat{f*g}$ du produit de convolution f*g des fonctions f et g avec une intégrale double : $\widehat{f*g}(\xi) = \int_{\mathbb{R}} \mathrm{d}x \left(\int_{\mathbb{R}} \mathrm{d}y \, f(y) \, g(x-y) \right) \exp(-i \, \xi \, x)$. Le théorème de Fubini permet alors déchanger l'ordre d'intégration :

ANALYSE MATHÉMATIQUE POUR L'INGÉNIEUR

 $\widehat{f * g}(\xi) = \int_{\mathbb{R}} \mathrm{d}y f(y) \left(\int_{\mathbb{R}} \mathrm{d}x g(x-y) \exp(-i\xi x) \right)$ et la fin du calcul est alors un exercice laissé au lecteur.

• Une propriété de l'opérateur de translation

On se donne une fonction $f \in L^1(\mathbb{R})$. Alors l'intégrale $\int_{\mathbb{R}} |f(t-\tau) - f(t)| dt$ tend vers zéro si le nombre τ tend vers zéro.

• La transformée de Fourier d'une fonction intégrable tend vers zéro à l'infini

Si $f \in L^1(\mathbb{R})$, sa transformée de Fourier $\widehat{f}(\omega)$ tend vers zéro lorsque ω tend vers $+\infty$ ou ω tend vers $-\infty$.

Nous constatons que la propriété est vraie pour les trois exemples fondamentaux introduits plus haut, à savoir l'exponentielle causale $\varphi_a(t) = H(t) \exp(-at)$, l'exponentielle causale symétrisée $\psi_a(t) = \exp(-a|t|)$ et la porte P_T égale à 1 si $|t| \le \frac{T}{2}$ et à zéro sinon [avec a > 0 et T > 0]. On a en effet $\widehat{\varphi}_a(\omega) = \frac{1}{a+i\omega}$, $\widehat{\psi}_a(\omega) = \frac{2a}{a^2+\omega^2}$ et $\widehat{P}_T(\omega) = T \operatorname{sinc}\left(\frac{\omega T}{2}\right)$; ces trois fonctions tendent bien vers zéro si $|\omega|$ tend vers l'infini.

La preuve est délicate et repose sur une propriété très fine de l'opérateur de translation énoncée ci-dessus. Puisque $\exp(-i\pi) = -1$, on écrit la définition de la transformée de Fourier sous la forme $\widehat{f}(\xi) = -\int_{\mathbb{R}} f(t) \exp(-i\pi) \exp(-i\xi t) dt$ et on a le calcul suivant :

$$\widehat{f}(\xi) = -\int_{\mathbb{R}} f(t) \exp\left(-i\xi \left(t + \frac{\pi}{\xi}\right)\right) dt = -\int_{\mathbb{R}} f\left(\theta - \frac{\pi}{\xi}\right) \exp(-i\xi \theta) dt. \text{ Donc}$$

$$2\widehat{f}(\xi) = \int_{\mathbb{R}} \left[f(t) - f\left(t - \frac{\pi}{\xi}\right)\right] \exp(-i\xi t) dt \text{ et } |\widehat{f}(\xi)| \le \frac{1}{2} \int_{\mathbb{R}} |f(t) - f\left(t - \frac{\pi}{\xi}\right)| dt. \text{ Si } \xi \text{ tend}$$

 $2J(\zeta) = J_{\mathbb{R}}[J(t) - J(t - \xi)] \exp(-t\zeta t) dt$ et $|J(\zeta)| \le \frac{1}{2} J_{\mathbb{R}}|J(t) - J(t - \xi)| dt$. Si ζ tend vers l'infini, l'expression $\frac{\pi}{\xi}$ tend vers zéro et la dernière intégrale tend vers zéro compte tenu du résultat rappelé plus haut sur l'opérateur de translation.

• Opérateur de Fourier conjugué

Pour $f \in L^1(\mathbb{R})$, on définit l'opérateur de Fourier conjugué $\overline{\mathscr{F}}$ par l'expression $(\overline{\mathscr{F}}f)(\omega) = \int_{-\infty}^{\infty} \exp(i\,\omega t)\,f(t)\,\mathrm{d}t$. Seul le signe de ω dans l'exponentielle complexe a changé. On a la relation $(\overline{\mathscr{F}}f)(\omega) = (\mathscr{F}f)(-\omega)$.

• Théorème d'inversion de Fourier (première formulation)

Si d'une part la fonction f est intégrable $(f \in L^1(\mathbb{R}))$ et si de plus sa transformée de Fourier \widehat{f} est également intégrable $(\widehat{f} \in L^1(\mathbb{R}))$, alors on peut représenter la fonction f à l'aide de l'opérateur de Fourier conjugué : $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(i\omega t) \widehat{f}(\omega) d\omega$ et cette égalité a lieu "pour presque tout" $t \in \mathbb{R}$ (pour tout réel t dans les applications en ingénierie). On peut écrire aussi $f(t) = \frac{1}{2\pi} (\overline{\mathscr{F}} \widehat{f})(t)$ ou $f(t) = \frac{1}{2\pi} (\overline{\mathscr{F}} (\mathscr{F} f))(t)$.

Seul le second exemple fondamental permet de tester ce théorème d'inversion de Fourier puisque les fonctions $\widehat{\varphi}_a$ et \widehat{P}_T n'appartiennent pas à $L^1(\mathbb{R})$ [exercice !]. On a par contre $\widehat{\psi}_a \in L^1(\mathbb{R})$ [exercice] et le théorème d'inversion de Fourier s'écrit dans ce cas particulier

 $\int_{-\infty}^{\infty} \exp(i\omega t) \frac{d\omega}{a^2 + \omega^2} = \frac{\pi}{a} \exp(-a|t|).$ On constate qu'on a calculé avec des fonctions élémentaires l'intégrale d'une fonction [ici $\exp(i\omega t)/(a^2 + \omega^2)$] dont la primitive ne peut pas s'exprimer en termes de fonctions élémentaires.

Dans le cas de la gaussienne, l'égalité $g(t) = \frac{1}{2\pi} \int_{\mathbb{R}} \widehat{g}(\xi) \exp(i\xi t) d\xi$ se vérifie avec un simple calcul d'intégrales.

FRANÇOIS DUBOIS

L'égalité ponctuelle presque partout $f(t) = \frac{1}{2\pi} (\overline{\mathscr{F}}(\mathscr{F}f))(t)$ peut s'écrire aussi $f(t) = \frac{1}{2\pi} \left((\overline{\mathscr{F}}_{\circ}\mathscr{F})f \right)(t)$ pour tout réel t, c'est à dire $\left((\overline{\mathscr{F}}_{\circ}\mathscr{F})f \right)(t) = 2\pi f(t)$. On en déduit donc une égalité entre fonctions $(\overline{\mathscr{F}}_{\circ}\mathscr{F})f = 2\pi f$ pour toute fonction intégrable dont la transformée de Fourier \widehat{f} est également intégrable.

• Inverse de l'opérateur de Fourier

On note dans ce paragraphe $\mathscr E$ l'espace des fonctions intégrables telles que leur transformée de Fourier $\widehat f$ est également intégrable. Alors l'égalité précédente $(\overline{\mathscr F}_\circ\mathscr F)f=2\pi f$ est vraie pour toute fonction $f\in\mathscr E$. On en déduit que l'opérateur $\overline{\mathscr F}_\circ\mathscr F$ transforme la fonction f en elle même, à un facteur 2π près. Si on appelle "identité" l'opérateur $\mathscr E\ni f\longmapsto \mathrm{id} f=f\in\mathscr E$, la relation $(\overline{\mathscr F}_\circ\mathscr F)f=2\pi\,\mathrm{id} f$ valable pour toute fonction $f\in\mathscr E$ peut aussi s'écrire comme une relation entre opérateurs de l'espace $\mathscr E\colon \overline{\mathscr F}_\circ\mathscr F=2\pi\,\mathrm{id}$. Quand on compose les opérateurs $\mathscr F$ et $\frac{1}{2\pi}\,\overline{\mathscr F}$, on trouve l'identité : $(\frac{1}{2\pi}\,\overline{\mathscr F})_\circ\mathscr F=\mathrm{id}$. On peut montrer [exercice !] qu'on a aussi $\mathscr F_\circ(\frac{1}{2\pi}\,\overline{\mathscr F})=\mathrm{id}$. En d'autres termes, $\mathscr F^{-1}=\frac{1}{2\pi}\,\overline{\mathscr F}$. A un facteur 2π près, l'inverse de la transformée de Fourier est égal à l'opérateur de Fourier conjugué !

• Approximation des fonctions dans l'espace $L^2(\mathbb{R})$

Si on se donne une fonction de carré intégrable $(f \in L^2(\mathbb{R}))$, elle n'est pas en général intégrable sur \mathbb{R} . Mais si on la tronque en posant pour k entier positif, $f_k = P_{2k}f$, c'est à dire $f_k(t) = f(t)$ si $|t| \le k$ et $f_k = 0$ sinon, on obtient une suite de fonctions dans l'espace $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Cette suite f_k converge vers f dans $L^2(\mathbb{R})$: $||f - f_k||_2$ tend vers zéro si k tend vers l'infini.

• Transformée de Fourier dans l'espace $L^2(\mathbb{R})$

Comme la suite f_k appartient à $L^1(\mathbb{R})$, sa transformée de Fourier \widehat{f}_k est bien définie via la relation $\widehat{f}_k(\omega) = \int_{-k}^k \exp(-i\omega t) f(t) dt$. On peut montrer que cette suite \widehat{f}_k appartient à l'espace $L^2(\mathbb{R})$ et converge dans cet espace vers une fonction notée \widehat{f} ou $\mathscr{F}f$ qui définit la transformation de Fourier dans l'espace $L^2(\mathbb{R})$. De plus, on a pour "presque tout" $\omega \in \mathbb{R}$, $(\mathscr{F}f)(\omega) = \widehat{f}(\omega) = \lim_{k \to +\infty} \int_{-k}^k \exp(-i\omega t) f(t) dt$.

On constate que la définition de la transformée de Fourier dans $L^2(\mathbb{R})$ n'est pas aussi immédiate que dans l'espace $L^1(\mathbb{R})$. Elle a de toutefois de nombreuses propriétés, très simples à énoncer.

• Théorème de Plancherel

L'application $L^2(\mathbb{R})\ni f\longmapsto \widehat{f}\in L^2(\mathbb{R})$ définit un isomorphisme de l'espace de Hilbert $L^2(\mathbb{R})$. On a conservation, à 2π près, du produit scalaire hilbertien : $(\widehat{f},\widehat{g})=2\pi\,(f,g)$, identité dite de Bessel-Parseval : $\int_{\mathbb{R}}\widehat{f}(\xi)\,\overline{\widehat{g}(\xi)}\,\mathrm{d}\xi=2\pi\,\int_{\mathbb{R}}f(t)\,\overline{g(t)}\,\mathrm{d}t$. En prenant g=f, on a la conservation de la norme à un facteur 2π près : $\|\mathscr{F}f\|^2=2\pi\,\|f\|^2$, identité qui exprime que $\int_{\mathbb{R}}|\widehat{f}(\xi)|^2\,\mathrm{d}\xi=2\pi\,\int_{\mathbb{R}}|f(t)|^2\,\mathrm{d}t$.

• Opérateur de Fourier conjugué dans $L^2(\mathbb{R})$

On étend comme dans le cas précédent la transformée de Fourier conjuguée à l'espace $L^2(\mathbb{R})$: $(\overline{\mathscr{F}}f)(\omega) = \widehat{f}(\omega) = \lim_{k \to +\infty} \int_{-k}^k \exp(i\,\omega t)\,f(t)\,\mathrm{d}t$. On a également, pour $f \in L^2(\mathbb{R})$, $(\overline{\mathscr{F}}f)(\omega) = (\mathscr{F}f)(-\omega)$.

• Théorème d'inversion de Fourier (seconde formulation)

On a dans l'espace $L^2(\mathbb{R})$ les relations suivantes entre l'opérateur de Fourier \mathscr{F} et l'opérateur de Fourier conjugué $\overline{\mathscr{F}}$: $\overline{\mathscr{F}} \circ \mathscr{F} = \mathscr{F} \circ \overline{\mathscr{F}} = 2\pi i d$. On peut aussi écrire ces relations sous la

ANALYSE MATHÉMATIQUE POUR L'INGÉNIEUR

forme $\mathscr{F}^{-1} = \frac{1}{2\pi} \overline{\mathscr{F}}$. A un facteur 2π près, l'inverse de la transformée de Fourier dans l'espace des fonctions de carré intégrable est égal à l'opérateur de Fourier conjugué.

On en déduit que pour toute fonction f de carré intégrable, on a $f = \frac{1}{2\pi} (\mathscr{F}_{\circ} \overline{\mathscr{F}})(f)$ et on a aussi $f = \frac{1}{2\pi} (\overline{\mathscr{F}}_{\circ} \mathscr{F})(f)$. En particulier pour (presque) tout nombre réel t, on a les égalités $f(t) = \frac{1}{2\pi} (\mathscr{F}(\overline{\mathscr{F}}f))(t)$ et $f(t) = \frac{1}{2\pi} (\overline{\mathscr{F}}(\mathscr{F}f))(t)$. On ne peut ensuite écrire ces égalités avec des intégrales que si les fonctions f et $\mathscr{F}f$ sont intégrables.

• Calcul d'une transformée de Fourier à l'aide du théorème d'inversion de Fourier Pour la fonction porte, on se donne T>0. On déduit [exercice!] des égalités précédentes la relation $\mathscr{F}\left(\operatorname{sinc}\left(\frac{\omega T}{2}\right)\right)(t)=\frac{2\pi}{T}P_T(t)$. En particulier pour T=2, $(\mathscr{F}\operatorname{sinc})(t)=\pi$ si |t|<1 et $(\mathscr{F}\operatorname{sinc})(t)=0$ si |t|>1. Grâce au théorème d'inversion de Fourier, on a calculé la transformée de Fourier du sinus cardinal sans jamais écrire une seule intégrale!

Exercices

• Convolution de la porte et transformation de Fourier

Soit T un réel strictement positif et P_T la fonction "porte" définie par $P_T(t) = 1$ pour $-\frac{T}{2} < t < \frac{T}{2}$ et $P_T(t) = 0$ sinon.

- a) Montrer que le produit de convolution $P_T * P_T$ est une fonction φ_T définie par $\varphi_T(t) = t + T$ pour $-T \le t \le 0$, $\varphi_T(t) = T t$ pour $0 \le t \le T$ et $\varphi_T(t) = 0$ sinon.
- b) En déduire la transformée de Fourier de la fonction φ_T .
- Transformation de Fourier de la gaussienne

On admet que $\int_{-\infty}^{\infty} \exp(-t^2/2) dt = \sqrt{2\pi}$.

En déduire la transformée de Fourier $\widehat{f}(\omega) \equiv \int_{-\infty}^{\infty} \exp(-i\omega t) f(t) dt$ de la gaussienne $f(t) \equiv \exp(-t^2/2)$.

• Transformation de Fourier du sinus cardinal

Pour t réel, on définit le sinus cardinal $\operatorname{sinc}(t)$ par la relation $\operatorname{sinc}(t) = \frac{\sin t}{t}$.

A l'aide de la transformée de Fourier d'une porte bien choisie et de la formule d'inversion de Fourier, calculer la transformée de Fourier du sinus cardinal.

• Autour de la transformée de Fourier d'une loi de Cauchy

Pour t réel, une loi de Cauchy est une fonction de la forme $f(t) = \frac{1}{1+t^2}$.

- a) A l'aide de la transformée de Fourier de la fonction $\exp(-a|t|)$ et de la formule d'inversion de Fourier, calculer la transformée de Fourier $\widehat{f}(\omega)$.
- b) En déduire la transformée de Fourier des fonctions $g(t) = \frac{1}{10+6t+t^2}$, $h(t) = \frac{t}{(1+t^2)^2}$ et $k(t) = \frac{t}{1+t^2}$.
- Quelques intégrales
- a) A partir des résultats de l'exercice précédent, expliciter la transformée de Fourier du carré du sinus cardinal, c'est à dire de la fonction f définie par $f(t) = \frac{\sin^2 t}{t^2}$.
- b) En déduire la valeur de l'intégrale $\int_{-\infty}^{\infty} \frac{\sin^2 t}{t^2} dt$.
- c) Même question pour l'intégrale $\int_{-\infty}^{\infty} \frac{\sin^4 t}{t^4} dt$.
- d) Préciser, selon les valeurs du paramètre $\omega \in \mathbb{R}$, les valeurs prises par l'intégrale

François Dubois

$$I(\omega) = \int_{-\infty}^{\infty} \frac{\sin^2 t}{t^2} \cos(\omega t) dt.$$

• Transformation de Fourier [février 2014]

On se donne un réel a strictement positif et la fonction f définie par $f(t) = \exp(-a|t|)$.

- a) Quelle est l'expression de $(\mathscr{F}f)(\omega)$?
- b) Démontrer que la fonction $(\mathscr{F}f)(\omega)$ est à la fois paire et réelle.
- c) Expliquer pourquoi la fonction $g(\omega) = \frac{1}{a^2 + \omega^2}$ appartient à l'espace $L^1(\mathbb{R})$.
- d) Pour t réel arbitraire, montrer que l'expression $\Phi(t) = \int_{-\infty}^{+\infty} g(\omega) \exp(i\omega t) d\omega$ est bien définie.
- e) A l'aide de quel opérateur la fonction Φ est-elle reliée à la fonction g?
- f) Calculer une expresion analytique de $\Phi(t)$ pour tout nombre réel t.
- Transformation de Fourier [février 2018]

On se donne T > 0 et on définit la fonction f de \mathbb{R} dans \mathbb{R} par les relations f(t) = 1 si 0 < t < T, f(t) = -1 si -T < t < 0 et f(t) = 0 si |t| > T.

- a) Montrer que la fonction f appartient à l'espace $L^1(\mathbb{R})$.
- b) En déduire l'expression $\hat{f}(\xi)$ de sa transformée de Fourier pour tout nombre réel ξ .
- c) La fonction f appartient-elle à l'espace $L^2(\mathbb{R})$?
- d) En déduire une expression analytique de l'intégrale $I = \int_{-\infty}^{\infty} \frac{\sin^4 \xi}{\xi^2} d\xi$.