

Département de Mathématiques et Statistiques

Analyse Mathématique pour l'Ingénieur (MAA106)

Devoir 1, à rendre pour la séance numéro 4, le 15 octobre 2019

Exercice 1 - Convergence d'une série de Riemann

On considère la suite v_n définie par $v_n=\frac{1}{n}-\frac{1}{n+1}$ pour $n\geq 1$. On définit la somme partielle S_n de la série (v_n) par $S_n=v_1+v_2+\cdots+v_n$. On introduit également la suite $u_n=\frac{1}{n^2}$ et la somme partielle associée $\Sigma_n=u_1+u_2+\cdots+u_n$.

- a) Montrer que la série (v_n) est à termes positifs : on a $v_n \ge 0$ pour tout entier $n \ge 1$.
- b) Montrer que l'on a $S_n = 1 \frac{1}{n+1}$.
- c) En déduire que la série de terme général v_n est convergente.
- d) Quelle est sa limite?
- e) Montrer que pour n entier ≥ 1 , on a $u_n \leq 2 v_n$.
- f) En déduire que la série de terme général u_n est convergente.

Exercice 2 - Le nombre e est irrationnel

On rappelle que la suite de terme général $u_n=\frac{1}{n!}$ définit une série à termes positifs convergente. Sa somme est notée e. On a $e=\sum_{k=0}^{\infty}\frac{1}{k!}\simeq 2,718$. On suppose que le nombre e est rationnel. Nous allons démontrer que cette hypothèse est fausse, c'est à dire que le nombre e n'est pas un nombre rationnel.

On suppose donc que le nombre e peut être écrit sous la forme $e=\frac{p}{q}$ pour deux entiers positifs p et q. On pose $A=\sum_{k=0}^q \frac{q!}{k!}$ et $B=\sum_{k=q+1}^\infty \frac{q!}{k!}$.

- a) Montrer que l'entier q est nécessairement supérieur ou égal à 2.
- b) Montrer que q! e = A + B.
- c) Montrer que A est un nombre entier.
- d) Montrer que B est un nombre entier strictement positif, donc supérieur ou égal à 1.
- e) Montrer que $B = \frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \dots + \frac{1}{(q+1)(q+2)\dots(q+k)(q+k+1)} + \dots$
- f) En déduire que $B \le \frac{1}{q+1} \left(1 + \frac{1}{(q+2)} + \frac{1}{(q+2)^2} \cdots + \frac{1}{(q+2)^k} + \dots \right)$.
- g) En utilisant un résultat classique sur les séries géométriques, montrer que $B \leq \frac{q+2}{(q+1)^2}$.
- h) Réécrire la relation précédente sous la forme $B \le \frac{1}{q+1} + \frac{1}{(q+1)^2}$.
- i) En utilisant le fait que la fonction $x \mapsto \frac{1}{x+1} + \frac{1}{(x+1)^2}$ est décroissante sur l'intervalle
- $[2, +\infty[$, démontrer que $B \leq \frac{1}{3} + \frac{1}{9}$.
- j) Déduire la contradiction des questions d) et i).