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Lecture 8 Functions of several variables

e Some examples

An affine function: o(x,y) = ax+ by +c, a quadratic function: ¢(x,y) = x> —y?, a power-
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exponential function: /(x,y) = x* and a rational fraction: r(x,y) = +y2 if (x,y) #(0,0),

r(0,0) = 0.

e Domain

A function f from R? with real values associates to each pair (x,y) of real numbers one and
only one number f(x,y) if (x,y) belongs to the domain D. If (x,y) ¢ D, then the number
f(x,y) does not exists.

For the previous examples, we have Dy = RZ, D, = R2, D, =10, +[ xR and D, = R2.

e Partial functions

A function with two variables defines (at least) a double infinity of functions of a single variable.
On one hand, with b given in R, we have the function x — f(x, b) of the first variable. On
the other hand, with a € R, we can introduce the function y — f(a, y) of the second variable.

e Partial derivatives

We suppose given a function R? > D 3 (x, y) — f(x, y) € R of two variables and a point (a, b)
that belongs to the domain of f. We say that f admits a partial derivative at the point (a, b)
according to the first variable, noted g—f:(a, b), if and only if the partial function x — f(x, b)
is derivable at the point a; we have %(a, b) =lim,_o 1 [f(a+t,b)— f(a,b)].

Similarly, we say that f admits a partial derivative at the point (a, b) relative to the second
variable, noted af (a b) if and only if the partial function y — f(a,y) is derivable at the

point b. In that case, a L(a,b) =1limg_,q 51f(a,b+0)— f(a,b)].

For the functions proposed in the introduction, we have 9 — g 9% 94 — 2x, % — 9 Vs
ox dy dx dy
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e Continuity
The function f is continuous at the point (a, b) if and only if the function @(u,v) defined by
o(u,v) = f(a+u,b+v)— f(a, b) tends to zero if the point (u, v) tends to the origin (0, 0).
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The functions «, ¢ and r introduced previously are continuous at the point (0, 0).

If f:D — R is continuous for each point (a, b) € D, we say that f is continuous in the
domain D.

If f:D — R is continuous in D and if g: R — R is a continuous function of a single
variable, then the composite function (g.f)(x,y) = g(f(x,y)) is a continuous function in the
domain D.

e Differentiability

We suppose given a function of two variables R> D D > (x, y) — f(x,y) € R and a point
(a,b) € D. We say that f is differentiable at the point (a, b) if the function f est “close” to
an affine function in the vicinity of the point (a, b). More precisely, f is differentiable at the
point (a, b) if and only if there exits two numbers @ et B and a function ¢ of two variables
(u, v) that tends to zero when (u, v) tends to the origin (0, 0), such that we have the expansion
flatu,b+v) = f(a,b)+au+Bv+Vu>+v> ou,v).

If f is differentiable at the point (a, b), it has also partial derivatives at the point. We have the
relations 2 (a b) = o and af (a b) = PB.

° Theorem. dlfferentlablhty implies continuity

When f is differentiable at the point (a, b) € D, then it is continuous at the point.

Be careful! The existence of partial derivatives does not imply the differentiability! The func-
tion s defined by the conditions s(x, y) = m if (x,y) #(0,0) and s(0,0) =0 admits
partial derivatives 25 5:(0,0) and 9s (O 0) at the origin but the function s is not continuous at the
point (0, 0).

e Remark concerning the notations

The differential df(a, b) is a linear map defined by the relation

df(a,b).(u,v) = %(a, b)u-+ g—’;(a, b)v. Introduce the two coordinate functions X (x,y) = x
and Y (x,y) =y. Then we have dX(a, b).(u,v) =u and dY(a, b).(u,v) = v. In consequence,
we can write df(a, b).(u,v) = 9 (a, b) dX(a, b).(u, v) + 5 (a, b) d¥ (a, b).(u, v). This rela-
tion between numbers is true for each (u,v) € R2. Then we can write an equality between
linear forms: df(a, b) = %(a, b) dX(a,b)+ af (a D) dY (a b). We usually skip the reference
to the argument (a, b) and we obtain the relatlon df = dX + gf dY. With a litle purpose of
notation, we replace X by x and Y by y. Then we have d f= 3?: dx+ 5 9f dy, the usual way for
computing differentials.

e Differentiation of composite functions: a first case.

We suppose given a function of two variables R? D> D 3 (x,y) — f(x,y) € R and two functions
R>¢+— X(r) and R > ¢+ Y(¢) in such a way that for each ¢, we have the condition
(X(¢),Y(r)) € D. Then the composite function g(¢) = f(X(¢), Y (¢)) is well defined for each 7.
If f is differentiable on the domain D and if the functions t — X(¢) and t — Y () are
derivables, then the function # — g(¢) is derivable and we have the relation

¥ =X, (1) K+ X @), v (1) &
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e Differentiation of composite functions: a second case.

We replace the functions X and Y of the previous section by the two functions

R?2 D A3 (u,v) — X(u,v) €R and R2 D A3 (u,v) —> Y(u,v) € R of two variables. As
previously, we suppose that for each (u,v) € A, we have (X(u,v),Y(u,v)) € D. Then the
composite function g(u, v) = f(X(u, v), Y (u, v)) is well defined for (u,v) € A.

If f is differentiable on D and if the functions X and Y are differentiable on A, then the com-
posite function g(u,v) = f(X(u,v),Y (u v)) is differentiable on A and the partial derivatives

dg _ df aX | df Y __df 9X | df aY
are evaluated with the relations % 5 on T v ou and =i o9 T Iy v

Exercices

e Kernel of the heat equation
2

We suppose given ¢ > 0. For x € R and 7 > 0 we set ¢(x, ) = \}E exXp(—147;)-
29

a)  Propose an expression for the partial derivative .

b) Same question for aa"’

¢) Same question for a ‘p = 81(%)
d)  Verify that the funct10n ¢ is a solution of the heat equation in one space dimension:

d 29°
a—‘f—c a—xg’:Oforxe]Randt>O.

e Method of characteristics

We suppose given a real numer a € R and a derivable function ug from R to R. We search an
unknown function u(x, t) of two variables that satisfies on one hand to the advection equation
% +a 3—; =0 for x € R and 7 > 0 and on the other hand to the initial condition u(x, 0) = ug(x)
for each x € R. Independently, for a fixed y € R, we set v(t) = u(at +y,t).

a)  Prove that if the function u is solution of the advection equation, then the derivative 4

ar is

equal to zero.

b) Deduce from the previous question that for each y € R and each ¢ > 0, we have the relation
u(at+y,1) = up(y).

c) Establish that every differentiable solution of the advection equation % +a % =0 satis-
fying the initial condition u(x, 0) = up(x) for each x € R is necessarily of the form

u(x,t) =up(x—at), xeR, t>0.

d)  With an elementary calculus, show that the function u defined by u(x, t) = up(x — at) is
effectively a solution of the prolem composed on one hand by the advection equation

at uyg? 52 =0 (with x €R et ¢ > 0) and on the other hand by the initial condition u(x, 0) = uo(x)
(with x € R).

e Laplacian in polar coordinates

A point (x,y) of the affine Euclidian plane not located at the origin can be parametrized with
the two dimensional polar coordinates (r, ): x =rcos 6 and y =rsin8. Let f be a two times
continuously differentiable function of the pair (x, y) with real values; we have f(x,y) € R.
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We introduce the Laplacian of f: Af = a f + % J; and independently the function g of the
variables r and 6 such that g(r, 0) = f(r cos9 rsin 0).

a) From the relation r2
equal to ¥ =cos@ and £ =sin#.

b)  Similarly, from the the relation tanf = 2, prove that we have %—g = —ry—2 = —% sin@® and

0 _ x __ 1
a-y—z—;COSQ

= x> +y?, show that the partial derivatives g—; et g—; are respectively

c¢) Compute a—r and ae as functions of f: and 5 .

d) Deduce from the prev1ous question that we have 9 — c0s028 —Lsing 2% and
5 p dx ar r d20

afyC =sinf 55 4 Cos9

e) Using the four aux1hary fonctions fi(x,y) = \/ﬁ’ frlx,y)= :Lyy 5, fa(x,y) = \/%
X2ty

and fi(x,y) = ﬁyz’ establish the following relations 8‘9 (cos 0)= 1 sin® 6,
2 (~1Lsin@) =2 sin6 cosd, 2 5;(sin@) = 1 cos?0 and % ( cos9) = —2 sin6 cos 6.

f) Deduce from the relations obtalned in the previous questlons the expressions of the second
artial derivatives 2f and 2f as fonctions of r, 0, 28, 98 g and a g . Be careful,
p dx? dy? > 70 dr’ 060’ 9r2’ Jdrdf

each result contains five terms!
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g) Deduce from the previous question the identity Af(x,y) = % 8% (r %) + lz
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