le cnam

Algèbre de Boole et Probabilités

Cours 5 Dénombrements

Réunion d'ensembles disjoints

On se donne un entier $n \ge 1$ et n ensembles finis $X_1, X_2, ..., X_n$ non vides disjoints deux à deux : $X_i \cap X_j = \emptyset$ dès que $i \ne j$. Alors le nombre d'éléments de la réunion $\bigcup_{j=1}^n X_j = X_1 \cup X_2 \cup ... \cup X_n$ des ensembles X_j est égale à la somme des cardinaux $|X_j|$ de ces ensembles : $|\bigcup_{j=1}^n X_j| = \sum_{j=1}^n |X_j| = |X_1| + |X_2| + ... + |X_n|$.

L'addition est l'opération fondamentale pour dénombrer des cas de figure qui s'excluent mutuellement.

• Produit cartésien de deux ensembles

On se donne deux ensembles finis non vides X et Y. Le produit cartésien $P = X \times Y$ est composé de tous les couples de la forme (x, y) avec $x \in X$ et $y \in Y$. Le nombre d'éléments de ce produit cartésien est égal au produit du nombre |X| des éléments de l'ensemble X par le nombre |Y| des éléments de l'ensemble Y. On a $|X \times Y| = |X| |Y|$.

Il y a |X| possibilités de choisir la première composante x du couple (x, y). À chacun de ces choix, nous avons |Y| choix possibles pour la seconde composante y. Le résultat s'en déduit alors avec une simple multiplication.

• Produit cartésien d'un nombre fini d'ensembles

On dispose toujours d'un nombre fini n d'ensembles X_j finis et non vides : $X_j \neq \emptyset$ pour tout entier j tel que $1 \leq j \leq n$. Alors le produit cartésien $X_1 \times X_2 \times ... \times X_n = \prod_{j=1}^n X_j$ est fini et comporte $|X_1| \times |X_2| \times ... \times |X_n| = \prod_{j=1}^n |X_j|$ éléments. Le cardial du produit cartésien est égal au produit des cardinaux de chacun des ensembles.

• Cas d'un ensemble fini dupliqué un nombre fini de fois

Dans le cas où $X_1 = X_2 = ... = X_n = X$, on fait n copies du même ensemble X fini non vide. On note $X^n = X \times X \times ... \times X$ ce produit cartésien. Il comporte $|X^n| = |X|^n$ éléments. Cet exemple introduit l'exponentiation comme nouvelle opération en vue des dénombrements.

• Nombre d'applications d'un ensemble fini dans un autre

On se donne deux ensembles finis non vides et $\mathscr{A}(X,Y) = Y^X$ l'ensemble des applications de X dans Y. Le nombre de telles aplications est égal au cardinal de Y élevé à une puissance égale au cardinal de X: $|Y^X| = |Y|^{|X|}$.

Si on pose $X = \{1, 2, ..., p\}$ et $Y = \{1, 2, ..., n\}$ pour fixer les idées, on doit d'abord se donner f(1) comme élément de Y. Il y a bien sûr n choix possibles. À chacun de ces choix, nous pouvons faire n nouveaux choix pour f(2), ce qui conduit à n^2 choix pour les deux premières images. Alors de proche en proche, et on peut formaliser cette preuve à l'aide d'un raisonnement par récurrence qui est laissé au lecteur, on dispose de $n \times n \times ... \times n = n^p$ choix

FRANÇOIS DUBOIS

possibles pour les valeurs de f(1) à f(p). Il y a n^p applications différentes de $\{1, 2, ..., p\}$ dans $\{1, 2, ..., n\}$.

On peut par exemple lister toutes les applications de $X = \{1, 2\}$ dans $Y = \{a, b, c\}$. Nous constations que les couples (f(1), f(2)) des images décrivent l'ensemble $\{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$ qui comporte $9 = 3^2$ éléments.

Nombre d'injections d'un ensemble à p éléments dans un ensemble à n éléments

On se donne à nouveau $X = \{1, 2, ..., p\}$ pour fixer les idées. L'ensemble d'arrivée Y comporte $n \ge p$ éléments. On se donne d'abord f(1). Il y a n choix possibles. Puis, pour chacun de ces choix, on se donne f(2). Mais cette nouvelle image ne doit pas être égale à la première puisqu'on suppose l'application f injective. On a donc seulement (n-1) possibilités et le nombre total de possibilités pour les deux premières images est au total de n(n-1). Pour la troisième image f(3), on doit éviter les choix faits pour f(1) et f(2), ce qui laisse (n-2) choix possibles. Ainsi, de proche en proche, le nombre total d'injections d'un ensemble à p éléments dans un ensemble à p éléments vaut p(n-1) ... p(n-1).

On pose $A_n^p = n(n-1)...(n-(p-1))$. Ce nombre est appelé classiquement "nombre d'arrangements de n éléments pris p à p". C'est le nombre d'injections d'un ensemble à p éléments dans un ensemble à p éléments. C'est aussi le nombre de listes ordonnées de p éléments choisis parmi p0. On a toujours $p \le p$ 1. On remarque aussi que le nombre p2 est un produit de p3 facteurs.

• Nombre de bijections entre deux ensembles finis

On se donne un ensemble fini X tel que |X| = n avec n entier supérieur ou égal à un. On se donne un second ensemble fini Y de sorte qu'il existe une bijection de X sur Y. Alors $|X| \le |Y|$ car l'application est injective. De plus, $|Y| \le |X|$ car elle est surjective. Donc les deux ensembles X et Y ont même cardinal : |X| = |Y| = n.

Le nombre de bijections est égal au nombre d'injections A_n^n puisqu'une injection entre deux ensembles ayant le même nombre d'éléments est nécessairement bijective. Le nombre A_n^n est doté d'une notation particulière. On pose $n! = A_n^n = 1 \times 2 \times ... (n-1)n$. La notation n! se lit "factorielle n". C'est le nombre de bijections d'un ensemble à n éléments dans lui même.

On observe que le nombre factorielle n croît très vite avec l'entier n puisqu'on a 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, etc. On observe que n! = n((n-1)!). Cette relation de récurrence permet un calcul du nombre n! de proche en proche. Il est également très pratique de poser 0! = 1.

On peut écrire le nombre A_n^p avec la notation factorielle. On a $A_n^p = \frac{n!}{(n-p)!}$

• Permutations d'un ensemble à *n* éléments

Numéroter les éléments de l'ensemble X tel que |X| = n, c'est aussi se donner une bijection de l'ensemble $\{1, 2, ..., n\}$ sur l'ensemble X. C'est quasiment la même chose que de se donner une permutation des éléments de l'ensemble X dans lui-même, c'est à dire une bijection de l'ensemble X sur lui-même.

Par exemple avec n = 3 et $X = \{a, b, c\}$, on dispose de six permutations structurées de la façon suivante. On a d'abord l'identité id qui ne change aucun des éléments :

ALGÈBRE DE BOOLE ET PROBABILITÉS

 $\operatorname{id}(x) = x$ pour tout $x \in \{a, b, c\}$. On a ensuite les transpositions qui échangent deux éléments et laissent le troisième fixe. On a ainsi la transposition τ_{ab} qui échange a et b: $\tau_{ab}(a) = b$, $\tau_{ab}(b) = a$ et $\tau_{ab}(c) = c$, la transposition τ_{bc} qui échange les lettres b et c: $\tau_{bc}(b) = c$, $\tau_{bc}(c) = b$ et $\tau_{bc}(a) = a$ et pour terminer enfin la transposition τ_{ca} qui laisse fixe la lettre b: $\tau_{ca}(c) = a$, $\tau_{ca}(a) = c$ et $\tau_{ca}(b) = b$. On dispose enfin des cycles de longueur 3, appelés aussi permutations circulaires, qu'on écrit typiquement de la façon suivante : $a \longmapsto b \longmapsto c \longmapsto a$ et $a \longmapsto c \longmapsto b \longmapsto a$. On retrouve bien un total de 1+3+2=6=3! permutations pour un ensemble de trois éléments.

• Combinaisons de p éléments distincts dans un ensemble à n éléments

On se donne un entier $n \ge 1$ et un entier p compris entre 0 et n. Le nombre de parties à p éléments dans un ensemble à n éléments se note $\binom{n}{p}$ ou C_n^p . Il est très facile à calculer dans plusieurs cas particuliers : $\binom{n}{0} = 1$ puisqu'on a une seule partie vide, $\binom{n}{n} = 1$ car on dispose d'une seule partie pleine qui contient tous les éléments et $\binom{n}{1} = n$ car il y a autant de singletons que d'éléments dans l'ensemble fini à n éléments.

• Triangle de Pascal

Cette méthode pour calculer les coefficients $\binom{n}{p}$ était déjà connue des mathématiciens iraniens comme al-Karaji (953-1029) ou Omar Khayyam (1048-1131), au Maghreb avec Ibn al-Banna (1256-1321) et en Chine (Yang Hui, 1238-1298). En occident, il était connu de Peter Apian (1495-1552), Michael Stifel (1486-1567), Niccolò Fontana Tartaglia (1499-1557), François Viète (1540-1603) et Marin Mersenne (1588-1648), avant le *Traité du triangle arithmétique* de Blaise Pascal (1623-1662).

Pour n nombre entier supérieur ou égal à 1 et p entier tel que $0 \le p \le n$, on a $\binom{n+1}{p} = \binom{n}{p} + \binom{n}{p-1}$. Cette relation se démontre par récurrence sur n. Il suffit de considérer les parties à p éléments contenant ou pas un élément donné. Cette relation du triangle arithmétique permet surtout de calculer de proche en proche les coefficients $\binom{n}{p}$ avec un tableau triangulaire. On peut même rajouter la valeur $\binom{0}{0} = 1$ dans le tableau.

n	0	1	2	3	4
0	1				
1	1	1			
2	1	2	1		
3	1	3	3	1	
4	1	4	6	4	1

Calcul des coefficients $\binom{n}{p}$ pour $0 \le p \le n$ à l'aide du triangle de Tartaglia-Pascal On constate et on démontre facilement par récurrence que les coefficients $\binom{n}{p}$ sont effectievement des nombres entiers.

• Expression des coefficients $\binom{n}{p}$ à l'aide de factorielles Si n est un entier positif ou nul et p un autre entier tel que $0 \le p \le n$, alors $\binom{n}{p} = \frac{n!}{p!(n-p)!}$. La preuve se fait par récurrence sur n et utilise de façon fondamentale la relation

François Dubois

 $\binom{n+1}{p} = \binom{n}{p} + \binom{n}{p-1}$ qui permet le calcul de ces coefficients. En changeant p en (n-p) dans l'expression $\binom{n}{p} = \frac{n!}{p!(n-p)!}$, on trouve la relation $\binom{n}{n-p} = \binom{n}{p}$, valable pour $0 \le p \le n$.

• Lien entre les combinaisons et les arrangements

Des relations $A_n^p = \frac{n!}{p!}$ et $\binom{n}{p} = \frac{n!}{p!(n-p)!}$, on déduit que $\frac{1}{p!}A_n^p = \binom{n}{p}$ est un nombre entier. Pour construire une liste de p objets parmi n, on choisit d'abord l'ensemble des p objets que l'on veut lister et il y a $\binom{n}{p}$ possibilités. Puis on range les p objets choisis dans un ordre arbitraire. Pour chacun des choix précédents, il y a p! possibilités. On en déduit que $A_n^p = p! \binom{n}{p}$, ce qui établit le résultat.

Formule du binôme de Newton

Proposée par Isaac Newton (1642-1727), elle énonce que dès que deux nombres a et b commutent pour la multiplication (ab = ba), alors pour tout entier naturel n, on a

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + ... + \binom{n}{k} a^{n-k} b^k + ... + b^n$$
. On peut aussi l'écrire

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$. Elle est claire si n=0 et n=1. Pour n=2, elle est bien connue du lecteur puisque $(a+b)^2 = a^2 + 2ab + b^2$. On la montre par récurrence sur l'entier n. Si elle est vraie à l'ordre n, on doit calculer $(a+b)^{n+1}$ avec l'expression obtenue en changeant n en (n+1) dans l'expression précédente, c'est à dire

$$(a+b)^{n+1} = a^{n+1} + \binom{n+1}{1} a^n b + \dots + \binom{n+1}{k} a^{n+1-k} b^k + \dots + b^{n+1}. \text{ Or}$$

$$(a+b)^{n+1} = (a+b) (a+b)^n = (a+b) \left[a^n + \binom{n}{1} a^{n-1} b + \dots + \binom{n}{k} a^{n-k} b^k + \dots + b^n \right]$$

d'après l'hypothèse de récurrence. On développe avec soin cette expression :

$$(a+b)^{n+1} = a^{n+1} + \sum_{k=1}^{n-1} {n \choose k} a^{n+1-k} b^k + ab^n + a^n b + \sum_{k=1}^{n-1} {n \choose k} a^{n-k} b^{k+1} + b^{n+1}$$

$$= a^{n+1} + \sum_{k=1}^{n} {n \choose k} a^{n+1-k} b^k + \sum_{\ell=0}^{n-1} {n \choose \ell} a^{n-\ell} b^{\ell+1} + b^{n+1} \quad \text{car } k \text{ est une variable muette}$$

$$= a^{n+1} + \sum_{k=1}^{n} {n \choose k} a^{n+1-k} b^k + \sum_{k=1}^{n} {n \choose k-1} a^{n+1-k} b^k + b^{n+1}$$

en posant
$$k = \ell + 1$$
 dans la seconde somme

$$= a^{n+1} + \sum_{k=1}^{n} \left[\binom{n}{k} + \binom{n}{k-1} \right] a^{n+1-k} b^k + b^{n+1}$$

= $a^{n+1} + \sum_{k=1}^{n} \binom{n+1}{k} a^{n+1-k} b^k + b^{n+1}$

car $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$. Le résultat est donc établi par récurrence.

À cause de leur présence dans la formule du binôme, les coefficients $\binom{n}{p}$ sont appelés "coefficients du binôme".

Nombre de parties d'un ensemble à n éléments

On se donne n entier ≥ 1 et $X = \{1, 2, ..., n\}$. Une partie quelconque de X comporte zéro, un, deux, ... ou n éléments. Le cardinal de $\mathcal{P}(X)$, nombre total de sous-ensembles de l'ensemble X, est donc égal à $1 + {n \choose 1} + ... + {n \choose k} + ... + n + 1 = \sum_{k=0}^{n} {n \choose k}$. En prenant a = b = 1dans la formule du binôme, nous venons d'établir que $|\mathscr{P}(\{1,2,...,n\})| = 2^n$.

ALGÈBRE DE BOOLE ET PROBABILITÉS

Exercices

Tiercés

Un joueur joue au tiercé et parie dans un premier temps 100 fois l'arrivée de trois chevaux dans le désordre. Tous ses paris sont différents.

- a) Que peut-on dire du nombre de chevaux dans la course ?
- b) Même question mais cette fois le joueur a parié l'arrivée des chevaux dans l'ordre.

• Rangement

Un étudiant range sur une étagère ses 14 livres, dont 4 de mathématiques, 5 d'économie, 3 de philosophie et 2 d'anglais. De combien de façons peut-il les ranger, en prenant en compte les contraintes suivantes :

- a) ne pas tenir compte de l'ordre des matières,
- b) il range d'abord l'anglais, puis l'économie, puis les mathématiques en enfin la philosophie,
- c) il range ses livres par matière, sans imposer *a priori* l'ordre des matières ?

Cartes

Un jeu de 32 cartes comporte quatre couleurs dont deux couleurs rouges et deux couleurs noires ; on compte huit cartes différentes par couleur.

- a) De combien de façons peut-on choisir trois cartes rouges ?
- b) Même question, avec la contrainte que la main de trois cartes doit comporter au moins une carte "cœur".
- c) De combien de façons peut-on choisir six cartes de sorte d'avoir trois cartes noires, trois cartes "cœur" et aucun "as" ?

• Agencement

On se donne un entier $n \ge 1$. On dispose de (n+1) boules numérotées à placer dans n boîtes distinctes et numérotées.

- 1) On suppose dans cette question n = 3.
- a) On suppose que seules les boîtes numérotées "1" et "2" reçoivent au moins une boule. Combien y-a-il de façons de procéder ?
- b) On suppose que toutes les boîtes reçoivent au moins une boule ; donc une des boîtes en reçoît deux. Combien y-a-il de façons de procéder ?
- 2) Mêmes questions avec $n \ge 2$.