le cnam

Département de Mathématiques et Statistiques

"Codes et Automates"

(MVA004)

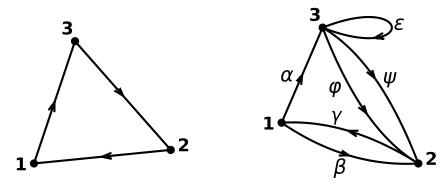
Devoir 3 à rendre pour la séance numéro 10, le 05 avril 2024

Graphe dual [d'après J. Vélu]

On se donne un graphe orienté $G=(X,\,E,\,\delta)$. L'ensemble X est l'ensemble des sommets, l'ensemble E l'ensemble des arêtes et δ est une application de E dans le produit $X\times X$ qui à toute arête $a\in E$, associe son sommet initial s et son sommet final $s'\colon \delta(a)=(s,\,s')$.

On construit un nouveau graphe G appelé "graphe dual" de la façon suivante. L'ensemble des sommets de G^* est égal à l'ensemble E des arêtes de G. Deux arêtes $a \in E$ et $b \in E$ sont reliées par le graphe G^* si et seulement si le sommet final de l'arête a est égal au sommet initial de l'arête b. On pose $G^* \equiv (E, E^*, \delta^*)$. Il s'agit maintenant de déterminer l'ensemble E^* des arêtes duales et l'application δ^* de E^* dans $E \times E$.

a) Construire le graphe dual du graphe décrit à la figure ci-dessous à gauche.



b) On revient au cas général. Montrer que les arêtes duales $\alpha \in E^*$ du graphe dual G^* sont définies par la relation : $\alpha \in E^*$ si et seulement si

 $\exists a \in E, \exists b \in E, \exists s, \sigma, s' \in X \text{ tels que } \delta(a) = (\sigma, s) \text{ et } \delta(b) = (s, s').$

c) Montrer qu'on a alors $\delta^*(\alpha) = (a, b)$.

On note J^+ et J^- les matrices d'incidence du graphe initial G et M^* la matrice d'adjacence du graphe dual G^* .

- d) Montrer qu'on a la relation $M^* = (J^-)^t J^+$.
- e) Calculer la matrice d'adjacence M^* du graphe dual G^* pour le graphe G proposé à la figure ci-dessus.
- f) Proposer une représentation graphique du graphe dual G^* pour le graphe G décrit à la figure ci-dessus à droite.

François Dubois, 19 mars 2024.