

Conservatoire National des Arts et Métiers

Modélisation Numérique en Génie des Procédés Travaux pratiques

TP1.

On s'intéresse au modèle qui consiste à chercher $\,u(t)\,$ de sorte que

$$\frac{\mathrm{d}u}{\mathrm{d}t} + \frac{u(t)}{2} = 0 \text{ pour } t > 0$$

avec u(0) = 1. On se propose de calculer V solution du modèle précédent pour l'instant T = 0, 5, ce avec une bonne précision.

1) Proposer (en justifiant votre réponse) une valeur du nombre de pas de temps N.

Quelle est alors la valeur du pas de temps Δt ?

Utiliser le schéma d'Euler explicite pour calculer une première valeur approchée de V que l'on notera v_1 .

- 2) Quelle valeur w_1 obtient-on si on remplace le schéma d'Euler explicite par le schéma d'Euler implicite ?
- 3) Même question avec z_1 calculé avec le schéma de Crank-Nicolson.
- 4) Calculer les erreurs $|v_1 V|$, $|w_1 V|$, $|z_1 V|$.
- 5) On double le nombre de pas de temps pour arriver à la même valeur T=0,5.

On remplace donc le pas de temps Δt par $\Delta t/2$. On calcule une nouvelle valeur approchée avec cette nouvelle discrétisation au moyen des trois schémas précédents. On remarque qu'on doit alors utiliser deux fois plus de pas de temps.

On note les trois résultats obtenus v_2 , w_2 , et z_2 respectivement.

Calculer les nouvelles erreurs $|v_2 - V|$, $|w_2 - V|$ et $|z_2 - V|$.

Que remarquez-vous?

édition automne 2018