Conservatoire National des Arts et Métiers Département d'Ingénierie Mathématique Cours de "Mathématiques du Signal Déterministe"

Examen du 04 février 2014 (3 heures)

Les notes de cours manuscrites ou transmises via le site internet du cours sont autorisées, à l'exclusion de tout autre document. Il sera tenu compte de façon essentielle de la clarté et de la précision des explications fournies. Les exercices sont indépendants.

Séries de Fourier Exercice 1)

On se donne T réel strictement positif, ε tel que $0 < \varepsilon < T$ et a et b deux nombres réels quelconques. On définit une fonction f de la façon suivante : f(t) = a si $0 \le t < \varepsilon$, f(t) = b si $\varepsilon \le t < T$, f périodique de période T.

- a) Dessiner le graphe de la fonction f dans le cas particulier où $T=2, \varepsilon=\frac{1}{2}$ a = 1 et b = -1.
- Si a = b, que peut-on dire de la fonction f?
- Quel est le développement de la fonction f en série de Fourier si a = b?
- Dans le cas général où $a \neq b$, calculer le développement en série de Fourier

de la fonction
$$f$$
; on explicitera les coefficients a_k et b_k de sorte que
$$f(t) = \sum_{k=0}^{\infty} a_k \cos\left(\frac{2k\pi t}{T}\right) + \sum_{k=1}^{\infty} b_k \sin\left(\frac{2k\pi t}{T}\right).$$

e) Que valent les coefficients a_k et b_k si a=b? Pouvait-on prévoir le résultat?

Exercice 2) Dérivation au sens des distributions

- Soit f(t) la fonction définie par f(t)=0 si $t\leq 0,\ f(t)=\frac{t^2}{2}$ si t>0. a) Montrer que la fonction f est dérivable sur $\mathbb R$ et calculer sa fonction dérivée $\frac{\mathrm{d}f}{\mathrm{d}t}(t)$ pour tout $t \in \mathbb{R}$. On regardera en particulier le cas du point t = 0.
- b) Montrer que $\frac{df}{dt}$ est une fonction continue sur \mathbb{R} et dérivable sauf pour t=0. Calculer la fonction dérivée seconde $\frac{d^2f}{dt^2}$ au sens des distributions. c) Montrer que $\frac{d^2f}{dt^2}$ n'est pas une fonction continue en tout point de \mathbb{R} . Expliciter les valeurs de $\frac{d^2f}{dt^2}(t)$ lorsque cette fonction est continue.
- Calculer la dérivée troisième $\frac{d^3f}{dt^3}$ au sens des distributions.

Exercice 3) Equation différentielle

- Calculer la fonction solution φ_1 de \mathbb{R} dans \mathbb{R} solution de l'équation différentielle
 - $\frac{\mathrm{d}\varphi_1}{\mathrm{d}t} + \varphi_1(t) = 0, \quad \text{pour tout } t \in \mathbb{R}$ (1)

et de la condition initiale (2) $\varphi_1(0) = 1$.

- Calculer la fonction solution φ_2 de \mathbb{R} dans \mathbb{R} solution de la même équation différentielle avec second membre
 - $\frac{\mathrm{d}\varphi_2}{\mathrm{d}t} + \varphi_2(t) = \sin t, \quad \text{pour tout } t \in \mathbb{R}$

et avec la même condition initiale (2) : $\varphi_2(0) = 1$.

- On désigne par $H(\bullet)$ la fonction de Heaviside : H(t) = 1 si t > 0 et H(t) = 0 si $t \leq 0$. Proposer une expression $\varphi_3(t)$ pour la solution de l'équation différentielle
 - $\frac{\mathrm{d}\varphi_3}{\mathrm{d}t} + \varphi_3(t) = H(t)\sin t, \quad \text{pour tout } t \in \mathbb{R}$

avec toujours la même condition initiale (2) : $\varphi_3(0) = 1$.

Exercice 4) Transformation de Fourier

On se donne un réel a strictement positif et la fonction f définie par f(t) = $\exp(-a |t|).$

- Quelle est l'expression de $(\mathcal{F}f)(\omega)$?
- Rappeler pourquoi la fonction $(\mathcal{F}f)(\omega)$ est à la fois paire et réelle. b)
- Expliquer pourquoi la fonction $g(\omega) = \frac{1}{a^2 + \omega^2}$ appartient à l'espace L¹(\mathbb{R}). Pour t réel arbitraire, montrer que l'expression $\Phi(t) = \int_{-\infty}^{+\infty} g(\omega) \exp(i\omega t) d\omega$ est bien définie. A l'aide de quel opérateur est-elle reliée à la fonction g?
- Calculer une expresion analytique de $\Phi(t)$ pour tout nombre réel t.

Exercice 5) Signaux discrets et transformée en z

Pour un nombre réel α arbitraire, δ_{α} représente la masse de Dirac au point α . Par ailleurs, a est un nombre réel fixé strictement positif. On introduit le filtre T qui au signal discret $x \equiv \sum_{k \in \mathbb{Z}} x_k \, \delta_{ka}$ associe le signal discret $y = T \, x$, $y \equiv \sum_{k \in \mathbb{Z}} y_k \, \delta_{ka}$ avec

(1)
$$y_k = \frac{3}{2a} x_k - \frac{2}{a} x_{k-1} + \frac{1}{2a} x_{k-2}, \quad k \in \mathbb{Z}.$$

- Le filtre T est-il causal? a)
- Quelle est la réponse impulsionnelle $h = \sum_{k \in \mathbb{Z}} h_k \, \delta_{ka}$ du filtre T? b)
- Calculer la transformée en z H(z) de la réponse impulsionnelle h introduite à la question précédente.
- On introduit les tranformées en z X(z) et Y(z) des signaux x et y tels que y = Tx. Calculer Y(z) en fonction de X(z). Que vaut le rapport Y(z)/X(z)? Pouvait-on prévoir le résultat ?
- Le filtre T est-il stable?