Conservatoire National des Arts et Métiers Département d'Ingénierie Mathématique Cours de "Mathématiques du Signal Déterministe"

Examen du 14 avril 2015 (3 heures)

Les notes de cours manuscrites ou transmises via le site internet du cours sont autorisées, à l'exclusion de tout autre document. Il sera tenu compte de façon essentielle de la clarté et de la précision des explications fournies. Les exercices sont indépendants dans une large mesure.

Exercice 1) Série de Fourier

On considère la fonction f de $\mathbb R$ dans $\mathbb R$ périodique et de période 2π définie par f(t)=|t| si $-\pi \leq t \leq \pi$.

- a) Dessiner le graphe de la fonction f.
- b) La fonction f est-elle paire ? Est-elle impaire ? Est-elle continue comme fonction de \mathbb{R} dans \mathbb{R} ?
- c) Calculer les intégrales $I = \int_{-\pi}^{\pi} f(t) dt$ et $K = \int_{-\pi}^{\pi} f(t)^2 dt$.
- d) Si k désigne un entier différent de zéro, montrer que toutes les intégrales $J_k = \int_{-\pi}^{\pi} f(t) \cos\left(2\,k\,t\right) \,\mathrm{d}t$ sont nulles.
- e) On se donne un entier naturel k supérieur ou égal à 0. Calculer les intégrales $L_k = \int_{-\pi}^{\pi} f(t) \cos \left((2k+1) t \right) dt$.
- f) Déduire des questions précédentes le développement en série de Fourier de f.
- g) Appliquer le thérorème de Parseval pour calculer exactement la somme de la série $S=\sum_{k=0}^{\infty}\frac{1}{(2k+1)^4}.$

Exercice 2) Equation différentielle ordinaire

On se propose de déterminer la solution y(t) de l'équation différentielle

$$(1) \quad \frac{\mathrm{d}y}{\mathrm{d}t} + 2y(t) = t^2$$

avec la condition initiale

- (2) y(0) = 1.
- a) Quelle est l'expression de la solution générale de l'équation (1) sans second membre ?

- b) Chercher une solution particulière de l'équation (1) sous la forme d'une fonction polynomiale de degré inférieur ou égal à deux.
- c) Proposer une solution analytique de l'équation différentielle (1) avec la condition initiale (2).
- d) Vérifier que la relation proposée à la question précédente est effectivement solution du problème (1)(2).

Exercice 3) Intégrales doubles

On se donne un nombre a strictement positif et on note T_a le triangle défini par les inégalités $x \ge 0, \ y \ge 0$ et $x + y \le a$: $T_a = \{(x, y) \in \mathbb{R}^2, \ x \ge 0, \ y \ge 0, \ x + y \le a\}.$

- a) Dessiner le triangle T_a . Quelle est la surface du triangle T_1 ? Même question pour le triangle T_2 .
- b) Calculer l'intégrale double $I_1 = \iint_{T_1} x y \, \mathrm{d}x \, \mathrm{d}y$. On pourra utiliser le théorème de Fubini.
- c) Calculer l'intégrale double $I_2 = \iint_{T_2} x y \, dx \, dy$.

Exercice 4) Dérivation au sens des distributions

- a) Soit f(t) la fonction introduite à l'exercice 1 : elle est périodique de période 2π et est définie par f(t) = |t| si $-\pi \le t \le \pi$. Calculer sa dérivée f' première au sens des distributions.
- b) La distribution f' est-elle une fonction? Justifier votre réponse.
- c) Calculer la dérivée seconde f'' de la fonction f au sens des distributions.
- d) On désigne par H(t) la fonction de Heaviside : H(t) = 1 si $t \ge 0$ et H(t) = 0 si t < 0. On pose $g(t) = H(t) \exp(-2t)$. La fonction g est-elle continue ? Est-elle causale ?
- e) Calculer, en justifiant votre réponse, la distribution K = g' + 2g(t).

Exercice 5) Espaces de fonctions

On rappelle que l'espace $L^1(\mathbb{R})$ est l'espace des fonctions f intégragles sur \mathbb{R} ; l'intégrale $\int_{-\infty}^{\infty} |f(t)| dt$ est finie et c'est un nombre réel positif.

a) On pose $f_1(t) = \frac{\sin t}{|t|^{3/2}}$. La fonction f_1 appartient-elle à l'espace $L^1(\mathbb{R})$? Justifier avec soin votre réponse.

2

- b) Même question avec f_2 définie par la relation $f_2(t) = \frac{1}{\sqrt{1+t^2}}$.
- c) Même question avec f_3 définie par la relation $f_3(t) = \frac{1}{t^2 1}$.
- d) Même question avec f_4 définie par la relation $f_4(t) = \frac{1-\cos t}{t^2}$.