Méthode de relaxation.

• On désigne par n un entier supérieur ou égal à 1, a un vecteur donné de \mathbb{R}^n , B et C deux matrices carrées réelles d'ordre n. On note (\bullet, \bullet) le produit scalaire usuel dans \mathbb{R}^n et $||\bullet||$ la norme euclidienne associée. On pose

(1)
$$J(v) = (a, v) + \frac{1}{2} ||Bv||^2 + \frac{1}{3} ||Cv||^3$$
.

Pour $v \equiv (v_1, \dots, v_j, \dots, v_n)$ on note $\frac{\partial J}{\partial v_j}(v)$ la dérivée partielle de la fonctionnelle $J(\bullet)$ par rapport à la j° variable scalaire.

- 1) Montrer que la fonctionnelle $J(\bullet)$ est deux fois dérivable sur \mathbb{R}^n . Calculer les nombres (J'(v), h) et (J''(v)h, h) pour v, et h vecteurs arbitraires de \mathbb{R}^n . Démontrer que la fonctionnelle $J(\bullet)$ est convexe.
- \bullet On suppose à partir de maintenant que la matrice B est inversible.
- 2) Montrer que $J(\bullet)$ est α -elliptique (on précisera la valeur du réel α) et qu'il existe un unique vecteur u de \mathbb{R}^n tel que

(2)
$$J(u) \leq J(v), \quad \forall v \in \mathbb{R}^n.$$

• Pour calculer effectivement la solution $u \in \mathbb{R}^n$ du problème (2) pour la fonctionnelle $J(\bullet)$ introduite à la relation (1), on utilise une méthode de relaxation. Cette approche consiste à introduire une succession de problèmes de minimisation à une seule variable réelle. Pour u^k vecteur donné dans \mathbb{R}^n , on définit d'abord la suite $\binom{v^{k+1/2}}{j}_{0 \le j \le n}$ de la manière suivante :

(3)
$$v_0^{k+1/2} = u^k$$
, $v_j^{k+1/2} = v_{j-1}^{k+1/2} + x_j e_j$, $1 \le j \le n$,

(4)
$$J(v_j^{k+1/2}) \leq J(v_{j-1}^{k+1/2} + y e_j), \quad \forall y \in \mathbb{R},$$

où $e_j = (0, \dots, 0, 1, 0, \dots, 0)$ (avec l'élément non nul en j^{o} position) est le j^{o} vecteur de la base canonique de \mathbb{R}^n .

- 3) Montrer que $v_j^{k+1/2}$ est défini de manière unique et expliciter l'équation scalaire à résoudre à chaque itération en fonction de e_j , $v_{j-1}^{k+1/2}$, a, B et C.
- L'algorithme de relaxation est alors défini par :

(5)
$$u^0 \in \mathbb{R}^n \text{ donn\'e}, \qquad u^{k+1} = v_n^{k+1/2},$$

avec la suite auxiliaire $(v_j^{k+1/2})_{0 \le j \le n}$ définie aux relations (3) et (4). On se propose de démontrer que la suite $(u^k)_{k \in \mathbb{N}}$ converge vers la solution u du problème (2).

- 4) Montrer que $||u^{k+1} u^k||$ tend vers 0 si k tend vers l'infini et qu'il en est de même pour $||v_j^{k+1/2} u^{k+1}||$ pour tout j compris entre 1 et n.
- **5)** Etablir l'estimation

(6)
$$\alpha \mid \mid u^{k+1} - u \mid \mid \leq \sum_{j=1}^{n} \left| \frac{\partial J}{\partial v_j} (u^{k+1}) - \frac{\partial J}{\partial v_j} (v_j^{k+1/2}) \right| .$$

6) En déduire que la méthode de relaxation converge vers la solution u du problème (2).

FD, avril 2001, juillet 2002.

Méthode de relaxation. Proposition de corrigé.

1) Le seul problème de dérivabilité de la fonctionnelle $J(\bullet)$ se pose pour le terme $\frac{1}{3} \mid\mid C v\mid\mid^3$ en v=0. Mais, jointe au fait que $J(\bullet)$ est dérivable partout sauf peut être à l'origine, l'estimation

$$||Cv||^3 \le ||C||^3 ||v||^3$$

montre que la fonction $\mathbb{R}^n \ni v \longmapsto \mid Cv \mid \mid^3 \in \mathbb{R}$ est deux fois dérivable en 0 et que les deux premières dérivées sont nulles.

• Le calcul des dérivées (J'(v), h) et (J''(v)h, h) est simple si on utilise la formule de Taylor :

(S1)
$$J(v+h) = J(v) + (J'(v), h) + \frac{1}{2} (J''(v)h, h) + o(||h||^2).$$

Or on a ici $J(v+h) = (a, v+h) + \frac{1}{2} ||B(v+h)||^2 + \frac{1}{3} ||C(v+h)||^3$ avec

$$\frac{1}{3} \| C(v+h) \|^{3} = \frac{1}{3} \| Cv \|^{3} \left(1 + 2 \frac{(Cv, Ch)}{\| Cv \|^{2}} + \frac{\| Ch \|^{2}}{\| Cv \|^{2}} \right)^{3/2}$$

$$= \frac{1}{3} \| Cv \|^{3} \left(1 + 3 \frac{(Cv, Ch)}{\| Cv \|^{2}} + \frac{3}{2} \frac{\| Ch \|^{2}}{\| Cv \|^{2}} + \frac{3}{8} 4 \frac{(Cv, Ch)^{2}}{\| Cv \|^{4}} + O(\| h \|^{3}) \right)$$

$$= \frac{1}{3} \| Cv \|^{3} + \| Cv \| (Cv, Ch) + \frac{1}{2} \| Cv \| \| Ch \|^{2} + \frac{1}{2} \| Cv \| \| Ch \|^{2} + \frac{1}{2} \| Cv \| \| Cv, Ch \|^{2} + O(\| h \|^{3}),$$

donc

(S2)
$$\begin{cases} J(v+h) - J(v) = (a, h) + (Bv, Bh) + ||Cv|| (Cv, Ch) + \\ +\frac{1}{2} (||Bh||^2 + ||Cv|| ||Ch||^2 + \frac{1}{||Cv||} (Cv, Ch)^2) + O(||h||^3) \end{cases}$$

et le rapprochement de (S1) et (S2) fournit les expressions

(S3)
$$(J'(v), h) = (a, h) + (Bv, Bh) + ||Cv|| (Cv, Ch)$$

(S4)
$$(J''(v)h, h) = ||Bh||^2 + ||Cv|| ||Ch||^2 + \frac{1}{||Cv||} (Cv, Ch)^2.$$

- De la relation (S4), on tire $(J''(v)h, h) \ge 0$ pour tout h, donc $J(\bullet)$ est convexe.
- 2) Si B est une matrice inversible, notons $\frac{1}{\sqrt{\alpha}}$ la norme de la matrice B^{-1} :

(S5)
$$||B^{-1}\xi|| \le \frac{1}{\sqrt{\alpha}} ||\xi||, \forall \xi \in \mathbb{R}^n.$$

On a alors $||Bh||^2 \ge \alpha ||h||^2$ pour tout h de \mathbb{R}^n et on tire de la relation $(J''(v)h, h) \ge \alpha ||h||^2$, ce qui établit la propriété demandée. Le problème (2) a alors une solution unique, ainsi qu'il a été vu en cours.

3) Soit $D_{j-1/2}^{k+1/2}$ la droite affine passant par $v_{j-1}^{k+1/2}$ et de vecteur directeur e_j . Le problème (4) peut s'écrire

(S6)
$$v_j^{k+1/2} \in D_{j-1/2}^{k+1/2}$$

(S7)
$$J(v_j^{k+1/2}) \le J(v), \quad \forall v \in D_{j-1/2}^{k+1/2}.$$

Comme la fonctionnelle $J(\bullet)$ est α -elliptique et que la droite $D^{k+1/2}_{j-1/2}$ est un ensemble convexe fermé non vide, le problème (S6)(S7) a une solution unique $v^{k+1/2}$. Celle-ci est donnée par l'inéquation d'Euler

(S8)
$$\left(J'(v_j^{k+1/2}), v - v_j^{k+1/2}\right) \ge 0, \quad \forall v \in D_{j-1/2}^{k+1/2}$$

qui, compte tenu de (3) et du fait que la droite $D^{k+1/2}$ est un espace affine, s'écrit aussi

(S9)
$$\left(J'(v_j^{k+1/2}), e_j\right) = 0.$$

La relation (S9) est l'équation demandée dans l'énoncé. On peut en expliciter l'algèbre, avec $w \equiv v_{i-1}^{k+1/2}$ et $x \equiv x_j$ pour alléger les notations. On a

$$(J'(w+xe_j), e_j) = (a, e_j) + (B(w+xe_j), Be_j) + + || C(w+xe_j) || (C(w+xe_j), Ce_j),$$

et l'équation (S9) d'inconnue x s'écrit donc en fonction des sonnées :

(S10)
$$\sqrt{||Cw||^2 + 2x(Cw, Ce_j) + x^2||Ce_j||^2} \left((Cw, Ce_j) + x ||Ce_j||^2 \right) + (a, e_j) + (Bw, Be_j) + x ||Be_j||^2 = 0.$$

On constate que ce n'est **pas** une équation polynomiale; elle a cependant une solution réelle unique compte tenu de ce qui a été dit plus haut. Le lecteur construira lui même une preuve élémentaire de ce dernier fait.

4) On a

$$J(u^k) - J(u^{k+1}) = J(v_0^{k+1/2}) - J(v_n^{k+1/2}) = \sum_{j=1}^n \left[J(v_{j-1}^{k+1/2}) - J(v_j^{k+1/2}) \right].$$

$$J(v_{j-1}^{k+1/2}) \ge J(v_{j}^{k+1/2}) + \left(J'(v_{j}^{k+1/2}), \left(v_{j-1}^{k+1/2} - v_{j}^{k+1/2}\right)\right) + \frac{\alpha}{2} ||v_{j-1}^{k+1/2} - v_{j}^{k+1/2}||^{2}$$

car $J(\bullet)$ est α-elliptique. On remarque que $\left(J'\left(v_{j}^{k+1/2}\right),\left(v_{j-1}^{k+1/2}-v_{j}^{k+1/2}\right)\right) \equiv -\frac{\partial J}{\partial v_{j}}\left(v_{j}^{k+1/2}\right)x_{j}$ est nul car $v_{j}^{k+1/2}$ est solution de l'équation (S9). On en déduit donc

$$J(u^k) - J(u^{k+1}) \geq \frac{\alpha}{2} \sum_{j=1}^n ||v_{j-1}^{k+1/2} - v_j^{k+1/2}||^2 = \frac{\alpha}{2} \sum_{j=1}^n |u_j^k - u_j^{k+1}|^2$$

c'est à dire

(S11)
$$J(u^k) - J(u^{k+1}) \ge \frac{\alpha}{2} ||u^k - u^{k+1}||^2$$
.

- La suite $J(u^k)_{k\in\mathbb{N}}$ est décroissante par construction, minorée car $J(\bullet)$ est α -elliptique, donc converge. Par suite $J(u^k)-J(u^{k+1})$ tend vers zéro et la relation (S11) entraı̂ne alors clairement que la différence $||u^k-u^{k+1}||$ tend vers 0 si k tend vers $+\infty$. On a ensuite $||v_j^{k+1/2}-u^{k+1}||^2 \leq \sum_{l=j+1}^n |u_l^k-u_l^{k+1}|^2 \leq ||u^k-u^{k+1}||^2$ donc la propriété précédente montre que pour tout j entre 1 et n, $||v_j^{k+1/2}-u^{k+1}||$ tend vers 0 également.
- 5) La propriété d' α -ellipticité de $J(\bullet)$ peut s'écrire

$$\alpha || u^{k+1} - u ||^2 \le \left(\left(J'(u^{k+1}) - J'(u) \right), (u^{k+1} - u) \right)$$

$$\le \left(J'(u^{k+1}), (u^{k+1} - u) \right) \quad \text{compte tenu de l'équation d'Euler associée à (2)}$$

$$= \sum_{j=1}^{n} \frac{\partial J}{\partial v_j} (u^{k+1}) (u_j^{k+1} - u_j) \quad \le \quad \sum_{j=1}^{n} \left| \frac{\partial J}{\partial v_j} (u^{k+1}) \right| || u_j^{k+1} - u_j ||$$

$$\le \sum_{j=1}^{n} \left| \frac{\partial J}{\partial v_j} (u^{k+1}) - \frac{\partial J}{\partial v_j} (v_j^{k+1/2}) \right| || u_j^{k+1} - u_j || \quad \text{car } \frac{\partial J}{\partial v_j} (v_j^{k+1/2}) \quad \text{est nul.}$$

La relation (6) s'en déduit aisément.

6) La fonction $J(\bullet)$ est α -elliptique, donc elle est minorée sur \mathbb{R}^n et elle tend vers $+\infty$ si ||v|| tend vers $+\infty$. Par suite, l'image réciproque de tout borné de \mathbb{R} est un borné de \mathbb{R}^n . Comme les suites $J(v_j^{k+1/2})_{k\geq 0}$ sont décroissantes par construction, la (double) suite $(v_j^{k+1/2})_{0\leq j\leq n,\ k\geq 0}$ est bornée. La fonctionnelle $J(\bullet)$ est deux fois dérivable, les dérivées partielles $\frac{\partial J}{\partial v_j}(\bullet)$ sont uniformément continues sur tout compact, donc le membre de droite de l'inégalité (6) est arbitrairement petit si $||u^{k+1}-v_j^{k+1/2}||$ est assez petit. Or cette propriété est réalisée pour k assez grand compte tenu de la quatrième question. La méthode de relaxation est donc convergente.

Grégoire Allaire et FD, mai 2001, juillet 2002.