
Entropic multiple–relaxation–time
lattice Boltzmann models

Pietro Asinari, PhD

Dipartimento di Energetica, Politecnico di Torino, Torino, Italy,
e-mail: pietro.asinari@polito.it ,

home page: http://staff.polito.it/pietro.asinari

joint work with Ilya V. Karlin, PhD

Institute of Energy Technology, ETH Zurich, Switzerland
School of Engineering Sciences, University of Southampton, UK

Pietro Asinari, PhD (Politecnico di Torino) Entropic MRT Lattice Boltzmann Models Cemagref (Fr), 5 Dec. 2008 1 / 32

pietro.asinari@polito.it
http://staff.polito.it/pietro.asinari


Outline of this talk

1 Preliminaries
Motivation and notation
The Maxwellian state

2 The key results
The generalized Maxwellian state
The constrained Maxwellian state

3 Derivation of kinetic models
Entropic model with blended pressure tensor (EMRT)
Entropic model with blended population (EQE)

4 Numerical validation
Taylor–Green vortex flow
Lid driven cavity

Pietro Asinari, PhD (Politecnico di Torino) Entropic MRT Lattice Boltzmann Models Cemagref (Fr), 5 Dec. 2008 2 / 32



Preliminaries

Outline Compass

1 Preliminaries
Motivation and notation
The Maxwellian state

2 The key results
The generalized Maxwellian state
The constrained Maxwellian state

3 Derivation of kinetic models
Entropic model with blended pressure tensor (EMRT)
Entropic model with blended population (EQE)

4 Numerical validation
Taylor–Green vortex flow
Lid driven cavity

Pietro Asinari, PhD (Politecnico di Torino) Entropic MRT Lattice Boltzmann Models Cemagref (Fr), 5 Dec. 2008 3 / 32



Preliminaries Motivation and notation

Motivation

The goal is to improve the stability of the Lattice Boltzmann (LB)
schemes with regards to rough meshes, but preserving the
required level of accuracy.
In recent years, two approaches have been developed for the
previous goal:

1 the multiple–relaxation–time (MRT) schemes with tunable bulk
viscosity, which is a free parameter to dump the compressibility
error, when searching for the incompressible limit;

2 the entropic (ELB) schemes, which admit analytical equilibria
ensuring the existence of the H–theorem by construction.

There are some controversies (!!) about the previous schemes: in
order to settle them, the idea is to develop a new class of MRT
schemes with both tunable bulk viscosity and H–theorem.

The key result, which makes this possible, is a brand new
analytical generalized Maxwellian for discrete lattices.
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Preliminaries Motivation and notation

Notation

Let us consider the D2Q9 lattice: v0 = (0, 0), vα = (±c, 0) and
(0, ±c) for α = 1–4, and vα = (±c, ±c) for α = 5–8, where c is the
lattice spacing.

The D2Q9 lattice derives from the three–point Gauss–Hermite
formula, with the following weights w(−1) = 1/6, w(0) = 2/3 and
w(+1) = 1/6.

Let us arrange in the list vx (vy) all the components of the lattice
velocities along the x–axis (y–axis) and in the list f all the
populations fα. Algebraic operations for the lists are always
assumed component-wise.

The sum of all the elements of the list p is denoted by
〈p〉 =

∑Q−1
i=0 pi. The dimensionless density ρ, the flow velocity u

and the pressure tensor Π are defined by ρ = 〈f〉, ρui = 〈vif〉 and
ρΠij = 〈vi vjf〉 respectively.
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Preliminaries The Maxwellian state

Local equilibrium: Maxwellian state

The convex entropy function (H–function) for this lattice is [1]

H(f) =
〈

f ln (f/W )
〉

, (1)

where W = w(vx)w(vy) and the equilibrium population list is

Definition of Maxwellian state (fM )

fM = minf∈PM
H(f), where PM is the set of functions such that

PM =
{

f > 0 : 〈f〉 = ρ, 〈vf〉 = ρu

}

Minimization of the H–function under the constraints of mass and
momentum conservation yields [2]

fM = ρ
∏

i=x,y

w(vi) (2 − ϕ(ui/c))

(

2(ui/c) + ϕ(ui/c)

1 − (ui/c)

)vi/c

, (2)

where ϕ(z) =
√

3z2 + 1. In order to ensure the positivity of fM , the
low Mach number limit must be considered, i.e. |ui| < c.
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The key results The generalized Maxwellian state

Local quasi–equilibrium: generalized Maxwellian state

Let us introduce a novel quasi–equilibrium [3, 4, 5] population list,
by requiring, in addition, that the diagonal components of the
pressure tensor Π have some prescribed values, namely

Definition of generalized Maxwellian state (fG)

fG = minf∈PG
H(f), where PG ⊂ PM is the set of functions such that

PG =
{

f > 0 : 〈f〉 = ρ, 〈vf〉 = ρu, 〈v2
i f〉 = ρΠii

}

.

In other words, minimization of the H–function under the
constraints of mass and momentum conservation and prescribed
diagonal components of the pressure tensor yields

fG = ρ
∏

i=x,y

w(vi)
3 (c2 − Πii)

2 c2

(

√

Πii + c ui

Πii − c ui

)vi/c




2
√

Π2
ii − c2 u2

i

c2 − Πii





v2

i /c2

.

(3)
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The key results The generalized Maxwellian state

The plane of parameters

In order to ensure the positivity of fG, we use Π = (Πxx,Πyy) ∈ Ω
for a generic point on the two-dimensional plane of parameters
Ω = {Π : c |ux| < Πxx < c2, c |uy| < Πyy < c2}.
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The key results The constrained Maxwellian state

The H–function in the generalized Maxwell states

It is possible to evaluate explicitly the H–function in the
generalized Maxwell states (3), HG = H

(

fG

)

, the result is written

HG = ρ ln ρ + ρ
∑

i=x, y

∑

k=−, 0,+

wk ak(Πii) ln
(

ak(Πii)
)

, (4)

where w± = w(±1), w0 = w(0), a±(Πii) = 3 (Πii ± c ui)/c
2 and

a0(Πii) = 3 (c2 − Πii)/(2 c2).

Generalizing the result [6], let us derive a constrained equilibrium
fC which brings the H-function to a minimum among all the
population lists with a prescribed trace T (Π) = Πxx + Πyy, namely

Definition of constrained Maxwellian state (fC)

Given {fG} the set of generalized Maxwellian states with trace T , then
fC ∈ {fG} is such that [(∂HG/∂Πxx) − (∂HG/∂Πyy)](Πxx+Πyy=T ) = 0.
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The key results The constrained Maxwellian state

The constrained Maxwellian state

The solution to the latter problem exists and yields a cubic
equation in terms of the normal stress difference N = ΠC

xx − ΠC
yy,

N3 + aN2 + bN + d = 0,

a = −1

2
(u2

x − u2
y), b = (2 c2 − T ) (T − u2),

d = −1

2
(u2

x − u2
y) (2 c2 − T )2.

(5)

Let us define p = −a2/3 + b, q = 2 a3/27 − a b/3 + d and
∆ = (q/2)2 + (p/3)3. For ∆ ≥ 0, the Cardano formula implies

ΠC
xx =

T

2
+

1

2

(

r − p

3 r
− a

3

)

, r = 3

√

−q

2
+

√
∆, (6)

while ΠC
yy = T − ΠC

xx. Thus, substituting (6) into (3), we find

fC = fG(ρ,u,ΠC
xx(u, T ),ΠC

yy(u, T )). (7)
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Derivation of kinetic models Entropic model with blended pressure tensor (EMRT)

Entropic model with blended pressure tensor (EMRT)

By means of the usual equilibrium M and the newly found
constrained equilibrium C, let us define the generalized
equilibrium E(β) =

(

ΠE
xx(β),ΠE

yy(β)
)

as a linear interpolation
between the points M and C on the Ω plane

E(β) = β M + (1 − β)C, (8)

where β is a free parameter (see next for its admissible range).
Thus, the generalized equilibrium list is defined as

fGE(β) = fG(ρ,u,ΠE
xx(β),ΠE

yy(β)). (9)

Considering kinetic equation of the form, ∂tf + v · ∂xf = J(f), let
us define the following collision operator

J(f) = λ
[

fGE (β) − f
]

, (10)

where λ > 0 is a parameter, ruling the relaxation toward the
generalized equilibrium. In the continuum limit, λ is related to the
kinematic viscosity.

Pietro Asinari, PhD (Politecnico di Torino) Entropic MRT Lattice Boltzmann Models Cemagref (Fr), 5 Dec. 2008 13 / 32



Derivation of kinetic models Entropic model with blended pressure tensor (EMRT)

Proof of the H–theorem for EMRT model

H–theorem for EMRT model

The production σ due to the relaxation term (10), where
σ =

〈

ln (f/W )J(f)
〉

, is non-positive and it annihilates at the
equilibrium, i.e. σ(fM ) = 0, if 0 < β ≤ β∗ where β∗(f).

Proof [part 1 of 2]

Because of the convexity of the H-function and because fG(Πxx,Πyy)
minimizes H among all the lists with the moments (Πxx,Πyy)

σ

λ
≤ HGE (β) − H(f) ≤ HGE (β) − HG(Π), (11)

where HGE(β) = HG

(

ΠE
xx(β),ΠE

yy(β)
)

. Recalling that Π(fGE (0)) and
Π(fG(Πxx,Πyy)) have the same trace, inequality (11) can be rewritten

σ

λ
≤ HGE (β) − HGE (0) + HGE (0) − HG(Π) ≤ HGE (β) − HGE (0).
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Derivation of kinetic models Entropic model with blended pressure tensor (EMRT)

Proof of the H–theorem for EMRT model

Proof [part 2 of 2]

What remains to estimate is the range of β such that
HGE (β) ≤ HGE(0). Clearly, since M = E(1) is the absolute
minimum of HG, and because HGE (β) is a convex function, σ is
non-positive if 0 < β ≤ 1.

In order to extend the proof to β > 1, let us consider the entropy
estimate [1]:

HGE (β∗) = HGE (0). (12)

Thanks to the convexity of HGE (β), the non-trivial solution β∗ > 1
to this equation is unique when it exists. In the opposite case, we
need to take care of the boundary of the positivity domain Ω. In
both cases, for 0 < β ≤ β∗, it holds HGE (β) ≤ HGE (0) and thus
the entropy production is non-positive, σ ≤ 0.

�
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Derivation of kinetic models Entropic model with blended pressure tensor (EMRT)

Graphical interpretation of the H–theorem
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Derivation of kinetic models Entropic model with blended population (EQE)

Switching the interpolation strategy

Introducing a linear mapping for computing the moments, namely

M =
[

1, vx, vy, v2
x, v2

y , vxvy, v2
xvy, vxv2

y , v2
xv2

y

]T
, (13)

and recalling that

mG = M · fG = ρ
[

1, ux, uy, Πx, Πy, uxuy, uyΠx, uxΠy, ΠxΠy

]T
,

it is possible to realize that the moments mG of the generalized
Maxwellian state fG are linear with regards to the prescribed
pressure components up to the third order.
Hence the previous linear interpolation of the pressure tensor
components between the points M and C, namely

Πii(β) = β ΠM
ii + (1 − β)ΠC

ii , for i = x, y, (14)

is equivalent to a linear interpolation of the population lists

fQE(β) = β fM (ρ,u) + (1 − β) fC(ρ,u,Πxx + Πyy), (15)

up to the third order included.
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Derivation of kinetic models Entropic model with blended population (EQE)

Entropic model with blended population (EQE)

Let us define the following new collision operator

JQ(f) = λ
[

fQE (β) − f
]

, (16)

or equivalently, introducing τf = 1/λ and τs = τf/β,

JQ(f) = − 1

τf
(f − fC) − 1

τs
(fC − fM). (17)

In the previous model, the relaxation to the equilibrium is split in
two steps. In the first step, the population list f relaxes to the
constrained equilibrium fC with the relaxation time τf (fast mode).
In the second step, the constrained equilibrium relaxes to the
equilibrium with the second relaxation time τs (slow mode) [7].
The previous model can also be expressed as

JQ(f) = − 1

τs
(f − fM) − τs − τf

τf τs
(f − fC). (18)
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Derivation of kinetic models Entropic model with blended population (EQE)

Proof of the H–theorem for EQE model

H–theorem for EQE model

The production σQ due to the relaxation term (17), where
σQ =

〈

ln (f/W )JQ(f)
〉

, is non-positive and it annihilates at the
equilibrium, i.e. σQ(fM ) = 0, if 0 < τf ≤ τs (same as 0 < β ≤ 1).

Proof

Recalling Eq. (18) yields

σQ = − 1

τs

〈

ln (f/fM) (f − fM )
〉

− τs − τf

τfτs

〈

ln (f/fC) (f − fC)
〉

, (19)

which is non–positive and semi–definite provided that relaxation times
satisfy the condition

τf ≤ τs.

�
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Numerical validation

Numerical implementation

Applying the following variable transformation, namely

f → g = f − δt JQ/2, (20)

(δt is the time step) to the EQE discrete velocity model yields

g(x + cδt, t + δt) = (1 − ωf )g(x, t) + ωffQE(ρ,u, T ′), (21)

where 1/ωf = τf/δt + 1/2, where as usual ρ = 〈g〉 and ρui = 〈cig〉,
but, since the trance is not conserved,

T ′ = (1 − ωs/2) T (g) + ωsTM (g)/2,

where 1/ωs = τs/δt + 1/2 and

T (g) = 〈(c2
x + c2

y)g〉, TM (g) = 2/3 [ϕ(ux/c) + ϕ(uy/c) − 1] .

By means of asymptotic analysis, it is possible to prove that the
previous EQE model recovers the Navier–Stokes equations up to
the second order w.r.t. δx = c δt, with a kinematic viscosity
ν = τf/3 and a bulk viscosity ξ = τs/3.
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Numerical validation Taylor–Green vortex flow

Taylor–Green vortex flow

First of all, let us verify the transport coefficients by means of the
analytical solution for the Taylor–Green vortex flow.

ξ/ν ν Measured ν Error [%]

BGK 1 0.001 0.00102065 2.06
EQE 10 0.001 0.00102071 2.07
EQE 100 0.001 0.00102106 2.11
BGK 1 0.010 0.00998509 -0.15
EQE 10 0.010 0.00998555 -0.14
EQE 100 0.010 0.00998654 -0.13
BGK 1 0.100 0.09977323 -0.23
EQE 10 0.100 0.09977355 -0.23
EQE 100 0.100 0.09977230 -0.23

In the low Mach limit, the slow relaxation frequency τs, controlling
the bulk viscosity, does not effect the leading part of the solution.
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Numerical validation Lid driven cavity

Lid driven cavity at Re = 1000: streamlines
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Numerical validation Lid driven cavity

Lid driven cavity at Re = 1000: pressure contours
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Numerical validation Lid driven cavity

Lid driven cavity: stability enhancement

Let us assume ξ = 10 ν for enhancing the stability of EQE.

BGK EQE ξ = 10 ν
Re ν min (N) max (Ma) min (N) max (Ma)

1000 1.0 × 10−3 50 0.2 25 0.4
2000 5.0 × 10−4 100 0.2 50 0.4
3000 3.3 × 10−4 150 0.2 75 0.4
4000 2.5 × 10−4 200 0.2 100 0.4
5000 2.0 × 10−4 250 0.2 125 0.4

Effectively this choice allows one to perform calculations with
rougher meshes N × N or (equivalently) higher Mach numbers
(Ma = 0.01 Re Kn was adopted).

However the previous consideration does not lead automatically to
a performance improvement, because the accuracy must be
considered as well.
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Numerical validation Lid driven cavity

Lid driven cavity at Re = 5000: main vortexes
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Numerical validation Lid driven cavity

Lid driven cavity at Re = 5000: stability vs. accuracy

Let us compute the locations of the main vortexes [8, 9, 10, 11].

Run Errors on vortex locations [%]
time M-C L-L L-R U-L Mean

EQE 125 × 125 0.35 1.15 12.41 1.61 1.36 4.13
EQE 150 × 150 0.61 0.74 12.41 2.29 0.49 3.98
EQE 170 × 170 1.00 1.20 6.93 2.29 0.63 2.76
EQE 200 × 200 2.06 1.10 4.51 1.81 0.06 1.87
EQE 250 × 250 4.97 1.10 2.24 2.35 0.06 1.44

ELB [12] 320 × 320 ??? 0.48 6.35 2.09 0.22 2.29
BGK 250 × 250 2.84 1.16 7.76 1.88 0.06 2.72

The key result is that the EQE model, with a rougher mesh
1702 ∼ 2502/2 than that used by the BGK model, can achieve the
same accuracy (2.76% ∼ 2.72%).
This gives to the EQE model an effective computational speed-up
of 2.84 times over the BGK model (!!).
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Numerical validation Lid driven cavity

Lid driven cavity at Re = 5000: EQE vs. BGK
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Conclusions

Some brand new analytical results for discrete lattices have been
presented: in particular, the generalized Maxwellian state fG (with
prescribed diagonal components of the pressure tensor) and the
constrained Maxwellian state fC (with prescribed trace of the
pressure tensor).

All the previously introduced equilibria for LB are found as special
cases of the previous results (!!).

Some new LB schemes (EMRT and EQE) with both tunable bulk
viscosity and H–theorem have been reported.

In case of lid driven cavity test, the EQE model was able to
achieve the same accuracy of the usual BGK model with a rougher
mesh (approximately half), leading to a remarkable speed–up of
the run time (even though both codes were not optimized !!).
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Thank you !!
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