

LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR

Frédéric Kuznik, frederic.kuznik@insa-lyon.fr

Framework

- Introduction
- Hardware architecture
- CUDA overview
- Implementation details
- A simple case: the lid driven cavity problem

Presentation of my activities

CETHIL: Thermal Sciences Center of Lyon

Current work: simulation of fluid flows with heat transfer

Use/development of Thermal LBM^{1,2}

LBM computation using GPU³

Objective: coupling efficiently the two approaches

- A double population lattice Boltzman method with non-uniform mesh for the simulation of natural convection in a 1 square cavity, Int. J. Heat and Fluid Flow, vol. 28(5), pp. 862-870, 2007
- Numerical prediction of natural convection occuring in building components: a double population lattice Boltzmann method, Numerical Heat Transfer A, vol. 52(4), pp. 315-335, 2007
- LBM based flow simulation using GPU computing processor, Computers & Mathematics with Applications, under review

Introduction

Due to the market (realtime and high definition 3-D graphics), GPU has evolved into highly parrallel, multithreaded, multi-core processor.

GT200 = GeForce GTX 280	G71 = GeForce 7900 GTX	NV35 = GeForce FX 5950 Ultra
G92 = GeForce 9800 GTX	G70 = GeForce 7800 GTX	NV30 = GeForce FX 5800
G80 = GeForce 8800 GTX	NV40 = GeForce 6800 Ultra	

(from CUDA Programming Guide 06/07/2008)
GFLOPS=10⁹ floating point operations per second

Introduction

The bandwidth of GPU has also evolved for faster graphics purpose.

(from CUDA Programming Guide 06/07/2008)

Previous works using GPU & LBM

- GPU Cluster for high performance computing (Fan et al. 2004): 32 nodes cluster of GeForce 5800 ultra
- <u>LB-Stream Computing or over 1 Billion Lattice Updates per second on a single PC</u> (J. Tölke ICMMES 2007): GeForce 8800 ultra

Hardware

- Commercial graphics card (can be included in a desktop PC)
- 240 processors running at 1.35GHz
- 1 Go DDR3 with 141.7GB/s bandwidth
- Theoretical peak at 1000GFLOPS
- Price around 500€

nVIDIA GeForce GTX 280

GPU Hardware Architecture

GPU Programming Interface

- NVIDIA® CUDATM C language programming environment (version 2.0)
- Definitions:
 - Device=GPU
 - Most=CPU
 - Wernel=function that is called from the host and runs on the device
- A cuda kernel is exucuted by an array of threads

GPU Programming Interface

- A kernel is executed by a grid of thread block
- 1 thread block is executed by 1 multiprocessor
- A thread block contains a maximum of 1024 threads
- Threads are executed by processors within a single multiprocessor
- => Threads from different blocks cannot cooperate

Kernel memory access

- Registers
- Shared memory: on-chip (fast), small (16kB)
- Global memory: off-chip, large
- The host can read or write global memory only.

LBM ALGORITHM

Step 1: Collision (Local – 70% computational time)

Step 2: Propagation (Neighbors – 28% computational time)

+ Boundary conditions

(from BERNSDORF J., How to make my LB-code faster – software planning, implementation and performance tuning, ICMMES'08, Netherlands)

Implementation details

Translation of lattice grid into CUDA topology

Lattice grid

Grid of blocks

- 1- Decomposition of the fluid domain into a lattice grid
- 2- Indexing the lattice nodes using thread ID
- 3- Decomposition of the CUDA domain into thread blocks
- 4- Execution of the kernel by the thread blocks

Pseudo-code

Combine collision and propagation steps:

```
for each thread block for each thread load f_i in shared memory compute collision step do the propagation step end end
```

Exchange informations across boundaries

Application: 2D lid driven cavity

Problem description

D2Q9 MRT model of d'Humières (1992)

Results Re=1000

Reference data from *Erturk et al. 2005*:

Vertical velocity profil for x=0.5

Horizontal velocity profil for y=0.5

Performances

Mesh grid size	Number of Threads										
	16		32		64		128		256		
256 ²		71.0		71.0		71.1		71.1		70.9	
512 ²		284.2		282.7		284.3		284.3		283.7	
1024 ²		346.4		690.2		953.0		997.5		1007.9	
2048 ²		240.0		583.0		803.3		961.3		1001.5	
3072 ²		289.3		572.4		845.2		941.2		974.2	

Performances in MLUPS

Performances: CPU comparisons

CPU = Pentium IV, 3.0 GHz

Conclusions

- The GPU allows a gain of about 180 for the calculation time
- Multiple GPU server exists: NVIDIA TESLA S1070 composed of 4 GTX 280 (theoretical gain 720)
- The evolution of GPU is not finished!
- But using double precision floating point, the gain falls to 20!

Outlooks

- A workgroup concerning LBM and GPU
 - 1 master student with Prof. Bernard TOURANCHEAU (ENS Lyon INRIA) and a PhD student in 2009
 - 1 master student with Prof. Eric Favier (ENISE DIPI)

A workgroup concerning Thermal LBM ...?

Everybody is welcome to join the workgroup!

THANK YOU FOR YOUR ATTENTION

frederic.kuznik@insa-lyon.fr