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1. GENERAL SYSTEMS → INVOLUTIVE SYSTEMS
– OVERDETERMINED ?
– FORMAL THEORY OF PDES
– WHAT ARE PDES, REALLY ?

2. ELLIPTIC SYSTEMS
– MODULES AND SYMBOLS
– A NEW KIND OF COMPLETION

3. NUMERICAL ISSUES
– AUGMENTED SYSTEM
– STOKES AND INF SUP CONDITION
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GENERAL → INVOLUTIVE

M. Janet : Leçons sur les systèmes d’équations aux dérivées partielles,
Gauthier-Villars, 1929.

J.-F. Pommaret : Systems of Partial Differential Equations and Lie
Pseudogroups, Gordon & Breach, 1978.

W. Seiler : Involution — The Formal Theory of Differential Equations and
its Applications in Computer Algebra and Numerical Analysis, Habilitation
thesis, Universität Mannheim, 2001.
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What is in fact over/underdetermined ?

EXAMPLE

∇× y = f

– square (determined ?) system
– underdetermined : y solution ⇒ y + ∇g also solution

(infinite dimensional kernel)
– overdetermined : compatibility condition ∇ · f = 0

(infinite dimensional cokernel)
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C. Riquier, Les systèmes d’EDP, 1910 :
En 1892, je réussis à opérer la réduction d’un système quelconque à une
forme complètement intégrable.

A. Tresse, Acta Math., 1894 :
Etant donné un système quelconque d’équations aux dérivées partielles,
on peut, après un nombre limité de différentiations et d’éliminations, ou
bien montrer qu’il est incompatible, ou bien le mettre sous forme d’un
système complètement intégrable.
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So in the study of general systems of PDEs :
(1) find the canonical/involutive/complètement intégrable form of the

system
(2) then study the existence of the solution in a suitable sense
According to Spencer, the first step is the

formal theory of PDEs
D. Spencer, Overdetermined systems of linear partial differential equations,
Bull. Am. Math. Soc, vol. 75, (1969), 179–239.

8



other approaches :

– differential algebra (Ritt, Kolchin)
– exterior differential systems (É. Cartan)

Lead to similar completion procedures.

However, formal theory most convenient when studying boundary value
problems.
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PDEs are submanifolds of jet spaces
Notations
independent variables : x = (x1, . . . , xn)

dependent variables : y = (y1, . . . , ym)

derivatives :
∂|µ|y

∂x
µ1

1 · · ·∂x
µn
n

=
∂|µ|y

∂xµ
= ∂µy = yµ

Let Ω ⊂ R
n, E = Ω × R

m.
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Then qth order jet space/bundle is :

Jq(E) ' Ω × R
m × R

mn1 × · · · × R
mnq

dim
(

Jq(E)
)

= n + mdq where

nq =





n + q − 1

q



 and dq =





n + q

q




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Jq(E)
π

q

q−1
//

πq //

Jq−1(E) // · · · // J1(E)
π1

0
// J0(E) ' E

��

Ω

projection πq+r
q is a “forgetful” map :

we “forget” the derivatives of order q + 1 , . . . , q + r.
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canonical form ?
Let

Rq ⊂ Jq(E) : f(x, y, . . . , yµi , . . . ) = 0

prolongation/differentiation

Rq+1 ⊂ Jq+1(E) :































∂
∂x1

f(x, y, . . . ) = 0
...

∂
∂xn

f(x, y, . . . ) = 0

f(x, y, . . . ) = 0

Prolongation : algebraically easy, geometrically difficult.
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projection/elimination :

πq+r
q : Jq+r(E) → Jq(E) ⇒ by restriction :

πq+r
q : Rq+r → Rq , R(r)

q := πq+r
q

(

Rq+r

)

Projection : geometrically easy, algebraically difficult.
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If R(r)
q 6= Rq , we have found integrability conditions :

new algebraically independent equations.

EXAMPLE

R1 : ∇× y + y = 0

R
(1)
1 :







∇× y + y = 0

∇ · y = 0
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INVOLUTIVE :
all integrability conditions have been found

(+ some technical conditions)

Theorem
(under some reasonable hypothesis)

the involutive form can always be constructed.
So Riquier, Tresse and others were right !
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PACKAGES :
DETools in MuPAD (formal theory)
by Seiler et al.

diffalg and rif in maple (differential algebra)
by Mansfield, Reid, Wittkopf, Hubert et al.
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ELLIPTIC SYSTEMS

Let aµ be k × m matrices, k ≥ m.

Ay =
∑

|µ|≤q

aµ(x)∂µy = f

(principal) symbol of A :

σA =
∑

|µ|=q

aµ(x)ξµ

A is elliptic, if σA is injective for all ξ 6= 0.
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EXAMPLE

Ay = ∇× y + y = 0 σA =









0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0









A is not elliptic.

A′y =







∇× y + y = 0

∇ · y = 0
σA′ =















0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

ξ1 ξ2 ξ3















A′ is elliptic and involutive.

19



Algebraically, it is convenient to regard the symbol in 2 different ways.

Let A = K[ξ1, . . . , ξn] ; then the symbol σA is
– a homomorphism of modules :

σA : A
m → A

k

– and the submodule generated by rows :

σA ⊂ A
m
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EXAMPLE

σA =









0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0









⊂ A
3

Note that det(σA) = 0 =⇒ rank(σA) = 2 ;
however, the module cannot be generated by 2 elements.

This is algebraic way of seeing that operator ∇× is “bad”.
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Generalisation due to Douglis & Nirenberg (1955). However :

Theorem (Krupchyk, Seiler, Tuomela)

DN–elliptic systems become elliptic when completed.

– there are systems which are not even DN–elliptic, but become elliptic
when completed

– similar result for parabolic systems (Krupchyk, Tuomela)
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Consider the symbol :
σA : A

m → A
k

There is an exact complex

0 //
A

kr

Sr
// . . . S2

//
A

k1

S1
//
A

k
(σA)T

// A
m

free resolution of (σA)T
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idea of construction
– compute S1 of (σA)T

– consider the operator A(1) = (A, ŜT
1 A)

– in this way the symbol is “filled” until it becomes elliptic/parabolic
– if necessary the system can further be completed to involutive form

(ellipticity is preserved)

S1 can actually be computed using Gröbner bases.
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INDEPENDENT COMPLETION PROCEDURE
ADAPTED TO ELLIPTIC/PARABOLIC PROBLEMS

(not equivalent to formal theory, differential algebra, EDS)
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EXAMPLE







−y1
20 + y1

10 + y2 = 0,

−y1
02 − y2 = 0

⇓














−y1
20 + y1

10 + y2 = 0,

−y1
02 − y2 = 0

y1
12 + ∆y2 = 0
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⇓






































−y1
20 + y1

10 + y2 = 0,

−y1
02 − y2 = 0

y1
12 + ∆y2 = 0

−∆y2 + y2
10 = 0

y1
12 + y2

30 + y2
12 + y2

02 = 0

⇓

Ay =















−y1
20 + y1

10 + y2 = 0,

−y1
02 − y2 = 0

−∆y2 + y2
10 = 0

σA =









ξ2
1 0

ξ2
2 0

0 |ξ|2









27



NUMERICAL ISSUES

Involutive/complete systems usually have more equations than unknowns.
How to handle them numerically ?

Consider an elliptic problem

A0y = f

with appropriate boundary conditions B0y = g.
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one possibility
Now let us suppose that we have an exact (or Fredholm) complex :

0 // V0
A0

// V1
A1

// V2
// 0

A1 is the compatibility operator for A0.

This suggests that we can decompose V1 as follows :

image
(

A0) ⊕ image
(

AT
1 ) ' V1

29



hence we define the augmented system

A0y + AT
1 z = f

– for reasonable spaces the operator (A0, A
T
1 ) should be bijective

(or Fredholm).
– z is artificial variable ; however, it can be useful in error control.
– square system → standard software available
– augmented system is also elliptic.
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EXAMPLE
Stokes system

A0y =















ut − ∆u + ∇p = 0

∇ · u = 0

−∆p = 0

– equation ∆p = 0 often not written explicitly
– often numerical codes use it anyway.

31



compatibility operator :

A1 =
(

∇· , 1 , ∂t − ∆
)

augmented system

A0y + AT
1 z =















ut − ∆u + ∇p −∇z = 0

−∆p + z = 0

zt −∇ · u − ∆z = 0

this is of parabolic-elliptic type
( (u, z) parabolic variables, p elliptic variable)
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Cylinder with rotating upper part.

One can compute the exact (stationary) solution ;
in fact the pressure is constant.

Discontinuity in boundary conditions →
numerical difficulties.
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no inf-sup condition
In our formulation one can use P1 – elements both for velocity and pressure.

In fact almost any choice of elements is fine.

Apparently this happens in general :
– DN–elliptic problems require special finite element spaces
– for elliptic problems generic methods suffice.
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Perspectives & problems
– extension to hyperbolic problems
– currently studying microfluidic system :

Stokes + electric field + several charged species ;
overdetermined because of charge neutrality ;
also of parabolic-elliptic type

– other ways of treating nonsquare systems ?
(least squares usually badly conditioned)

– boundary conditions...
– formal theory & time dependent problems ?
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