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1. Introduction




Introduction

Balance laws

Boltzmann equation

DOf = 7(f,f)

===> [Entropy inequality

Constitutive laws

Euler, Navier-Stokes,
Dimensionless Burnett, ... equations

Boltzmann equation

Of =(1/€) 7(f,f)

Free molecular flows

Transition flows: Wave
shock structure, Knudsen
layer, ...

Need models




Introduction: The first works

Velocity
Authors  \number, Subject

Carleman 2 H-Theorem
Gross The velocity discretization 1s emphasized
Broadwell Shock wave structure

Broadwell Couette and Rayleigh problems

R. G. Shock wave structure

Harris Ternary collisions and H-Theorem
Harris Study of the H-function

R.G. Discrete kinetic theory

Godunov & Kinetic and hydrodynamical descriptions
Sultangazin

Hardy & Lattice gases
Pomeau




R. G

1965 - |6 CRAS Shock structure, H-Theorem,
1972 General kinetic equations,
Chapman-Enskog expansion, ...

1970 | Zeitschrift fiir « Théorie cinetique des gaz a
Flugwissenschaften | répartition discrete de vitesses »

1975 | Lecture Notes in Physics (Vol. 39)
1975 | Physics Fluids Discrete kinetic theory

1977 | Physics of Fluids Boundary conditions
1965 - | 4 theses, about 20 papers and 20 proceedings

H. Cabannes \

1975 |J. de Mecanique Shock structure (14 velocities)

1977 - | On the solutions of the discrete kinetic equations

(existence theorems, exact solutions)

1980 | Lecture notes, Berkeley University,
« The discrete Boltzmann Equation »




2. Discrete Kinetic Theory of Gases




Discrete Kinetic Theory of Gases

In discrete Kinetic theory, the main idea is that the
velocities of the molecules belong to a given set of vectors

The Boltzmann equation is replaced by a system of
partial differential equations

This system has an interesting mathematical structure
(H. Cabannes, Bellomo, Cercignani, Kawashima, ...)

The discrete models, by their simplicity, help to
understand the fundamental problems of rarefied gas
dynamics

The hydrodynamic description of discrete gases is
obtained via the Chapman-Enskog expansion




Discrete kinetic theory: Binary collisions

The particles are 1dentical
The particle velocities belong to a given set of vectors:

u., k=12 ...p

Ny (X,8)  denotes the number of particles with velocity Uk
(1.e. particle « k ») per unit of volume

Macroscopic quantities

r _ —
n‘zk Ny szzk N, (i, —u) (i, —1)

nu =Zk N, u,

_ _m R I
q zjzk N, (i, —0)* () —10)
m .
ne :Ezk N, (i, —1)°

\




Binary collision

After the collision

In the collision, the
mass, momentum and
energy are conserved

Transition probability A gg

Microreversibility property Age




Discrete kinetic theory: Examples

Spatial models with 6 velocities or with 8 velocities
(Broadwell, 1964)

I

T

O

Coplanar models




Kinetic equations (binary collisions)

_%Zijﬁ (Aiijg NiNj_Asz Ny N )’ k=12 ...p

Notations

N =(N,,N,,..N, )
<U,Vv>=)> UV,

F(U,V) Linear mapping of RP?x R? into RP

Kinetic equations ;N + AN =F(N,N)
t




Symmetry property
1 i
<(P> T(Uav) >:_§Zijk€ Aﬁg ((I)k +¢£ _¢i _¢j) (UiVj +UjVi)

0= (¢1 9, 9"'9¢p) O RP

Summational invariants: [J RP such as
AY(0u+0,-0,-0) =0  Dijks

==p Linearsubspace F ( F O R? dimension of F =q)

Basein F : V! ,V2 v

Basein R? : VI vZ2 . vi watl wP

B=p .-..
> by WP

° ° e 0 q:q « o
Kinetic densities N = Y ia A VA
AR
a=

f’ B=q+1." \

Macrocospic variable Microscopic variable




iN + AN =F(N,N)
0t

Equations for the a, and the b, variables
[ da,
0t

b
BtB +< AN ,WP>=<FN.N). WP >, B=q+Lq+2....p
\

+<AN,V%>=0, a=12.,q conservation laws

H — Theorem: H is decreasing with H=<N, In % (N,N) >

a=q
Maxwellian state:  InNOF - F(N,N)=0 - InN =) ¢, V*

o=l

Euler equations associated with the model: Equations for the
variables a, or equivalently for the ¢, variables

52:‘:1 0°L(c;,C5,.0,Cy) Dy +52:‘:1 0> M (1.€55-.,C4) Dy _
5= dc,0cs ot 55 dc,0c 0 X




Two problems are present in discrete Kinetic theory:

The existence of macrocospic variables
other than mass, momentum and energy

The anisotropic character generally
related to the discrete models

In order to reduce and possibly to eliminate them,

multiple collisions are introduced and some symmetry
properties on the models are adopted




The multiple collisions

A r — collision 1s a collision between r particles:

—_ —_— —_— — — —

uil ,ui2 ,...,U.ir uh ,uj2 ,...,lljr

Before the collision |  ==) | After the collision

Lo=(51p,0010) Jo = Ursd25000)

Transition probability: Air

d(k,1.,J.) 1s the algebraic number of particles « k » created
in the r — collision I, - J,

1

> 3(k,I,,J,) Ay N; N, ... N; is the algebraic number of
I.J

particles « k » created in all the r — collisions (per
unit time)




Kinetic equations with r — collisions (r = 2,3....,R)
0 1

— = _ J,
aNk + 1, N, =2 Zrzm ,,,,, . IZJ: 5(k, I, )A N; N; ..N;

k=12, ..p

iN + AN = C(N)
ot

Summational invariants @ = (¢, ¢,,..., ¢ )TIR"

r>vr?

Ar Y 80, 1,7) 0, =0 01.,J.,r

== Linearsubspace F (F O RP)

Two remarks

» By taking into account multiple collisions, the dimension of F
1s decreasing

» By taking into account all the r — collisions, it is possible to find
the dimension of * |, without explicitly determining all the
collisions between the particles (Ph. Chauvat)




Examples: Dimension of F is4or$

Spatial models related to Coplanar models related to
the cube the hexagonal lattice

Velocity number Generalizations
6 e
8 e

u =al+b J+c K,

14 o o (akabkack)D Z3
26 e o o dlmF =5




Chapman — Enskog expansion

aiN +ﬁlN:lC(N,N) € <<1 (& Knudsen number)
t e

But: To obtain balance laws for the variables a,

[
9
aat“ +<AN,V3>=0, a=12..q

with N=N(a,,bg) , the variables b depending on the a,
\

Chapman — Enskog expansion

+"o

N=NO+eNO+ 2 NO+mm £ JAN) = %N(O) + AN

4

AN

C(N”,N?)=0 " Linearized collision operator

a»

N©@ Maxwellian densities N® + eN® Navier — Stokes

Euler equations for a, equations for a,




3. Hydrodynamical description for
regular discrete models




Regular discrete models

The successful simulations undertaken with the lattice gas
method introduced by Frisch, Hasslacher and Pomeau, ...
have provided a new light on the discrete models of gas

" Quasi — 1sotropic " models (Chauvat, Coulouvrat, R.G.)
U, :{ﬁﬁ , ﬁﬁ‘ =c,, k=1,2, ...,pg}
U={i,, k=12, ..pt=07"7,

Mean properties

+ G :Isometry group in RP
+ g(U)=U 0OgOG

+ dim F=D +2 (The multiple collisions are introduced)

Examples: Coplanar models related to the hexagonal lattice,
Spatial models related to the cubic lattice




Hydrodynamical description of the gas

Maxwellian state N = exp(O( + B0, +y (ﬁﬁ - 32))

_ (0) S (0) = _ 1 (0) =2
n—Zka , nu—Zka u, , ne—EZka u

a, n,u,e  Bijection

. n
Homogeneous Maxwellian state ~ N” = =

p

Quasi - homogeneous Maxwellian state  Ae/a’<<1, [i|/a <<1

=2 2 2
Nf{O) :E{l +22ﬁ-ﬁk + 2(uk a ) (e—a_j

p N 2

a a; —a’
2D? (42 -a? 1 a’| _ _
+ ( k - — e——j (u.uk)}

a’ \aj—a* a 2

1/2r
Notations: 2, = G Zk‘ﬁk‘zrj




Euler equations associated with the model

( op
—+ +00Opu) =
ot pw) =

a(apt u r] O pid) + 0w = (r]ul)D(

—»2

' a(p“p—) +: ﬂ 0

r] tand ¢ (I) depend on the dlscrete models

Continuous fluids:: (I) O

Remarks: We can pr0V1de equlvalent forms of the Euler
equations; for example with a pressure tensor not necessarily
spherical or a vector heat flux not necessarily zero




Navier -Stokes equations associated with the model

/“

=2 —
+nDE(puu>+Dw in- 1)=D( ‘;j A e, |

+ D!|!2pI:)+)\Tr(I:))f]2 | [ﬁ

a ﬁz ..0'.“‘_> l_iz ..‘I.“_>

— +p—)+n 4l +o0—+w)u |==d Y

Ot(pe P 2 ) n E{(pe P 2 )uj (I) :
+




Numerical results for the transport coefficients

Model K
I 0.24
I1 0.33
I11 0.24
0.41
0.50

v
Chauvat (1989)*

*modell (N=0.67,¢=0

Chahine (1967)** : : ** coplanar continuous model

Models: 1(12) II(12) III (18) IV (18)




4. Boundary Conditions




Boundary conditions on an impermeable wall (R.G., 1975)

Emerging particles u, (rOR)

Incident particles u; (iOI)

(W, -u, )0 N, => B, |{U;-u,)H N, OrOR

U1

B;, : probability for a particle of velocity U, impinging the wall,
to be reflected with the velocity U,

H — Theorem 1n a vessel

Particular case of the diffuse reflexion: N, = AN w

The densities N_ = are Maxwellian densities associated with the
macroscopic variables of the wall n =1, ﬁw 0 N
A (as n) is unknown; A is known when the problem is solved




Boundary conditions on an interface

condensed
phase

Gas in Maxwellian equilibrium with the condensed phase
Ny, =expla + B, +y]a,|’)

— e 1 — ~\2 _ 3 kTW
Zk Niw =1 Zk Niw U =0, Ezk Ny (U, —uw) "2 m

Boundary conditions for the vapor Nr =n,

N.,, UrR

: saturation density of the vapor at the temperature T

n A%

sat

Remark: This boundary condition 1s valid only when the models
are symmetrical about the normal n. This condition is similar to
that of the continuous kinetic theory




S. Applications




Applications

Shock wave structure

Unsteady and steady Couette flows (Knudsen layer,
initial layer, ...)

Flow and heat transfer between two parallel plates

Evaporation / condensation between two interfacex
(temperature inversion)

Evaporation or condensation on a liquid interface

Flow in a microchannel




Flow and heat transfer between two parallel plates (d’ Almeida)

Kn=10.5

£ 4+ =+

— &

Temperature

[ PR PR FE—.

AN RN

Red line: test case

T) =26,u}, =05

Blue line: Thermophoresis phenomenon

z//// T, =2,u), =02




Evaporation / condensation between two interfaces (d’Almeida)

\%\% <t

41 xKn=o01

Hot phase:
evaporation

Cold phase:
condensation

A

Temperature
inversion




Evaporation or condensation on a liquid interface (Nicodin)

6,

Condensed <
phase

Condensation

Condensed ——>
phase

Evaporation

. |

Jo.

The results obtained with a very simple model (16 velocities only) are in
very good agreement with those of Sone, Aoki and their collaborators with
continuous theory

e—°°,v , M, = >0
0

[ee]

These problems depend on 3 parameters :




Condensation problem (Nicodin)

==1, v, =4, M, =0.707
0

The vapor 1s compressed on the There 1s a Knudsen layer near
condensed phase (N = 0). The the condensed phase (N =0). A
steady state 1s obtained for compression wave (shock
about 30 mean free times wave) propagates to infinity




Evaporation problem (Nicodin)

200 T

=1, v_=1,M_ =0316

20
G0

|

s/ /

ld




6. Conclusion



Conclusion

Many generalizations

Gas mixtures (Cercignani, Cornille, ...)

Chemical reactions (Pandolfi, ...)

Numerical approaches (Leguillon, Teman, Golstein, ...)

Semi discrete Boltzmann equation (Cabannes, Toscani, ...)

Many mathematical papers

Existence theorems, exact solutions, asymptotic analysis, ...

Cabannes, Bardos, Beale, Bellomo, Bobylev, Bony,
Cercignani, Cornille, Godunov, Golse, Hamdache, Illner,
Kawashimha, Levermore, Nishida, Platkowski, Sultangazin,
Tartar, Vedenyapin, ...
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