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State of the art: face penalty methods

The addition of a term penalizing the jump of the gradient over element
edges

J(up, vp) = Z/ Yh5k[Vup - n][Vvy - n] ds
< Jok\on

to the standard Galerkin formulation may be used to stabilize
@ transport operators
@ Stokes like systems
@ symmetric Friedrichs systems

Error analysis for linear problems leads to (quasi) optimal apriori error
estimates for continuous finite element spaces

Vi = {v:ve C%Q);v|k € P(K), YK € T}
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State of the art: face penalty methods

The addition of a term penalizing the jump of the gradient over element
edges

J(up, vp) = Z/ Yh5k[Vup - n][Vvy - n] ds
< Jok\on

to the standard Galerkin formulation may be used to stabilize
@ transport operators
@ Stokes like systems

@ symmetric Friedrichs systems

Theorem (Burman-Fernandez-Hansbo (2004))

There exists an interpolation operator 7 on V/ such that

16 (1= m) VvnlBg <7 30 /a BTyl
KEeT,

with [v] % vt — v= ifOK € Q and [v] % 0 if 0K C 09Q.
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Variational multiscale methods and projection based LES

@ Knowing the exact solution (u, p) we could compute the ideal
projection (mpu, Tpp) € [Vi]4 x V.
@ Since the exact solution is unknown we have to do with a working

projection given by a discrete scheme (typically Galerkin FEM).

@ The working projection should be stable and accurate uniformly in
the Reynolds number: standard Galerkin has to be modified.

Assumption:
o the Bernoulli hypothesis: all fine to coarse interaction is dissipative.

@ We choose 7y, (the ideal projection) to be the L2-projection.
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Stabilized methods based on scale separation, the Euler

equations

Q Let W = H(div) x L3, U= (u,p), L(w)U = (w-V)u+ Vp,
7t = (I —7}). Assume f € [V,]9. Find U € W such that

(Oru+ L(u)U,v) + (V - u,q) = (f,v), ¥(v,q) € W.
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Stabilized methods based on scale separation, the Euler

equations

@ Find U € W such that
(D + L) U,v) + (V- u,q) = (F,v), ¥(v,q) € W.

@ Scale separation U = Uy, + U, Up=mpU
o m,U is the L2-projection of U onto Wy, = [V4]¢ x Vi
o U orthogonal to the finite element space (c.f. Codina).
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Stabilized methods based on scale separation, the Euler

equations

Q@ Find U € W such that
(Oru + L(u)U,v) + (V - u,q) = (f,v), V(v,q) € W.

@ Scale separation U = Uy + L~/ Up = mpU
@ Inserting Uy, + U yields the formulation

(Orup+L(up)Up,vp) + (V - up, gn) = (F,vp)
HT Yt L(up) Up, 7V - up), (7t L(up) Vi, 7V - wp))
+((G-V)u,vy) YV =(v,q) e W.

@ T 'is the solution operator for the fine scale equation

(Oeli + (u - V)i + (G- V)up + VB, ¥) + (V- 4, 3)
= (WLL(uh)Uh,\?) + (T(LV - Uyp, E])
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Simplifications leading to edge oriented stabilization

We drop the fine to coarse interaction terms ((G - V)u, vp)

Bernoulli hypothesis: approximate T—! with a scaled diagonal
matrix.

Stabilized FEM based on the projected residual: Find Uy € W), such
that

(Orun+L(up)Un,vp) + (V- up, qn) = (F,vn)
—(5U7TLL(U/7)U;,, WLL(Uh)Vh)) — ((5d,-v7er . I.lh,ﬂ'lv . Vh))
VYV = (v, qn) € Wh.

Equivalent dissipation (recall 7+ = (I — 7})):

I LUl < 3 [ el Ui ds

ec&(K)

< Z /’th{[ u, -V u;,]2+[Vph] } ds

ec&(K)
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Edge Stabilized FE, Navier-Stokes: Space

Semi-Discretization

For all t € (0, T), find (un(t), pn(t)) € [Va]¢ x V4 such that

(Oun, vi) + a(up; up, vi) + b(ph, vh) = (f,vsn),
— b(qn, up) =0,
up(0) = mhug,

for all (vh, gn) € [V4]? x Vi, with

e 1
a(up; up, vp) def (up - Vup,vp) + (vVup, Vvg) + E(V “Up, Up - Vp) + bd terms

b(pn,vh) def —(pn, V - vp) + bd terms
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Edge Stabilized FE, Navier-Stokes: Space

Semi-Discretization

For all t € (0, T), find (un(t), pn(t)) € [Va]¢ x V4 such that

(Orun, vir) + a(up; up, vp) + b(pa, Vi) + Ju, (Us, vi) = (F,v4),
— b(qn, un)+j(pn, qn) = 0,

for all (vh, gn) € [V4]? x Vi, with

o, i) S / YR (1 + up - n2)[Vun] : [Vl

KeTy

(o an) > / Yhic[Vpe] - [V an].-

KeT,
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Convergence (selected results)

o J[up; (un, pn), (Vh, Gn)] = juy (Un, Vi) + j(Phs Gh)

def
@ Triple-norm: |||(vh,q;,)||\2 £ ||1/2Vvh||09—|—J[w;7 (vh, gn), (Vh, gn)]-

Theorem (Velocity convergence, Burman & Ferndndez, 2005)

The following estimates hold (when v < h)

[7hu — |l = 0, T2y < b2 C(u, pecT

1
2

.
(/ I(7hu — up, THhP — Ph)|||ih dt) < h?C(u, p, T)ec(“)T7
0

/O 3t (. pn). (un, p)] dt < K3 C(u, p)ecT

with c(u) depending on ||u||Loo(0 T;wie()) and C(u, p) depending on
(0, T:H2(R)) u||L°°(0 T; W0 (Q))-

HUHLZ(O,T;H2
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Energy consistency: monitoring artificial dissipation

For the Navier-Stokes equations there holds
T 1
lu(T)]> +/O [v2Vul2dt = [u(0) ]| + (f,u).
Any reasonable numerical method will satisfy
T 1
Jun( )+ [ {10 VunlP + S(un, pn) e = [un(O)] + (F.us).
0

S(up, pp) the artificial dissipation added for the method to remain stable.

,
. S(up,pp) dt

@ Define D = ‘f;’(luihph):
Jo llv2Vuy|2dt

)
lun(T)]? + (1 + D) / 14V upPdt = un(0)] + (F. un).
0
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Some remarks on face penalty stabilization

@ The interior penalty operator can be seen as a subgrid viscosity:
starting from polynomial order 3 and onward the kernel is a C!
space with approximation properties.

@ Scale separation by polynomial order instead of hierarchic meshes.

© The dissipation ratio D measures the energy consistency and is
(related to) an a posteriori error estimator.

@ For high Reynolds number flow theory predicts (P1 elements and
sufficiently regular solution):

computational error < numerical dissipation = stabilization < Ch3

Erik Burman IP for Navier-Stokes



Scale separation and the energy inequality

Let us now assume f = 0 and consider the projection on mesh 7, of the
exact solution

-
lwnu( T + (/= ma)u(T)I? +/0 v Vulde = [|u(0)],
but (/ — wp)u(T) represents the unresolved scales and hence

I = ma(T)I? = [ E(e) de

&h

(where E(&) denotes the energy distribution over the wave numbers)
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Scale separation and the energy inequality

Let us now assume f = 0 and consider the projection on mesh 7, of the
exact solution

-
lwnu( T + (/= ma)u(T)I? +/0 v Vulde = [|u(0)],
but (/ — wp)u(T) represents the unresolved scales and hence

I = m(DI? ~ [ E(©) de
&h
(where E(&) denotes the energy distribution over the wave numbers)
leading to
(@) ~ (DI _ o EE) d
Jo V3 VulPde I vt Vul2de
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Scale separation and the energy inequality

@ The continuous case:

HM@W*Hmme2%1+ALlf§L§;
7 lv2 Vul2dt 7 [lv2 Vul2de

@ The discrete case:

Jun(0)[12 — lun(T)
Jy 1w Vup|Pdt

—1+4D
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Scale separation and the energy inequality

@ The continuous case:

[u(O)| — flmru(T)II* 1+ e, E(©dC
7 lv2 Vul2dt 7 [lv2 Vul2de

@ The discrete case:

Jun(0)[12 — lun(T)
Jy 1w Vup|Pdt

—1+4D

@ We conclude that if uy =~ mhu is to hold then

g, E(9) de
7 lv3 Vul2dt
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Scale separation and the energy inequality

@ The continuous case:

[u(O)| — flmru(T)II* 1+ e, E(©dC
7 lv2 Vul2dt 7 [lv2 Vul2de

@ The discrete case:

Jun(0)[12 — lun(T)
Jy 1w Vup|Pdt

—1+4D

@ We conclude that if uy =~ mhu is to hold then

g, E(9) de
7 lv3 Vul2dt

Remark: for standard Galerkin D =0 !
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Scale separation and the energy inequality

o Definition in 2D: E(¢) ~ &]a(¢)|?

@ In 2D there holds for isotropic decaying turbulence:E(€) ~ £73
(Kraichnan, 1967).

o If &~ h~1is in the inertial range where E(&) ~ £73 then
I S s it
Jo Ivivulpde [ v valPde

e Assuming &2 negligeable we expect

D ~ h?
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Numerical Results: Turek benchmark Re = 100 flow

around a cylinder, P1/P1

NoDOFs dt Cp,,.. Ci,. St AP D O(ha)
8667 0.01 3.2518 | 1.0438 | 0.2994 | 2.4989 | 0.1031 -
33132 0.005 | 3.2390 | 1.0377 | 0.3016 | 2.4875 | 0.0230 2.16

131784 | 0.0025 | 3.2308 | 1.0262 | 0.3008 | 2.4697 | 0.0035 2.72
lower - 3.22 0.99 0.2950 2.46 - -

upper - 3.24 1.01 0.3050 2.50 - -
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Numerical Results: Re = 10000 mixing layer

vvvvvvvvvvvvvvv

= 7

PERIODIC BOUNDARY
N
Q
AAVANNO8 DIGORIHA

o Unit square, u,, = 1, 0 = 5, v = 3.571-10® — Re, = 10000.

@ Lesieur et al. proposed this problem as a model case for decaying 2D
turbulence.

e They showed numerically that E(£) decays between £~* and £~ for
the streamwise velocity component (Fourier transform only in the
x-variable).

@ we expect: c;h® < D < ch? to be consistent with Lesieur and
D ~ h? to be consistent with Kraichnan.
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Numerical Results: Re = 10000 mixing layer

Q’ 7. > é

Plel. [ D | O(h®®) [ J(umpn) || P2el. | D | O(h®®) [ J(un, pn)
80 |56 - 6E-4 40 | 038 - 5E-5
160 | 1.4 | 20 2E-4 80 | 01098 | 179 | 15E5
320 | 03| 222 4E-5 160 | 0025 | 20 3.6E-6

The convergence of D implies E(£) ~ £~ 3 coherent with the scaling law
of Kraichnan and with the numerical results of Lesieur.
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Conclusions and outlook

@ Face oriented interior penalty methods work for incompressible flow
at high Reynolds number.

@ Interaction with turbulence?

@ Future work focuses on complex flow problems such as:

o Incompressible flow in 3D at high Reynolds number (turbulence)
o Viscoelastic flow

o Freesurface flow

o Compressible flow
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Mixing layer, Reynolds 10000, P1/80 x 80, P2/32 x 32,
P2/160 x 160, t=50,80,100
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Mixing layer, Reynolds 10000, P1/320 x 320, P2/32 x 32,
P2/160 x 160, t=50,80,100




P2/P2, 32 x 32, t=20,30,50,70,80,100,120,140,200
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P2/P2, 160 x 160, t=20,30,50,70,80,100,120,140,200




P1/P1, 40 x 40, t=20,30,50,70,80,100,120,140,200
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P1/P1, 80 x 80, t=20,30,50,70,80,100,120,140,200




50,70,80,100,120,140,200

(@)
o™

20

t=

320 x 320,

P1/P1




