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Introduction



Why Develop Methods based on DGM
to Compute Euler’s linearized equations ?

FEM faces difficulties to solve Linearized Euler’s equations
FDM faces difficulties with complex geometries and boudary conditions

DGM Advantages and Disavantages:

High Flexiblility
Complex Geometries

Variational Formulation
Adapted to Parallel Computation 

Harder to program (OOP required)
CPU and RAM Expensive !
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symmetric, it is diagonalizable and can be splitted into a positive (set of positive eigenvalues)
and a negative part (set of negative eigenvalues) :

Aini = [Aini]+ + [Ai.ni]− .

In this method the weak formulation leads to find:
{

ϕh ∈ W k(ωh) | ∀ψh ∈ W k(ωh) ; L(ϕh,ψh) = 0
}

,

where:

L(ϕh,ψh) =
∫

Ω

ψh . ∂t ϕh +
∫

Ω

ψh .Ai ∂i ϕh +
∫

Ω

ψh . Bϕh

+
∮

∂ωh|∂Ω

ψh . [Aini]−(ϕo
h −ϕi

h) +
∮

∂ωh∩∂Ω

ψh . (Mϕh − g) −
∫

Ω

ψh . g . (3.4)

Expression eq (3.4) can be splitted as:

• the first term is the bloc-diagonal local mass matrix,

• the second term is the bloc-diagonal local stiffness matrix (vanishes for fvm),

• the third term is a matrix product (also bloc-diagonal),

• the fourth term is the local edge stiffness matrix connecting elements,

• the fifth term introduces the boundary conditions using operator M,

• the sixth term introduces the acoustic sources in the formulation.

Setting ψh = ϕh in eq. (3.4) gives after integration the error estimate:

|ϕ−ϕh|L2([0,T ],L2(Ω)3 ≤ C(T,Ω)hk+1/2 ,

in the case of unstable flow, constant C can grow to infinity as T increases. Numerical
experiments show the estimate is probably better (hk+1). To obtain this estimate sign of
[Aini]− is essential.

3.3. Boundary Conditions

Consider an element localized on border ∂Ω of domain Ω similar to the one exhibited in
Fig. 2. For such an element ∂Ωj ∩ ∂Ω = a1 &= ∅ and boundary conditions are imposed on
a1. In local representation, the variational formulation reads:

∫

Ωj

tψ I (∂t ϕ +Ai ∂i ϕ + B ϕ) +
∮

a1

tψ[d2,d3] Mϕ[d2,d3] −
∮

a1

tψ[d2,d3] I g

+
∮

a2

tψ[d3,d1] [Ai ni]− (ϕ[d6,d7] −ϕ[d3,d1]) +
∮

a3

tψ[d1,d2] [Ai ni]− (ϕ[d8,d9] −ϕ[d1,d2]) .

Symetric Friedrich System

Physical Modeling and Mathematical formulation
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is easily parallelisable and the calculus can be realized on pc-cluster. Of course the method
presents some disadventages witch are very important at the low levels of accuracy (for
fluid dynamics for instance): the scheme is dissipatif and the number of unknows (degrees
of freedom) is larger than the one of the fdm or classical fem. Note that the discrepancy
decreases when the order increases and so we hope this method does work efficiency at high
orders. Studies are on the way to quantify this assertion.
Furhermore, the gdm presents some ”exotic” ways to explore like the spatio-temporal as-
pects, the accuracy refinement, the use of new basis functions and the no-conform unstruc-
tured meshes.

2. Physical model

The usual linear partial differential equations system used for aeroacoustics comes from
the linearization of Euler’s equations and replacing the energy equation with the entropy
equation. It is valid for subsonic flows. Morover, assuming entropy per unit of mass uniform
in space at initial time, it will remain uniform is space at any time. This hypothesis is not
essential for the method but is usually done. So in 3D (resp. 2D) we have a system of
four equations (resp. three): one for the mass and 3 (resp. 2) for the moment. As most
of physical partial differential equations, it is symetrizable or it is a ”Friedrich’s system”.
The well-known (at least by the hyperbolicians) theorem of Godonov-Mock asserts that
the system becomes symetric (after a change of the unknows) if a mathematical entropy
exists. This is the case of the physical problems (electro-magnetism, Fluid mechanics, Aero-
acoustics, quantic mechanics...). For our problem it means, if one uses the new variables:

ϕ =




u1

v1

a0 ρ1/ρ0



 ,

one obtains the new system:
∂t ϕ +Ai ∂i ϕ + B ϕ = 0

where:

A1 =




u0 0 a0

0 u0 0
a0 0 u0



 A2 =




v0 0 0
0 v0 a0

0 a0 v0





and:

B =





∂x u0 ∂y u0 − ∂x a0

∂x v0 ∂y v0 − ∂y a0

a0

ρ0
∂x ρ0

a0

ρ0
∂y ρ0 (γ − 1) (∂x u0 + ∂y v0)





the matrix-valued symbol Ai ∂i is symetric so the real matrix Aini is diagonalizable. This
feature is important for the method presented in this paper. Morover, we are able to write
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Linearized Euler’s Equations
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symmetric, it is diagonalizable and can be splitted into a positive (set of positive eigenvalues)
and a negative part (set of negative eigenvalues) :

Aini = [Aini]+ + [Ai.ni]− .

In this method the weak formulation leads to find:
{

ϕh ∈ W k(ωh) | ∀ψh ∈ W k(ωh) ; L(ϕh,ψh) = 0
}

,

where:

L(ϕh,ψh) =
∫

Ω

ψh . ∂t ϕh +
∫

Ω

ψh .Ai ∂i ϕh +
∫

Ω

ψh . Bϕh

+
∮

∂ψh|∂Ω

ψh . [Aini]−(ϕo
h −ϕi

h) +
∮

∂ωh∩∂Ω

ψh . (Mϕh − g) −
∫

Ω

ψh . g . (3.4)

Expression eq (3.4) can be splitted as:

• the first term is the bloc-diagonal local mass matrix,

• the second term is the bloc-diagonal local stiffness matrix (vanishes for fvm),

• the third term is a matrix product (also bloc-diagonal),

• the fourth term is the local edge stiffness matrix connecting elements,

• the fifth term introduces the boundary conditions using operator M,

• the sixth term introduces the acoustic sources in the formulation.

Setting ψh = ϕh in eq. (3.4) gives after integration the error estimate:

|ϕ−ϕh|L2([0,T ],L2(Ω)3 ≤ C(T,Ω)hk+1/2 ,

in the case of unstable flow, constant C can grow to infinity as T increases. Numerical
experiments show the estimate is probably better (hk+1). To obtain this estimate sign of
[Aini]− is essential.

3.3. Boundary Conditions

Consider an element localized on border ∂Ω of domain Ω similar to the one exhibited in
Fig. 2. For such an element ∂Ωj ∩ ∂Ω = a1 &= ∅ and boundary conditions are imposed on
a1. In local representation, the variational formulation reads:

∫

Ωj

tψ I (∂t ϕ +Ai ∂i ϕ + B ϕ) +
∮

a1

tψ[d2,d3] Mϕ[d2,d3] −
∮

a1

tψ[d2,d3] I g

+
∮

a2

tψ[d3,d1] [Ai ni]− (ϕ[d6,d7] −ϕ[d3,d1]) +
∮

a3

tψ[d1,d2] [Ai ni]− (ϕ[d8,d9] −ϕ[d1,d2]) .

Variational formulation is diagonalizable
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where:

A1 =




u0 0 a0

0 u0 0
a0 0 u0



 A2 =




v0 0 0
0 v0 a0

0 a0 v0



 ,

and:

B =





∂x u0 ∂y u0 − ∂x a0

∂x v0 ∂y v0 − ∂y a0

a0

ρ0
∂x ρ0

a0

ρ0
∂y ρ0 (γ − 1) (∂x u0 + ∂y v0)




.

As matrix Ai ∂i is symmetric, the real matrix Aini is diagonalizable. This remark is impor-
tant for the method presented in this paper. Moreover, we are able to write the mathematical
energy balance:

∂t

∫

Ω

1
2

ϕ2 +
1
2

∮

∂Ω

ϕt Aini ϕ +
1
2

∫

Ω

ϕt(B + Bt − ∂iAi) ϕ = 0 . (2.1)

This mathematical energy balance has a physical sense. Indeed, it is the sum per mass unit
of kinetic energy (u2

1 + v2
1)/2 and acoustic energy a2

0ρ
2
1/ρ2

0. In (2.1), the second term is
obviously the flux and the third term is the source of this energy. Matrix B + Bt − ∂iAi

vanishes when flow is uniform. Otherwise, the matrix doesn’t have a determined sign. It
means energy can increase indefinitely depending on the flow stability.

3. Galerkin Discontinuous Method

Our aim is to present results dealing with aeroacoustics (not mathematics). Only main
features of the method are presented in the paper and for more details we invite to read
references 10,11. For a k-order gdm, test and interpolation functions are chosen in same
functional space composed by the set {W k, k ∈ N} of k order polynoms inside each ele-
ment and may be discontinuous on edges bordering elements (piecewise k order polynomial
functions). The fact that both, test and interpolation functions are discontinuous prevent
from directly writing a weak formulation for all domain. Indeed, derivatives of discontin-
uous functions introduce Dirac distributions on elements border. A fem approach like to
establish a weak formulation would introduce senseless products between distributions and
discontinuous functions on edges. Actually, the gdm is a patchwork of weak formulations
inside each element and the goal is to connect each elements to its neighbors using boundary
conditions. This is realized using boundary operator M that gives sense to the products of
Dirac distribution and discontinuous functions.

3.1. Mesh Generation

Domain Ω is meshed with N elements:

Ω =
N⋃

h=1

ωh ,
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in the case of unstable flow, constant C can grow to infinity as T increases. Numerical
experiments show the estimate is probably better (hk+1). To obtain this estimate sign of
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Consider an element localized on border ∂Ω of domain Ω similar to the one exhibited in
Fig. 2. For such an element ∂Ωj ∩ ∂Ω = a1 &= ∅ and boundary conditions are imposed on
a1. In local representation, the variational formulation reads:

∫

Ωj

tψ I (∂t ϕ +Ai ∂i ϕ + B ϕ) +
∮

a1

tψ[d2,d3] Mϕ[d2,d3] −
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a1

tψ[d2,d3] I g

+
∮
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∮
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Matrix          is symetric
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3. Galerkin Discontinuous Method

Our aim is to present results dealing with aeroacoustics (not mathematics). Only main
features of the method are presented in the paper and for more details we invite to read
references 10,11. For a k-order gdm, test and interpolation functions are chosen in same
functional space composed by the set {W k, k ∈ N} of k order polynoms inside each ele-
ment and may be discontinuous on edges bordering elements (piecewise k order polynomial
functions). The fact that both, test and interpolation functions are discontinuous prevent
from directly writing a weak formulation for all domain. Indeed, derivatives of discontin-
uous functions introduce Dirac distributions on elements border. A fem approach like to
establish a weak formulation would introduce senseless products between distributions and
discontinuous functions on edges. Actually, the gdm is a patchwork of weak formulations
inside each element and the goal is to connect each elements to its neighbors using boundary
conditions. This is realized using boundary operator M that gives sense to the products of
Dirac distribution and discontinuous functions.

3.1. Mesh Generation

Domain Ω is meshed with N elements:

Ω =
N⋃

h=1

ωh ,

Fully Upwind
 Scheme
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Boundary Conditions

Rigid Wall Non-reflecting

Lilley’s Solution (reference)

Lined Wall
Lined Wall
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Perfectly Matched Layers
p1 -1 -0.5 0 0.5 1 Pa



Part One
Optimal hp DGM principles



“Optimal” Functional Basis

• Easy to Build (and Program)

• Higher Order

• Quadratures for Num Integrations

• Ortogonal Basis

High Order Lagrangian Elements 

n01

n02

n03

n04

n05

n06

n07

n08

n09

n10

n11

n12

n13

n14

n15

n16

n17

n18

n19

n20



Rigid or Lined Wall

Rigid or Lined Wall

M
o

d
e N

o
n

R
e

fl
e

c
tin

g

3.00 m

0
.5

0
 m

Infinite 2D Duct with constant cross section

a0 = 340 m.s
−1

p0 = 101 325 Pa

ρ0 = 1.23 kg.m−3

Air

λ = 0.10 m

n = 0
f = 3.4 kHz Approximated

Non Reflecting condition
works perfectly

p(x, y) = sin(2πft −
2π

λ
x)Analytical Solution for Rigid Wall No Flow

x

y

30 periods for 3m length
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P4

CPU (s) deg

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

10.55 5430

P5

CPU (s) deg

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

28.43 7602

P6

CPU (s) deg

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

68.61 10136

30 intervals

5 
in

te
rv

al
s

h ≈ λ

( CPU are obtained on a Dual  Apple G5 2 GHz )10



P1
CPU (s) deg

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

1047.85 110658

300 x 50 intervals

P1
CPU (s) deg

0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

4709.81 216684

420 x70 intervals

h ≈ λ/10

h ≈ λ/14

P1
CPU (s) deg

0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.5

0.0

0.5

1.0

2288.29 159660

360 x 60 intervalsh ≈ λ/12
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Mesh Refinement / Element Order

element n(Pi) m(Pi) α(Pi) hmin(≤ 5%)hmin(≤ 10%)

P0 1 0 λ/20 λ/40

P1 3 1 1.0 λ/14 λ/12

P2 6 4 0.5 λ/4 λ/4

P3 10 9 0.37 λ/3 λ/2

P4 15 16 0.31 λ/2 λ/3

P5 21 25 0.28 λ

P6 28 36 0.26 λ
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Remeshing Tool

Original mesh
np: 67 108   nt: 134 212

Adapted mesh
np: 9 796  nt: 19 588
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Optimal hp DGM CAA Meshes

Optimal Mesh: 3729 triangles

CFD Mesh: 17024 triangles
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P0 P1 P2 P3 P4 P5 P6

P0 P1 P2 P3 P4 P5 P6

Optimal hp DGM CAA Orders f = 2 kHz
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Optimal hp DGM CAA Results

iter 1456

dt 4,46 μs

t 6504 μs

CPU 580’’

RAM 300 MO

iter 1200

dt 5,42 μs

t 6507 μs

CPU 195’’

RAM 200 MO

f = 2 kHz
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Cut 2



Optimal hp DGM CAA Validations

!2 =

n
∑

i=1

(

p̄1(i) − p̃1(i)

)2

n
∑

i=1

(

p̄1(i)

)2
= 0.83%

–1 0 1 2 3 4 5
–4.10–5

–2.10–5

0

2.10–5

4.10–5

x (m)

Cut 1

hp
p2

–0.50 –0.25 0.00 0.25 0.50
–4
.
10
–5

–2
.
10
–5

0

2
.
10
–5

4
.
10
–5

Cut 2

hp
p2



Optimal hp DGM CAA f = 3 kHz
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Part Two
High Performance Computing

HPC = High Performance Computing



Simulations for 3D geometries

500 000 Tetraedra Mesh 4 GBytes

First Idea for 3D Simulation:
HPC or HCC

Formal Calculation

Vectorization

Massively Parallel Computation (MPI+OMP)
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High Performance Computing
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Massively Parallel Computation

open mpi 1.0.1
Message Passing InterfaceParMetis: Parallel Graph Partitioning
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Falcon CAA HPC Computation

500 000 Tetras
64 domains

TetMesh (INRIA/Simulog)
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Falcon CAA HPC Computation

24

Cluster - 4 nodes Apple G5 2 GHz - 48 hours CPU



HPC Optimal hp DGM

Mesh for Computation 
72 Tetra with P5 approx

Mesh for Visualization
with solution



Part Three
Optimal h Adaptation Principles



Gaussian Distribution of Sources

TF (e−a
2
t
2

) =
1

a
√

2
e

−f2

4a2

-1!10
4 -7500 -5000 -2500 0 2500 5000 7500 1!10

4

2,5!10
-4

5!10
-4

7,5!10
-4

0,001

-0,004 -0,003 -0,002 -0,001 0 0,001 0,002 0,003 0,004

0,25

0,5

0,75

1

a = 10
3



Pulse h-adaptation



2 pulses h-adaptation



Conclusion



DGM
DGM is able to solve most CAA problems (and many others)

DGM is expensive (especially for lower order elements)

hp DGM
hp DGM mixes element orders and results a much less expensive cost

With hp DGM, CFD and CAA computations are handled on same mesh
Introduction of the doppler effect when determining local orders

HPC DGM
Computation on clusters make big configurations possible 

(hp + HPC) DGM
Balance of the Processes to optimize cluster efficiency
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