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This is AD !

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1

v3 = 2.0*v1 + 5.0

v4 = v3 + p1*v2/v3

END

v3d = 2.0*v1d

v4d = v3d + p1*(v2d*v3-v2*v3d)/(v3*v3)

REAL v1d,v2d,v3d,v4d

v1d, v2d, v4d,
•

Just inserts “differentiated instructions” into FOO
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Computer Programs as Functions

See any program P:{I1; I2; . . . Ip; } as:

f : IRm→IRn f = fp ◦ fp−1 ◦ · · · ◦ f1

Define for short:

W0 = X and Wk = fk(Wk−1)

The chain rule yields:

f ′(X ) = f ′p(Wp−1).f ′p−1(Wp−2). . . . .f ′1(W0)
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Tangent mode and Reverse mode

Full f ′(X ) is expensive and often useless.
We’d better compute useful “projections”.

tangent AD :

Ẏ = f ′(X ).Ẋ = f ′p(Wp−1).f ′p−1(Wp−2) . . . f ′1(W0).Ẋ

reverse AD :

X = f ′t(X ).Y = f ′t1 (W0). . . . f ′tp−1(Wp−2).f ′tp (Wp−1).Y

Evaluate both from right to left:
⇒ always matrix × vector

Theoretical cost is about 4 times the cost of P

Laurent Hascoët (INRIA) AD September 2010 5 / 91



Costs of Tangent and Reverse AD

F : IRm → IRn

( )[
]m inputs

n outputs

Gradient

Tangent

f ′(X ) costs (m + 1) ∗ P using Divided Differences
f ′(X ) costs m ∗ 4 ∗ P using the tangent mode
Good if m <= n
f ′(X ) costs n ∗ 4 ∗ P using the reverse mode
Good if m >> n (e.g n = 1 in optimization)
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Focus on the Reverse mode (Gradients)

X = f ′t(X ).Y = f ′t1 (W0) . . . f ′tp−1(Wp−2) . f ′tp (Wp−1) . Y

I1 ;
...
Ip−2 ;
Ip−1 ;
W = Y ;
W = f ′tp (Wp−1) * W ;

Restore Wp−2 before Ip−2 ;
W = f ′tp−1(Wp−2) * W ;
...
Restore W0 before I1 ;
W = f ′t1 (W0) * W ;
X = W ;

Instructions differentiated in the reverse order !
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Reverse mode: graphical interpretation

time

I I I I I

I
I

I
I

1 2 3 p-2 p-1

p
p-1

2
1

A Forward sweep followed by Backward sweep

Bottleneck: Uses a large memory “Tape”

Trade-off strategy: “Checkpointing”

time

C{ D{
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Laurent Hascoët (INRIA) AD September 2010 9 / 91



So you need derivatives ?...

Given a program P computing a function F

F : IRm → IRn

X 7→ Y

we want to build a program that computes the derivatives
of F .

Specifically, we want the derivatives of the dependent,
i.e. some variables in Y ,
with respect to the independent, i.e. some variables in X .
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Which derivatives do you want?

Derivatives come in various shapes and flavors:

Jacobian Matrices: J =
(

∂yj

∂xi

)
Directional or tangent derivatives, differentials:
dY = Ẏ = J × dX = J × Ẋ
Gradients:

When n = 1 output : gradient = J =
(

∂y
∂xi

)
When n > 1 outputs: gradient = Y

t × J

Higher-order derivative tensors

Taylor coefficients

Intervals ?
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Divided Differences

Given Ẋ , run P twice, and compute Ẏ

Ẏ =
P(X + εẊ )− P(X )

ε

Pros: immediate; no thinking required !

Cons: approximation; what ε ?
⇒ Not so cheap after all !

Optimization wants inexpensive and accurate derivatives.
⇒ Let’s go for exact, analytic derivatives !
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AD Example: analytic tangent differentiation

by Program transformation

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1

v3 = 2.0*v1 + 5.0

v4 = v3 + p1*v2/v3

END

v3d = 2.0*v1d

v4d = v3d + p1*(v2d*v3-v2*v3d)/(v3*v3)

REAL v1d,v2d,v3d,v4d

v1d, v2d, v4d,
•

Just inserts “differentiated instructions” into FOO
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Laurent Hascoët (INRIA) AD September 2010 14 / 91



Take control away!

We differentiate programs. But control ⇒ non-differentiability!

Freeze the current control:
⇒ the program becomes a simple sequence of instructions
⇒ AD differentiates these sequences:

Program

CodeList 1

CodeList 2

CodeList N

Diff(CodeList 1)

Diff(CodeList 2)

Diff(CodeList N)

Diff(Program)

Control 1:

Control N:

Control 1

Control N

Caution: the program is only piecewise differentiable !
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Computer Programs as Functions

Identify sequences of instructions

{I1; I2; . . . Ip−1; Ip; }

with composition of functions.

Each simple instruction

Ik : v4 = v3 + v2/v3

is a function fk : IRq → IRq where
The output v4 is built from the input v2 and v3
All other variable are passed unchanged

Thus we see P : {I1; I2; . . . Ip−1; Ip; } as

f = fp ◦ fp−1 ◦ · · · ◦ f1
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Using the Chain Rule

f = fp ◦ fp−1 ◦ · · · ◦ f1

We define for short:

W0 = X and Wk = fk(Wk−1)

The chain rule yields:

f ′(X ) = f ′p(Wp−1).f ′p−1(Wp−2). . . . .f ′1(W0)
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Tangent mode and Reverse mode

Full J is expensive and often useless.
We’d better compute useful projections of J.

tangent AD :

Ẏ = f ′(X ).Ẋ = f ′p(Wp−1).f ′p−1(Wp−2) . . . f ′1(W0).Ẋ

reverse AD :

X = f ′t(X ).Y = f ′t1 (W0). . . . f ′tp−1(Wp−2).f ′tp (Wp−1).Y

Evaluate both from right to left:
⇒ always matrix × vector

Theoretical cost is about 4 times the cost of P

Laurent Hascoët (INRIA) AD September 2010 18 / 91



Costs of Tangent and Reverse AD

F : IRm → IRn

( )[
]m inputs

n outputs

Gradient

Tangent

J costs m ∗ 4 ∗ P using the tangent mode
Good if m <= n
J costs n ∗ 4 ∗ P using the reverse mode
Good if m >> n (e.g n = 1 in optimization)
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Back to the Tangent Mode example

v3 = 2.0*v1 + 5.0
v4 = v3 + p1*v2/v3

Elementary Jacobian matrices:

f ′(X ) = ...


1

1
1

0 p1

v3
1− p1∗v2

v2
3

0




1
1

2 0
1




v̇1

v̇2

v̇3

v̇4


v̇3 = 2 ∗ v̇1

v̇4 = v̇3 ∗ (1− p1 ∗ v2/v
2
3 ) + v̇2 ∗ p1/v3
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Tangent Mode example continued

Tangent AD keeps the structure of P :
...

v3d = 2.0*v1d
v3 = 2.0*v1 + 5.0
v4d = v3d*(1-p1*v2/(v3*v3)) + v2d*p1/v3
v4 = v3 + p1*v2/v3

...
Differentiated instructions inserted
into P’s original control flow.
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Multi-directional mode and Jacobians

If you want Ẏ = f ′(X ).Ẋ for the same X and several Ẋ

either run the tangent differentiated program several
times, evaluating f several times.

or run a “Multi-directional” tangent once, evaluating
f once.

Same for X = f ′t(X ).Y for several Y .

In particular, multi-directional tangent or reverse is good
to get the full Jacobian.

Laurent Hascoët (INRIA) AD September 2010 23 / 91



Sparse Jacobians with seed matrices

When sparse Jacobian, use “seed matrices” to propagate
fewer Ẋ or Y

Multi-directional tangent mode:
a b

c
d

e f g

×


1
1
1

1

 =


a b

c
d

e f g


Multi-directional reverse mode:

(
1 1

1 1

)
×


a b

c
d

e f g

 =

(
a c b
e f d g

)
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Focus on the Reverse mode

X = f ′t(X ).Y = f ′t1 (W0) . . . f ′tp−1(Wp−2) . f ′tp (Wp−1) . Y

I1 ;
...
Ip−2 ;
Ip−1 ;
W = Y ;
W = f ′tp (Wp−1) * W ;

Restore Wp−2 before Ip−2 ;
W = f ′tp−1(Wp−2) * W ;
...
Restore W0 before I1 ;
W = f ′t1 (W0) * W ;
X = W ;

Instructions differentiated in the reverse order !
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Reverse mode: graphical interpretation

time

I I I I I

I
I

I
I

1 2 3 p-2 p-1

p
p-1

2
1

Bottleneck: memory usage (“Tape”).

Still searching for optimal combinations of
storage, recomputation and even inversion.
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Back to the example

v3 = 2.0*v1 + 5.0
v4 = v3 + p1*v2/v3

Transposed Jacobian matrices:

f ′t(X ) = ...


1 2

1
0

1




1 0
1 p1

v3

1 1− p1∗v2

v2
3

0




v 1

v 2

v 3

v 4


v 2 = v 2 + v 4 ∗ p1/v3

...
v 1 = v 1 + 2 ∗ v 3

v 3 = 0
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Reverse Mode example continued

Reverse AD inverses the structure of P :

...
v3 = 2.0*v1 + 5.0
v4 = v3 + p1*v2/v3

...

.........................../*restore previous state*/
v2b = v2b + p1*v4b/v3
v3b = v3b + (1-p1*v2/(v3*v3))*v4b
v4b = 0.0......................../*restore previous state*/
v1b = v1b + 2.0*v3b
v3b = 0.0......................../*restore previous state*/

...

Differentiated instructions inserted
into the inverse of P’s original control flow.
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Control Flow Inversion : conditionals

The control flow of the forward sweep
is mirrored in the backward sweep.

...

if (T(i).lt.0.0) then

T(i) = S(i)*T(i)

endif

...

if (...) then

Sb(i) = Sb(i) + T(i)*Tb(i)

Tb(i) = S(i)*Tb(i)

endif

...
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Control Flow Inversion : loops

Reversed loops run in the inverse order

...

Do i = 1,N

T(i) = 2.5*T(i-1) + 3.5

Enddo

...

Do i = N,1,-1

Tb(i-1) = Tb(i-1) + 2.5*Tb(i)

Tb(i) = 0.0

Enddo
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Control Flow Inversion : spaghetti

Remember original Control Flow when it merges
B1
t1

B2 B3

B4

B5

PUSH(0) PUSH(1)

PUSH(0) PUSH(1)

B5

B4

B2 B3

B1

POP(test)

POP(test)
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Data Flow Inversion: message-passing parallelism

Consider the Data Dependence Graph of an MPI communication.

a = a*b;

isend(a,r1);

... = ... a ...;

wait(r1);

a = 2*a + 1;

channel

... = ... b ...;

irecv(b,r2);

......;

wait(r2);

... = ... b ...;

a = a*b;

isend(a,r1);

... = ... a ...;

wait(r1);

a = 2*a + 1;

channel

... = ... b ...;

irecv(b,r2);

......;

wait(r2);

... = ... b ...;

b+=a*a;  a=b*a;

wait(r1); a+=t;

a += ...;

irecv(t,r1);

a = 2*a

channel

b += ...;

wait(r2); b=0.0;

......;

isend(b,r2);

b += ...;

The reversed communication pattern is designed to inverse data-flow
⇒ and therefore does not introduce deadlocks.
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Yet another formalization using computation

graphs

A sequence of instructions corresponds to a computation
graph

DO i=1,n

IF (B(i).gt.0.0) THEN

r = A(i)*B(i) + y

X(i) = 3*r - B(i)*X(i-3)

y = SIN(X(i)*r)

ENDIF

ENDDO

y A(i) B(i) X(i-3)

*

+ *
3

*

-

*

SIN

r y X(i)

Source program Computation Graph
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Jacobians by Vertex Elimination

1
B(i)

A(i) X(i-3)
B(i)

1

3

1
-1

X(i)
r

1

1
COS(X(i)*r)

1

y A(i) B(i) X(i-3)

r y X(i)

COS(X(i)*r) *
(X(i)*A(i) + r*(3*A(i) - X(i-3)))

y A(i) B(i) X(i-3)

r y X(i)

Jacobian Computation Graph Bipartite Jacobian Graph

Forward vertex elimination ⇒ tangent AD.

Reverse vertex elimination ⇒ reverse AD.

Other orders (“cross-country”) may be optimal.
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Yet another formalization: Lagrange multipliers

v3 = 2.0*v1 + 5.0
v4 = v3 + p1*v2/v3

Can be viewed as constrains. We know that the
Lagrangian L(v1, v2, v3, v4, v3, v4) =
v4 + v3.(−v3 + 2.v1 + 5) + v4.(−v4 + v3 + p1 ∗ v2/v3) is
such that:

v1 =
∂v4

∂v1
=
∂L
∂v1

and v2 =
∂v4

∂v2
=
∂L
∂v2

provided
∂L
∂v3

=
∂L
∂v4

=
∂L
∂v3

=
∂L
∂v4

= 0
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The vi are the Lagrange multipliers associated to the
instruction that sets vi .

For instance, equation ∂L
∂v3

= 0 gives us:

v4.(1− p1.v2/(v3.v3))− v3 = 0

To be compared with instruction
v3b = v3b + (1-p1*v2/(v3*v3))*v4b
(initial v3b is set to 0.0)
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Time/Memory tradeoffs for reverse AD

From the definition of the gradient X

X = f ′t(X ).Y = f ′t1 (W0) . . . f ′tp (Wp−1).Y

we get the general shape of reverse AD program:

time

I I I I I

I
I

I
I

1 2 3 p-2 p-1

p
p-1

2
1

⇒ How can we restore previous values?
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Restoration by recomputation

(RA: Recompute-All)

Restart execution from a stored initial state:

time

I I I I I

I

I

I

I

I

1 2 3 p-2 p-1

p

p-1

2

1

1

Memory use low, CPU use high ⇒ trade-off needed !
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Restoration by storage

(SA: Store-All)

Progressively undo the assignments made by the forward
sweep

time

I I I I I

IIIIII

1 2 3 p-2 p-1

pp-1p-2321

Memory use high, CPU use low ⇒ trade-off needed !
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Checkpointing (SA strategy)

On selected pieces of the program, possibly nested, don’t
store intermediate values and re-execute the piece when
values are required.

time

C{
time

Memory and CPU grow like log(size(P))
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Checkpointing on calls (SA)

A classical choice: checkpoint procedure calls !

A

B

C

D

A A

B

C

D D D B B

C C C

x : original form of x

x : forward sweep for x

x : backward sweep for x

: take snapshot

: use snapshot

Memory and CPU grow like log(size(P)) when call tree
well balanced.

Ill-balanced call trees require not checkpointing some calls

Careful analysis keeps the snapshots small.
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Activity analysis

Finds out the variables that, at some location

do not depend on any independent,

or have no dependent depending on them.

Derivative either null or useless ⇒ simplifications

orig. prog tangent mode w/activity analysis

c = a*b

a = 5.0

d = a*c

e = a/c

e=floor(e)

cd = a*bd + ad*b
c = a*b
ad = 0.0
a = 5.0
dd = a*cd + ad*c
d = a*c
ed=ad/c-a*cd/c**2
e = a/c
ed = 0.0
e = floor(e)

cd = a*bd + ad*b
c = a*b

a = 5.0
dd = a*cd
d = a*c

e = a/c
ed = 0.0
e = floor(e)
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Adjoint Liveness

The important result of the reverse mode is in X . The original result
Y is of no interest.

The last instruction of the program P can be removed from P.

Recursively, other instructions of P can be removed too.
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orig. program reverse mode Adjoint Live code
IF(a.GT.0.)THEN

a = LOG(a)

ELSE
a = LOG(c)
CALL SUB(a)

ENDIF
END

IF(a.GT.0.)THEN
CALL PUSH(a)
a = LOG(a)
CALL POP(a)
ab = ab/a
ELSE
a = LOG(c)
CALL PUSH(a)
CALL SUB(a)
CALL POP(a)
CALL SUB_B(a,ab)
cb = cb + ab/c
ab = 0.0
END IF

IF (a.GT.0.) THEN

ab = ab/a
ELSE
a = LOG(c)

CALL SUB_B(a,ab)
cb = cb + ab/c
ab = 0.0
END IF
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“To Be Restored” analysis

In reverse AD, not all values must be restored during the backward
sweep.

Variables occurring only in linear expressions do not appear in the
differentiated instructions.
⇒ not To Be Restored.
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x = x + EXP(a)
y = x + a**2
a = 3*z

reverse mode: reverse mode:
naive backward sweep backward sweep with TBR
CALL POP(a)
zb = zb + 3*ab
ab = 0.0
CALL POP(y)
ab = ab + 2*a*yb
xb = xb + yb
yb = 0.0
CALL POP(x)
ab = ab + EXP(a)*xb

CALL POP(a)
zb = zb + 3*ab
ab = 0.0

ab = ab + 2*a*yb
xb = xb + yb
yb = 0.0

ab = ab + EXP(a)*xb
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Aliasing

In reverse AD, it is important to know whether two variables in an
instruction are the same.

a[i] = 3*a[i+1] a[i] = 3*a[i] a[i] = 3*a[j]

variables
certainly
different

variables
certainly equal

? ⇒
tmp = 3*a[j]

a[i] = tmp

ab[i+1]= ab[i+1]
+ 3*ab[i]

ab[i] = 0.0

ab[i] = 3* ab[i] tmpb = ab[i]
ab[i] = 0.0
ab[j] = ab[j]

+ 3*tmpb
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Snapshots

Taking small snapshots saves a lot of memory:

time

C{ D{
Snapshot(C) = Use(C) ∩ (Out(C) ∪ Out(D))
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Undecidability

Analyses are static: operate on source, don’t know
run-time data.

Undecidability: no static analysis can answer yes or
no for every possible program : there will always be
programs on which the analysis will answer “I can’t
tell”

⇒ all tools must be ready to take conservative
decisions when the analysis is in doubt.

In practice, tool “laziness” is a far more common
cause for undecided analyses and conservative
transformations.
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Applications to Optimization

From a simulation program P :

P :(design parameters)γ 7→ (cost function)J(γ)

it takes a gradient J ′(γ) to obtain an optimization
program.

Reverse mode AD builds program P that computes J ′(γ)

Optimization algorithms (Gradient descent, SQP, . . . )
may also use 2nd derivatives. AD can provide them too.
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Taking advantage of Steady-State

If J is defined on a state W , and W results from an
implicit steady state equation

Ψ(W , γ) = 0

which is solved iteratively: W0,W1,W2, ...,W∞

then pure reverse AD of P may prove too expensive
(memory...)

Solutions exist:

reverse AD on the final steady state only.
Andreas Griewank’s “Piggy-backing”
reverse AD on Ψ alone + hand-coding
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CFD optimization: color pictures...

AD gradient of the cost function on the skin geometry:

(Dassault Aviation)

Sonic boom under the plane after 8 optimization cycles:

(Plane geometry provided by Dassault Aviation)
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CFD optimization: figures

Cost function: sonic boom below + lift + drag

Design parameters: plane skin, (2000 REAL*8)

Specific strategy for a stationnary simulation:
assembly of the adjoint linear system through AD,
then specific solver.
Performances:

Differentiation time: 2 s.
Reverse AD slowdown: 7
Adjoint slowdown: 4
Reverse AD memory use: 58 REAL*8 per mesh node
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Data Assimilation (OPA 9.0/GYRE)
Influence of T at -300 metres

on heat flux 20 days later

across North section

30o North

15o North

@@@
@

-

HH
HHHY

Kelvin wave

HHH
HHH

HY

Rossby wave
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Data Assimilation (OPA 9.0/NEMO)

29 N 29 N

2o grid cells, one year simulation
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Data Assimilation: figures

Code : OPA 9.0. 120000 lines of FORTRAN 95

Cost function: e.g. heat flux at the end
vs. temperature, salinity. . . at initial state

Standard reverse AD of complete simulation

Differentiation time: 20 s.

Reverse AD slowdown: 7
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TAPENADE support and directions

Team’s website, tutorial, FAQ:
http://www-sop.inria.fr/tropics

Tapenade download site:
ftp://ftp-sop.inria.fr/tropics/tapenade

TAPENADE 2.1 user’s guide:
http://www.inria.fr/rrrt/rt-0300.html

Mailing list:
tapenade-users@lists-sop.inria.fr
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Tapenade Web Interface
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Tapenade Architecture

Differentiation Engine

Imperative Language Analyzer

 (IL)

C parser
Fortran95 parser

Fortran77 parser

 (IL)

C printer
Fortran95 printer

Fortran77 printer

Language-independent kernel

Written in Java (100 000 lines)

Accepts Fortran (77 and 95) and C (August 2008)

Laurent Hascoët (INRIA) AD September 2010 65 / 91



Outline
1 ......... Quick Introduction to AD
2 Introduction
3 Formalization
4 .... Multi-directional
5 Reverse AD
6 ......... Alternative formalizations
7 Reverse AD performance issues ; Checkpointing
8 ......... Static Analyses in AD tools
9 Reverse AD for Scientific Computing
10 The Tapenade AD Tool
11 Tapenade AD Model on Examples
12 Some AD Tools
13 ......... Validation methods
14 .... Expert-level AD
15 Conclusion
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A very simple program

Original program Tapenade reverse: fwd sweep
SUBROUTINE S(x, y, r)
REAL*8 x,y,r
r = x*y
r = SQRT(r)

END

SUBROUTINE S_B(x,xb,y,yb,r,rb)
REAL*8 x,xb,y,yb,r,rb
r = x*y
CALL PUSHREAL8(r)
r = SQRT(r)
...

Tapenade tangent Tapenade reverse: bwd sweep
SUBROUTINE S_D(x,xd,y,yd...)
REAL*8 x,xd,y,yd,r,rd
rd = xd*y + x*yd
r = x*y
rd = rd/(2.0*SQRT(r))
r = SQRT(r)

END

...
CALL POPREAL8(r)
rb = rb/(2.0*SQRT(r))
xb = xb + y*rb
yb = yb + x*rb
rb = 0.0

END
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Control structures

Original program Tapenade reverse: fwd sweep
SUBROUTINE S1(a, n, x)
...
DO i=2,n,7
IF (a(i).GT.1.0) THEN
a(i) = LOG(a(i)) + a(i-1)
END IF
ENDDO

DO i=2,n,7
IF (a(i).GT.1.0) THEN
CALL PUSHREAL4(a(i))
a(i) = LOG(a(i))+a(i-1)
CALL PUSHINTEGER4(1)
ELSE
...

Tapenade tangent Tapenade reverse: bwd sweep
SUBROUTINE S1_D(a,ad,n,x)
...
DO i=2,n,7
IF (a(i).GT.1.0) THEN
ad(i)=ad(i)/a(i)+ad(i-1)
a(i) = LOG(a(i)) + a(i-1)
END IF
...

CALL POPINTEGER4(adTo)
DO i=adTo,2,-7
CALL POPINTEGER4(branch)
IF (branch .GE. 1) THEN
CALL POPREAL4(a(i))
ab(i-1) = ab(i-1) + ab(i)
ab(i) = ab(i)/a(i)
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Procedure calls and Checkpointing

time

SUB{ D{
Original program Tapenade reverse: fwd sweep
x = x**3
CALL SUB(a, x, 1.5, z)
x = x*y

CALL PUSHREAL4(x)
x = x**3
CALL PUSHREAL4(x)
CALL SUB(a, x, 1.5, z)
x = x*y

Tapenade tangent Tapenade reverse: bwd sweep
xd = 3*x**2*xd
x = x**3
CALL SUB_D(a, ad, x, xd,

1.5, 0.0, z)
xd = y*xd
x = x*y

xb = y*xb
CALL POPREAL4(x)
CALL SUB_B(a, ab, x, xb,

1.5, arg2b, z)
CALL POPREAL4(x)
xb = 3*x**2*xb
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Snapshots for Checkpointing

Snapshots must be as small as possible:

time

SUB{ D{
Snapshot(SUB) ⊆ Use(SUB) ∩ (Out(SUB) ∪Out(D))
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Activity analysis

Finds out the variables that, at some location

do not depend on any independent,

or have no dependent depending on them.

Derivative either null or useless ⇒ simplifications

orig. prog tangent mode w/activity analysis

c = a*b

a = 5.0

d = a*c

e = a/c

e=floor(e)

cd = a*bd + ad*b
c = a*b
ad = 0.0
a = 5.0
dd = a*cd + ad*c
d = a*c
ed=ad/c-a*cd/c**2
e = a/c
ed = 0.0
e = floor(e)

cd = a*bd + ad*b
c = a*b

a = 5.0
dd = a*cd
d = a*c

e = a/c
ed = 0.0
e = floor(e)
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“To Be Recorded” analysis

In reverse AD, not all values must be restored during the backward
sweep.

Variables occurring only in linear expressions do not appear in the
differentiated instructions.
⇒ not To Be Recorded.
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y = y + EXP(a)
y = y + a**2
a = 3*z

reverse mode: reverse mode:
naive backward sweep backward sweep with TBR
CALL POP(a)
zb = zb + 3*ab
ab = 0.0
CALL POP(y)
ab = ab + 2*a*yb
CALL POP(y)
ab = ab + EXP(a)*yb

CALL POP(a)
zb = zb + 3*ab
ab = 0.0

ab = ab + 2*a*yb

ab = ab + EXP(a)*xb
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Tapenade does/doesn’t

Tapenade does handle

modules, overloading, renaming, interfaces

structured types (“records”)

pointers and allocation

Tapenade does not handle

fpp or cpp keys, templates

deallocation in reverse more

checkpointing of non-reentrant code

classes and objects
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Tools for source-transformation AD

http://www.autodiff.org

AD tools are based on
overloading or source transformation.

Source transformation requires complex tools, but offers
more room for optimization.

parsing →analysis →differentiation
f77 type-checking tangent
f9x use/kill reverse
c dependencies multi-directional
matlab activity . . .
. . . . . .
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Some AD tools

nagware f95 Compiler: Overloading, tangent,
reverse

adol-c : Overloading+Tape; tangent, reverse,
higher-order

adifor/Open-AD : Transformation ; tangent,
reverse?, Store-All + Checkpointing

tapenade : Transformation ; tangent, reverse,
Store-All + Checkpointing

taf : Transformation ; tangent, reverse,
Recompute-All + Checkpointing
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Some Limitations of AD tools

Fundamental problems:

Piecewise differentiability

Convergence of derivatives

Reverse AD of large codes

Technical Difficulties:

Pointers and memory allocation

Objects

Inversion or Duplication of random control
(communications, random,...)
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Validation methods

From a program P that evaluates

F : IRm → IRn

X 7→ Y

tangent AD creates

Ṗ : X , Ẋ 7→ Y , Ẏ

and reverse AD creates

P : X ,Y 7→ X

Wow can we validate these programs ?

Tangent wrt Divided Differences

Reverse wrt Tangent
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Validation of Tangent wrt Divided Differences

For a given Ẋ , set g(h ∈ IR) = F (X + h.Xd):

g ′(0) = lim
ε→0

F (X + ε×Ẋ )− F (X )

ε

Also, from the chain rule:

g ′(0) = F ′(X )× Ẋ = Ẏ

So we can approximate Ẏ by running P twice, at points X
and X + ε× Ẋ
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Validation of Reverse wrt Tangent

For a given Ẋ , tangent code returned Ẏ

Initialize Y = Ẏ and run the reverse code, yielding X .
We have :

(X · Ẋ ) = (F ′t(X )× Ẏ · Ẋ )

= Ẏ t × F ′(X )× Ẋ

= Ẏ t × Ẏ

= (Ẏ · Ẏ )

Often called the “dot-product test”
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Black-box routines

If the tool permits, give dependency signature (sparsity
pattern) of all external procedures ⇒ better activity
analysis ⇒ better diff program.

FOO: ( )
Inputs

Outputs

Id

Id

After AD, provide required hand-coded derivative (FOO D
or FOO B)
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Linear or auto-adjoint procedures

Make linear or auto-adjoint procedures “black-box”.

Since they are their own tangent or reverse derivatives,
provide their original form as hand-coded derivative.

In many cases, this is more efficient than pure AD of
these procedures
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Independent loops

If a loop has independent iterations, possibly terminated
by a sum-reduction, then

Standard: Improved:

doi = 1,N

body(i)
end

doi = N,1
←−−−−
body(i)

end

⇐⇒ doi = 1,N

body(i)
←−−−−
body(i)

end

In the Recompute-All context, this reduces the memory
consumption by a factor N
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AD: Context

DERIVATIVES

Div. Diff Analytic Diff

Maths AD

Overloading Source Transfo

Multi-dir Tangent Reverse

inaccuracy

programming

control

flexibility

efficiency
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AD: To Bring Home

If you want the derivatives of an implemented math
function, you should seriously consider AD.

Divided Differences aren’t good for you (nor for
others...)

Especially think of AD when you need higher order
(taylor coefficients) for simulation or gradients
(reverse mode) for optimization.

Reverse AD is a discrete equivalent of the adjoint
methods from control theory: gives a gradient at
remarkably low cost.
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AD tools: To Bring Home

AD tools provide you with highly optimized derivative
programs in a matter of minutes.

AD tools are making progress steadily, but the best
AD will always require end-user intervention.
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Thank you for your attention !
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11 Tapenade AD Model on Examples
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