Conception aérodynamique robuste: maîtrise de l'observation scalaire

Ludovic MARTIN

Mercredi 27 avril 2011

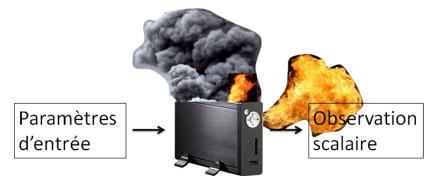
Contexte général: simulation numérique

Lien paramètres-observation donné par:

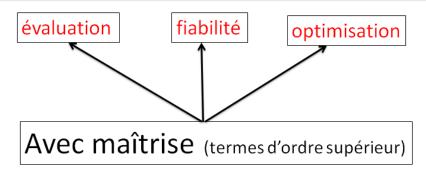
- essai en vol
- test en soufflerie
- simulation numérique

Contexte général: simulation numérique

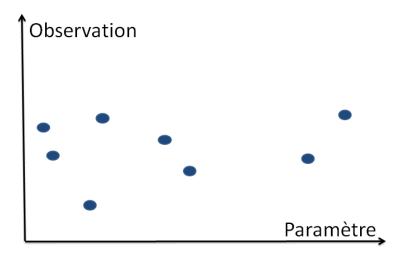
Sans maîtrise (calculs bruts)



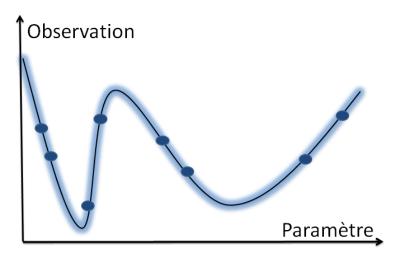
Contexte général: simulation numérique



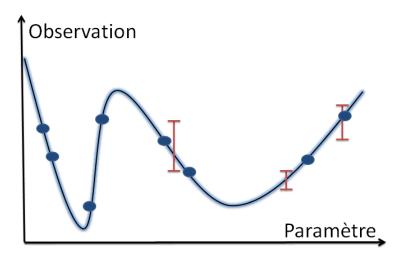
Sans maîtrise: connaissance points par points



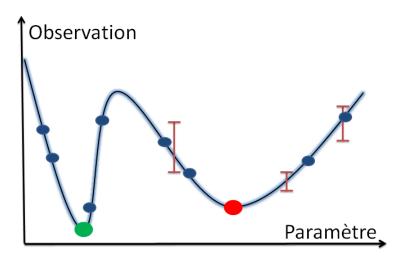
Avec maîtrise: évaluation



Avec maîtrise: fiabilité



Avec maîtrise: optimisation



Maîtrise de l'observation: thèmes abordés

EVALUATION

- calcul des sensibilités d'ordres 1 et 2
 surface de répense adaptative avec
- surface de réponse adaptative avec dérivées
- prédiction de l'observation par perturbation singulière

FIABILITE

- propagation d'incertitude
- adaptation de maillage anisotrope basée sur l'observation

Maîtriser la relation $x \to y(x)$ en limitant le nombre d'appels au code

OPTIMISATION

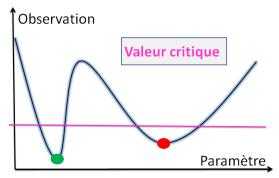
- · déterministe sans contrainte
- déterministe avec contraintes
- robuste, je avec incertitude sur les variables d'entrée

Plan de l'exposé

- Termes d'ordre supérieur par différentiation automatique
- Intérêt des termes d'ordre supérieur
 - EVALUATION: construction d'un modèle approché
 - FIABILITE: propagation d'incertitude
 - FIABILITE: adaptation de maillage anisotrope liée à une fonctionnelle
 - OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude
- Termes d'ordre supérieur par perturbations singulières

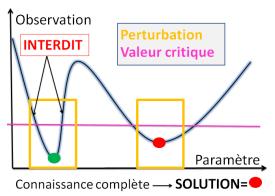
dérivée seconde \rightarrow non-linéarité de l'observation Intérêt de la captation de la non-linéarité:

Caractérisation de l'évolution autour d'un optimum: souci de robustesse



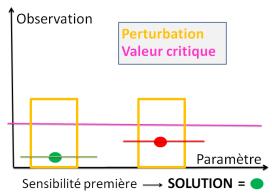
dérivée seconde \rightarrow non-linéarité de l'observation Intérêt de la captation de la non-linéarité:

• Caractérisation de l'évolution autour d'un optimum: souci de robustesse



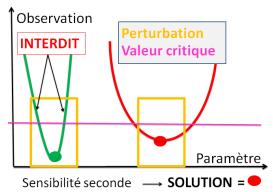
dérivée seconde \rightarrow non-linéarité de l'observation Intérêt de la captation de la non-linéarité:

Caractérisation de l'évolution autour d'un optimum: souci de robustesse



dérivée seconde → non-linéarité de l'observation Intérêt de la captation de la non-linéarité:

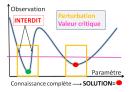
Caractérisation de l'évolution autour d'un optimum: souci de robustesse

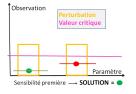


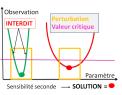
le passage à l'ordre deux indispensable pour sélectionner la bonne solution!

dérivée seconde → non-linéarité de l'observation Intérêt de la captation de la non-linéarité:

• Caractérisation de l'évolution autour d'un optimum: souci de robustesse



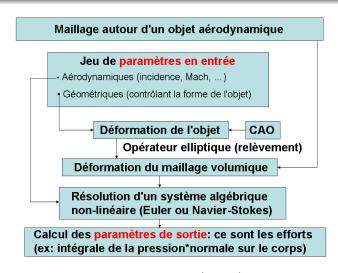




lci, ordre deux indispensable pour sélectionner la bonne solution !

 impact dans de nombreux domaines: propagation d'incertitude, modèle approché adaptatif, optimisation ...

Chaîne industrielle à différentier



différentiateur automatique = TAPENADE (INRIA)

Formulation des dérivées

Observation scalaire à différentier = J

$$\begin{cases} E(W) = 0 & \text{équations fluides (Euler ou Navier-Stokes), adjoint } \psi \\ L(X_{\rho}) = 0 & \text{équations de déformation, adjoint } \phi \end{cases}$$

• Technique de Giles (2007): paramètre de dérivation aérodynamique (λ)

$$\frac{d^2J}{d\lambda^2} = D_{\lambda}^{(1)}J - \psi^T D_{\lambda}^{(1)}E$$

• Extension à un paramètre de dérivation géométrique (ν)

$$\frac{d^{2}J}{d\nu^{2}} = D_{W,\nu}^{(2)}J - \psi^{T}D_{W,\nu}^{(2)}E - \phi^{T}\frac{\partial L}{\partial X_{p}}\frac{d^{2}X_{p}}{d\nu^{2}}$$

Euler 3D: aile ONERA m6 (M=0.84; α =3.06)

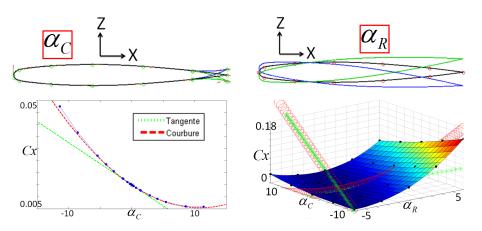


Figure: traînée Cx vis-à-vis de l'angle de cambrure α_C et de l'angle de rotation α_R

Navier-Stokes 2D et 3D: RAE2822 (M=0.734; α =1)

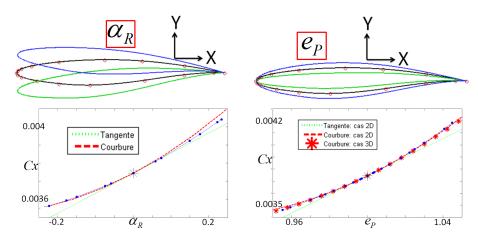


Figure: traînée Cx vis-à-vis de l'angle de rotation α_R et de l'épaisseur relative e_P

Surface de réponse de Duchon avec dérivées premières et secondes

Objectif: trouver une fonction f^* approchant la fonction f à partir de D données exactes

Point de départ: travaux de Kybic, Blu et Unser (2002).

• Minimisation d'un critère de qualité J sur l'ensemble des fonctions $F_{Q_1,...,Q_D}$ passant par les données exactes Q_i

$$f^* = min_f \in F_{Q_1,...,Q_D}J(f)$$

- J = critère de qualité basé sur la semi-norme de Duchon
- Intérêt de Duchon: noyau inclus dans l'ensemble des polynômes
- $f^* = \text{noyau polynomial} + \text{autres fonctions}$

Extension de l'interpolateur de Duchon à l'ordre 2.

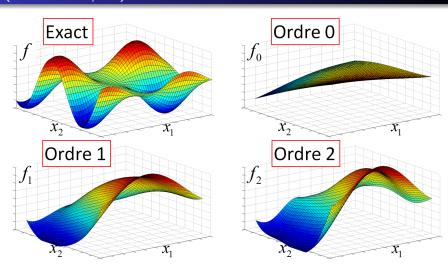
Ce modèle respecte valeurs de l'observation + tangentes et courbures.

Surface de réponse de Duchon avec dérivées premières et secondes

Contributions pour rendre l'interpolation avec dérivées très avantageuse:

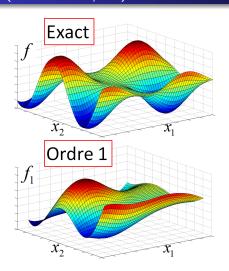
- Prédiction de l'erreur a priori: différence entre modèles d'ordres différents (avantage par rapport au krigeage: pas l'aspect statistique)
- Capacité d'enrichir automatiquement les données pour réduire l'erreur d'interpolation. Algorithme d'enrichissement D_{ik} : calcul exact de la fonction au point d'écart maximal entre les modèles D_i et D_k .
- Possibilité d'intégrer des données de natures différentes (points sans dérivée, points avec dérivées 1, points avec dérivées 1 et 2)

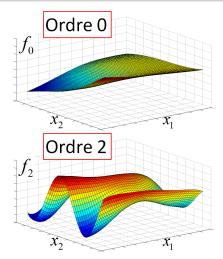
Film: enrichissement D_{12} d'une fonction analytique (itération 1/10)



FIABILITE: adaptation de maillage anisotrope liée à une fonctionnelle OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude

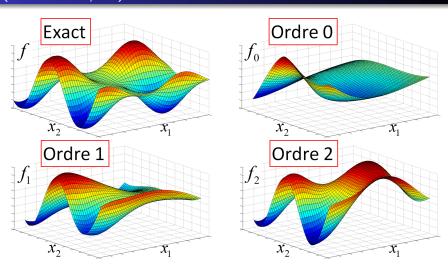
Film: enrichissement D_{12} d'une fonction analytique (itération 2/10)





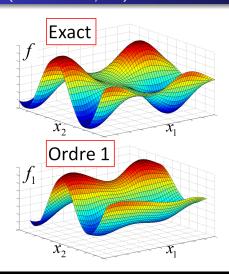
FIABILITE: adaptation de maillage anisotrope liée à une fonctionnelle OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude

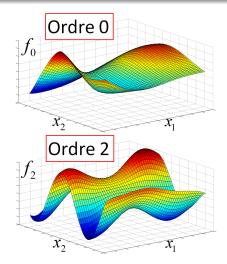
Film: enrichissement D_{12} d'une fonction analytique (itération 3/10)



FIABILITE: adaptation de maillage anisotrope liée à une fonctionnelle OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude

Film: enrichissement D_{12} d'une fonction analytique (itération 4/10)

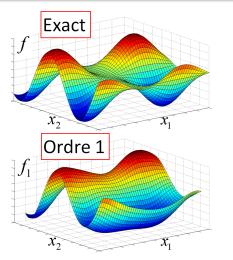


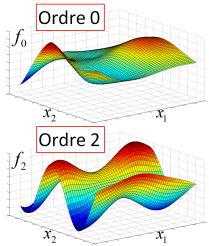


EVALUATION: construction d'un modèle approché

OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude

Film: enrichissement D_{12} d'une fonction analytique (itération 5/10)

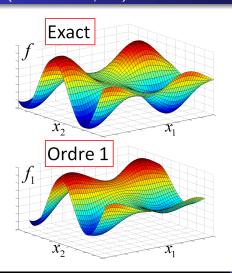


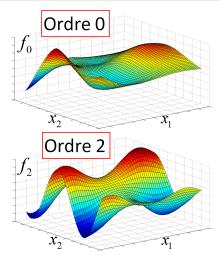


EVALUATION: construction d'un modèle approché

OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude

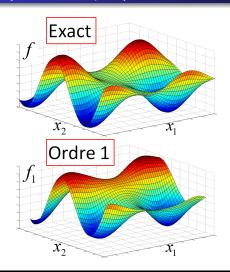
Film: enrichissement D_{12} d'une fonction analytique (itération 6/10)

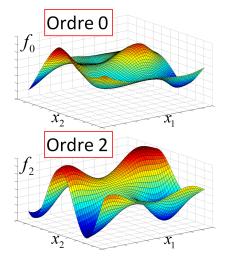




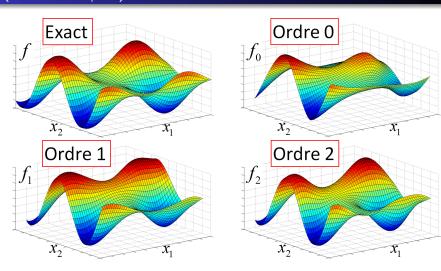
FIABILITE: adaptation de maillage anisotrope liée à une fonctionnelle OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude

Film: enrichissement D_{12} d'une fonction analytique (itération 7/10)



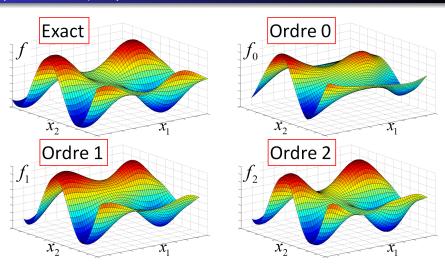


Film: enrichissement D_{12} d'une fonction analytique (itération 8/10)



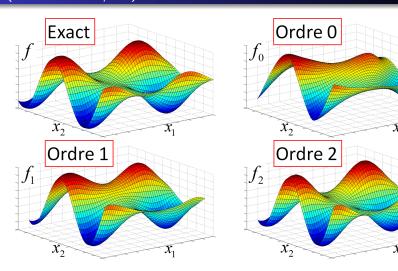
FIABILITE: adaptation de maillage anisotrope liée à une fonctionnelle OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude

Film: enrichissement D_{12} d'une fonction analytique (itération 9/10)

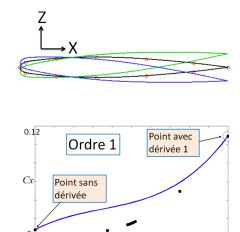


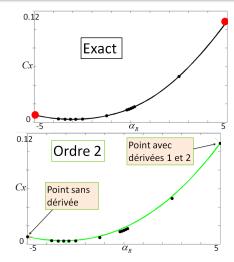
FIABILITE: adaptation de maillage anisotrope liée à une fonctionnelle OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude

Film: enrichissement D_{12} d'une fonction analytique (itération 10/10)



Points de natures différentes: aile ONERA m6 (Euler 3D avec M=0.84; α =3.06)





Passage d'un problème de nature statistique à un problème de nature déterministe: utilisation du système de Pearson (1916)

Influence des quatre premiers moments statistiques sur la loi de probabilité

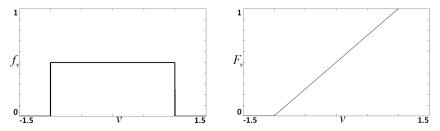


Figure: Loi de probabilité et fonction de répartition

Passage d'un problème de nature statistique à un problème de nature déterministe: utilisation du système de Pearson (1916)

Influence des quatre premiers moments statistiques sur la loi de probabilité

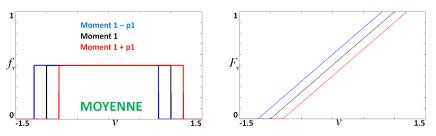


Figure: Effet du premier moment statistique: moyenne

Passage d'un problème de nature statistique à un problème de nature déterministe: utilisation du système de Pearson (1916)

Influence des quatre premiers moments statistiques sur la loi de probabilité

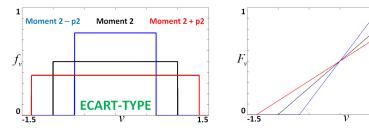


Figure: Effet du second moment statistique: écart-type

1.5

Passage d'un problème de nature statistique à un problème de nature déterministe: utilisation du système de Pearson (1916)

Influence des quatre premiers moments statistiques sur la loi de probabilité

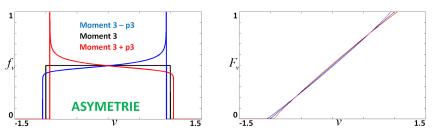


Figure: Effet du troisième moment statistique: asymétrie

$\underline{\mathsf{Objectif}} \colon \mathsf{Param\`etres} \ \mathsf{d'entr\'ee} \ \mathsf{incertains} \to \mathsf{loi} \ \mathsf{de} \ \mathsf{probabilit\'e} \ \mathsf{sur} \ \mathsf{l'observation}$

Passage d'un problème de nature statistique à un problème de nature déterministe: utilisation du système de Pearson (1916)

Influence des quatre premiers moments statistiques sur la loi de probabilité

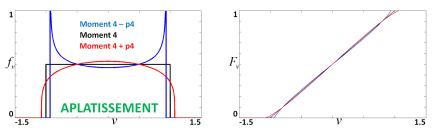
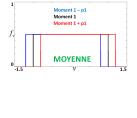


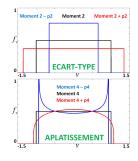
Figure: Effet du quatrième moment statistique: aplatissement

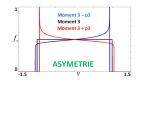
Objectif: Paramètres d'entrée incertains → loi de probabilité sur l'observation

Passage d'un problème de nature statistique à un problème de nature déterministe: utilisation du système de Pearson (1916)

Influence des quatre premiers moments statistiques sur la loi de probabilité







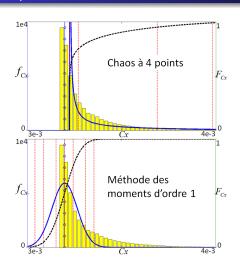
SYSTEME DE PEARSON: quatre moments statistiques → loi de probabilité

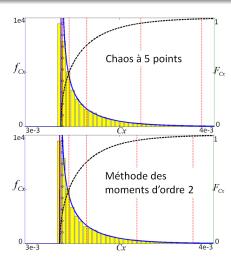
La propagation d'incertitude revient donc à l'estimation de quatre scalaires (4 moments statistiques de l'observation)

Schéma récapitulatif de la stratégie d'incertitude



aléa sur la traînée (rotation incertaine): aile ONERA m6 (Euler 3D avec M=0.84; α =3.06)





Nécessité de l'ordre 2 pour la méthode des moments

 Intérêt d'une loi de probabilité de l'observation: estimation de la probabilité de défaillance: $P[Cx > Cx^{TOL}]$

Méthode des moments (PM1: ordre 1, PM2: ordre 2) vs Monte-Carlo approché (MCa)

aile ONERA m6: loi uniforme en entrée								
- PM1 PM2 MCa								
$Cx^{TOL} = 33 \text{ cts}$	9.4	39.8	37.3					
$Cx^{TOL} = 35 \text{ cts}$	0	12.6	12.3					
$Cx^{TOL} = 37 \text{ cts}$	0	3.1	3.3					

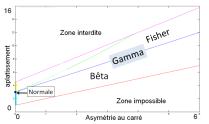
Passage de l'ordre 1 à 2 indispensable pour un résultat exploitable !

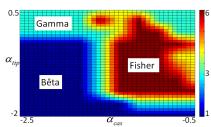
- Plus généralement, passage ordre $1 \rightarrow$ ordre 2 plus important que passage ordre $2 \rightarrow$ ordre 3 car:
 - à l'ordre 1: pas d'information sur le moment 1, 3 ou 4
 - à l'ordre 2: information sur les 4 moments

Méthodologie d'incertitude retenue = méthode des moments d'ordre deux + système de Pearson

vision industrielle: voilure transsonique (Navier-Stokes 3D)

- transmission des données: chaque discipline transmet la loi de probabilité (loi connue paramétrée) issue du système de Pearson
- interpolation de l'incertitude: estimation rapide de l'incertitude pour réduire les délais. A droite: type de loi du rayon d'action lorsque les angles de cassure et d'extrémité sont incertains





Interpolation envisageable car existence d'une certaine continuité du système de Pearson (passage de Bêta à Fisher via Gamma)

EVALUATION: construction d'un modèle approché FIABILITE: propagation d'incertitude FIABILITE: adaptation de maillage anisotrope liée à une fonctionnelle

OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude

Méthodologie adoptée

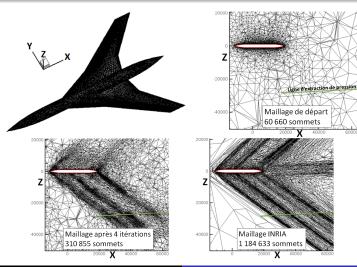
Objectif: adapter le maillage pour améliorer la prédiction d'une observation scalaire

Alternance entre deux types d'itération:

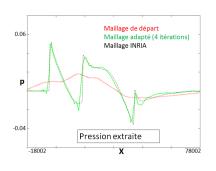
itération de sous-maillage	itération de remaillage
découpage isoP2 d'éléments	regénération d'un maillage
decoupage isor 2 d elements	suivant une métrique
paramètre adjoint	métrique (produit matrice
(produit résidu et adjoint lié à l'observation)	hessienne et paramètre adjoint)
isotrope	anisotrope
raffinement de la peau	ne touche pas la peau
	seuil du ratio d'anisotropie
projection des sommets	normalisation L_p
sur la géométrie	spécification de la complexité
	gradation

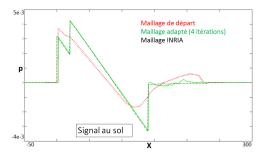
FIABILITE: adaptation de maillage anisotrope liée à une fonctionnelle OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude

Observation = pression à une longueur d'avion (forme HISAC, Euler 3D)



Observation = pression à une longueur d'avion (forme HISAC, Euler 3D)





maillage de départ: 82.2 dBA

maillage adapté: 80.5 dBA

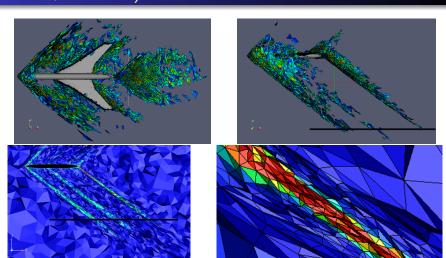
référence INRIA: 80.6 dBA

Validation de notre technique d'adaptation par comparaison au résultat INRIA

EVALUATION: construction d'un modèle approché

FIABILITE: adaptation de maillage anisotrope liée à une fonctionnelle OPTIMISATION: déterministe sans/avec contrainte ou sous incertitude

Observation = pression à une longueur d'avion (forme HISAC, Euler 3D)



Optimisation déterministe: contexte général

Objectif: trouver l'optimum avec le plus faible coût de calcul. Valorisation des dérivées secondes exactes de la fonction-coût déterminées par différentiation automatique.

Méthodes à base de direction de descente possibles:

- ordre 0: méthode de la section dorée (série d'optimisations mono-variable)
- ordre 1: gradient simple et gradient conjugué
- ordre 2: méthode de quasi-Newton (BFGS) et méthode de Newton (robuste)

Coût de calcul *Ct* donné par:

$$C_t = N_F + (1 + N_C) \frac{N_G}{20} + \frac{N_H N_X}{20}$$

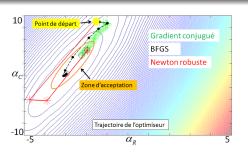
 N_F , N_G , N_H = nombre d'appels de fonction, gradient et hessien

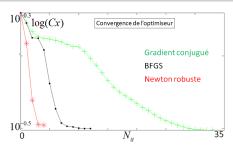
 N_C = nombre de contraintes

 N_X = nombre de variables d'optimisation

Résolution linéaire estimée à 1/20 d'une résolution non-linéaire

Optimisation déterministe sans contrainte: aile ONERA m6





Minimisation de la traînée Cx vis-à-vis des angles de rotation α_R et de cambrure α_C

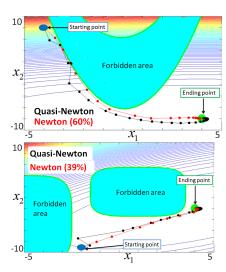
$(\alpha_R^{(0)}, \alpha_C^{(0)})$	méthode	N_F	N_G	N_H	C_t	
	Gradient conjugué	36	33	0	37.6	
(-1.5,9)	BFGS	15	12	0	15.6	
	Newton robuste	6	4	4	6.6	

Newton robuste → 82% de gain par rapport au gradient conjugué

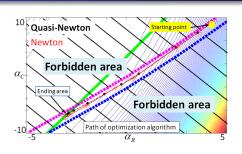
Newton robuste \rightarrow 58% de gain par rapport à BFGS

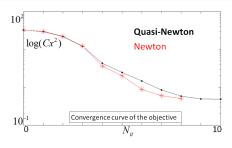
Optimisations analytiques avec contrainte





Optim. déterministe avec contrainte: aile ONERA m6





Minimisation de la traînée au carré $(Cx)^2$ vis-à-vis des angles de rotation α_R et de cambrure α_C

Contraintes d'inégalité sur la portance Cz et le moment de tangage Cm

$(\alpha_R^{(0)}, \alpha_C^{(0)})$	contraintes	méthode	N _F	N_G	N _H	C_t
(4.4,9.4)	Cz > 0.2	Quasi-Newton	22	11	0	24.2
(4.4,9.4)	- 0.2 < <i>Cm</i> <- 0.15	Newton	17	9	9	19.7

Newton \rightarrow 19% de gain par rapport à BFGS

Optimisation sous incertitude: contexte général

Objectif: contrôler l'aléa d'une fonctionnelle en optimisant un ou plusieurs objectifs statistiques

Deux types d'objectif statistique (détermine la stratégie d'évaluation):

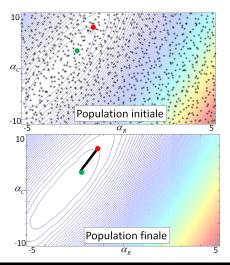
- moment statistique (moyenne, écart-type, asymétrie, ...) → méthode des moments d'ordre 2
- probabilité de défaillance → méthode des moments d'ordre 2 + système de Pearson

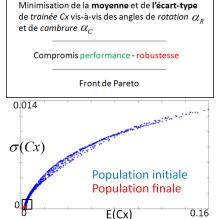
Formulation innovante de l'optimisation sous incertitude (front de Pareto): AVANT: **moyenne** - **écart-type** exclusivement (optimisation robuste) MAINTENANT: **moyenne** - **probabilité** possible

Utilisation d'un algorithme génétique multi-objectif \rightarrow détermination de l'ensemble des solutions possibles.

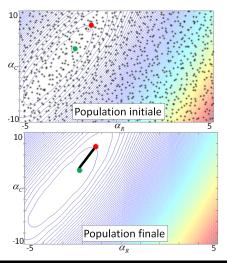
Population de 1000 individus évoluant sur 16 générations

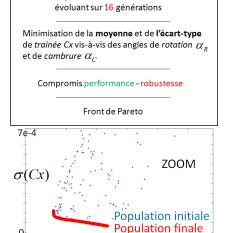
Optimisation sous incertitude: aile ONERA m6





Optimisation sous incertitude: aile ONERA m6

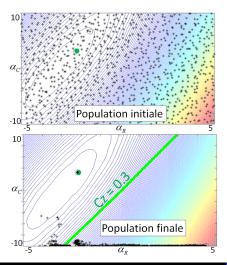




Population de 1000 individus

6e-3

Optimisation sous incertitude: aile ONERA m6

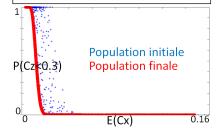


Population de 1000 individus évoluant sur 16 générations

Minimisation de la **moyenne** de *trainée Cx et* d'une **probabilité de défaillance** sur la *portance Cz* vis-à-vis des angles de *rotation* α_R et de *cambrure* α_C

Compromis performance – probabilité de défaillance

Front de Pareto



Principe de la méthode des perturbations singulières M_{ps}

Objectif: correction d'une observation J devant une perturbation géométrique: paramètre c, avec $c \to c + \delta c$

état u_c et adjoint ψ_c lagrangien: $L(c, u_c, \psi_c) = J(c) + R(u_c, c).\psi_c$

$$\delta J = L(c + \delta c, u_{c+\delta c}, \psi_c) - L(c, u_c, \psi_c)$$

$$= [L(c + \delta c, u_{c+\delta c}, \psi_c) - L(c + \delta c, u_c, \psi_c)]$$

$$+[L(c + \delta c, u_c, \psi_c) - L(c, u_c, \psi_c)]$$

- second terme: variation principale
- premier terme: singularité à capter

Variation $u_{c+\delta c}-u_c$: variation locale haute fréquence rapidement captée par schéma itératif

Approximation: $u_{c+\delta c} \rightarrow u_{c+\delta c}^{(ps)}$

$$\delta J \approx \left[L(c + \delta c, u_{c+\delta c}^{(ps)}, \psi_c) - L(c + \delta c, u_c, \psi_c) \right] + \left[L(c + \delta c, u_c, \psi_c) - L(c, u_c, \psi_c) \right]$$

Principe de la méthode des perturbations singulières M_{ps}

Objectif: correction d'une observation J devant une perturbation géométrique: paramètre c, avec $c \rightarrow c + \delta c$

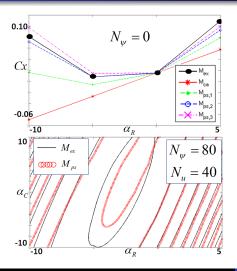
$$\begin{cases} J_{cs}(c+\delta c) = J(c) + R(u_c,c+\delta c).\psi_c & \text{correction adjointe } M_{cs} \\ u_c & \stackrel{N_u \text{ itérations [locales]}}{\to} u_{c+\delta c}^{(ps)} & \text{captation des hautes fréquences} \end{cases}$$

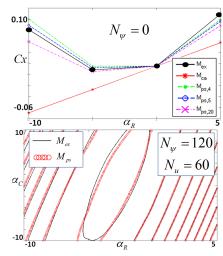
$$\psi_c & \stackrel{N_\psi \text{ itérations globales}}{\to} \psi_{c+\delta c}^{(ps)} & \text{[captation des basses fréquences]}$$

$$J_{ps}(c+\delta c) = J(c) + R(u_{c+\delta c}^{(ps)}, c+\delta c).\psi_{c+\delta c}^{(ps)} & \text{méthode } M_{ps} \end{cases}$$

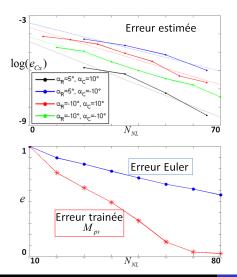
- perturbation **singulière** de maillage (rajout de sommets): méthode M_{ps} indispensable (terme caché)
- perturbation **régulière** de maillage (déplacement de sommets): méthode M_{ps} pour estimer termes d'ordre supérieur (non linéarité)

Performance: aile ONERA m6 (Euler 3D avec M=0.84; α =3.06)





Erreur: aile ONERA m6 (Euler 3D avec M=0.84; α =3.06)



Erreur estimée = écart absolu entre 2 remises à jour successives

Progression géométrique de l'erreur estimée

effective

Majoration a priori de l'erreur

Décroissance rapide de l'erreur effective (trainée Cx) par rapport au résidu Euler

Quelques notions de gain

Angle de rotation

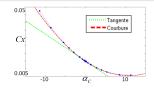
- $93\,\%$ de gain sur la **précision** (vs $M_{\scriptscriptstyle ca}$)
- 95 % de gain sur le **temps de calcul** (vs résolution complète)

Angles de cambrure et de rotation

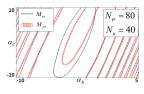
- $97\,\%$ de gain sur la **précision** (vs M_{ca})
- 95 % de gain sur le **temps de calcul** (vs résolution complète)

Récapitulatif des contributions (1/2)

 calcul de la dérivée seconde d'une observation aérodynamique par différentiation automatique et multiples valorisations (en optimisation, incertitude, modèle approché)



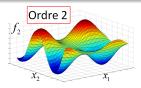
 méthode des perturbations singulières: alternative innovante aux dérivées secondes pour capter la non-linéarité de l'observation



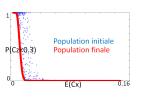
 méthodologie de propagation d'incertitude (méthode des moments d'ordre 2 + système de Pearson) pour la construction d'une loi de probabilité

Récapitulatif des contributions (2/2)

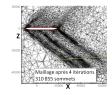
• extension de la méthode d'interpolation de Duchon aux dérivées secondes + technique d'enrichissement automatique



 prise en compte de probabilité de défaillance en optimisation sous incertitude grâce à la stratégie héritée de la propagation d'incertitude (méthode des moments d'ordre 2 + système de Pearson)



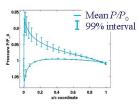
 mise en place d'une adaptation anisotrope multi-échelles avec métrique riemannienne et dédiée à l'amélioration d'une fonctionnelle scalaire



Perspectives

Pour prolonger le travail effectué, voici des pistes possibles:

- continuer la **différentiation automatique** de la chaîne industrielle (modeleur géométrique, terme de turbulence pour les équations de Navier-Stokes, ...)
- appliquer la méthode des perturbations singulières à d'autres domaines (notamment l'adaptation, pour remplacer matrice hessienne)
- rendre l'adaptation complètement anisotrope (volume + peau)
- poursuivre l'industrialisation de la quantification de l'incertitude à l'aide de lois de probabilité
- passer de la maîtrise d'une observation scalaire à la maîtrise d'un champ complet, vivant sur le maillage

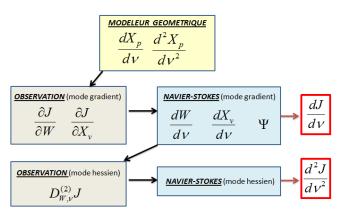


Termes d'ordre supérieur par différentiation automatique Intérêt des termes d'ordre supérieur Termes d'ordre supérieur par perturbations singulières Conclusion

— Merci pour votre attention ——

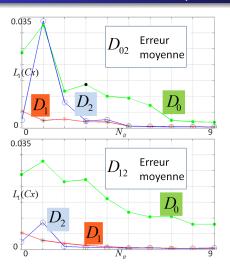
Implémentation et étapes de calcul

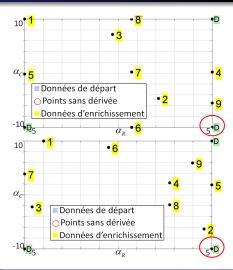
Dérivée seconde $\frac{d^2J}{d\nu^2}$ Navier-Stokes (paramètre géométrique ν)



Coût de calcul: deux systèmes linéaires (ψ et $\frac{dW}{dv}$)

Algorithme d'enrichissement: aile ONERA m6 (Euler 3D avec M=0.84; α =3.06)





Stratégie retenue pour la propagation d'incertitude

Objectif: estimation d'une loi de probabilité suivie par l'observation F_a , par propagation de l'aléa sur les paramètres d'entrée X_a à travers le code de calcul

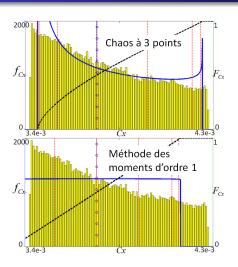
Méthodes de propagation d'incertitude:

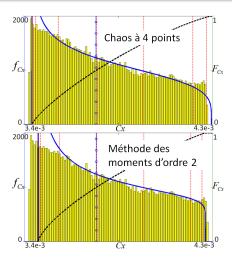
- Monte-Carlo approché: tirages Monte-Carlo sur une surface de réponse de l'observation
- chaos polynomial (version collocation non intrusive): calcul de l'observation en des points représentatifs de l'aléa d'entrée
- méthode des moments: calcul analytique des moments statistiques sur le développement de Taylor de l'observation

Le but de ces méthodes est de calculer les 4 premiers moments statistiques de l'observation (moyenne, écart-type, asymétrie et aplatissement)

Utilisation du **système de Pearson** pour passer des 4 moments à la loi de probabilité cherchée

aléa sur la traînée (épaisseur incertaine): RAE2822 (Navier-Stokes 2D avec M=0.734; α =1)





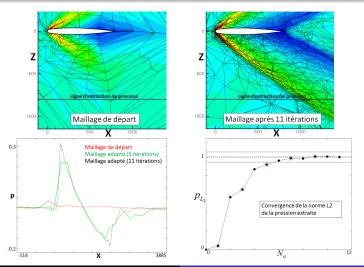
probabilité de défaillance: aile ONERA m6 (Euler 3D avec M=0.84; α =3.06)

Estimation de la **probabilité de défaillance**: $P[Cx > Cx^{TOL}]$

Méthode des moments (PM1: ordre 1, PM2: ordre 2) vs Monte-Carlo approché (MCa)

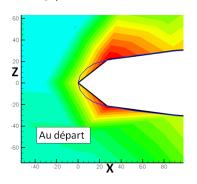
-	Lois normales pour (α_R, α_C)			Lois uniformes pour (α_R, α_C)		
-	PM1	PM2	MCa	PM1	PM2	MCa
$Cx^{TOL} = 33 \text{ cts}$	8.2	35.5	32.8	9.4	39.8	37.3
$Cx^{TOL} = 34 \text{ cts}$	2.9e-1	20.3	19.4	0	22.5	21.6
$Cx^{TOL} = 35 \text{ cts}$	1.9e-3	12.2	12.0	0	12.6	12.3
$Cx^{TOL} = 36 \text{ cts}$	2.1e-8	7.6	7.6	0	6.6	6.7
$Cx^{TOL} = 37 \text{ cts}$	3.9e-12	4.8	4.9	0	3.1	3.3
$Cx^{TOL} = 38 \text{ cts}$	1.1e-16	3.0	3.2	0	1.3	1.5

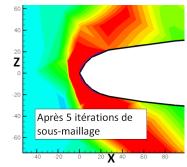
Observation = pression à une longueur de corde (aile ONERA m6, Euler 3D)



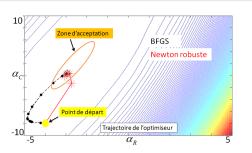
Observation = pression à une longueur de corde (aile ONERA m6, Euler 3D)

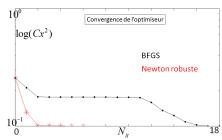
Mise en évidence de la projection sur la géométrie (dernière étape d'une itération de sous-maillage)





Optimisation déterministe sans contrainte: aile ONERA m6



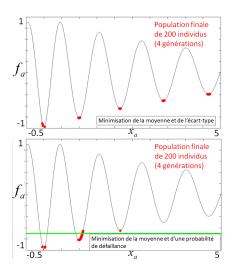


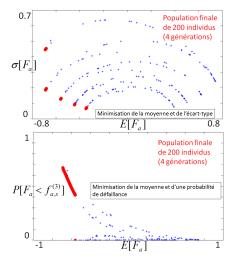
Minimisation de la traînée au carré $(Cx)^2$ vis-à-vis des angles de rotation α_R et de cambrure α_C

$(\alpha_R^{(0)}, \alpha_C^{(0)})$	méthode	N_F	N_G	N _H	C_t
(4 9)	BFGS	27	18	0	27.9
(-4,-0)	Newton robuste	9	6	6	9.9

Newton robuste \rightarrow 65% de gain par rapport à BFGS

Optimisation sous incertitude: exemple analytique





Formulation des dérivées

• Paramètre de dérivation aérodynamique (λ)

$$\begin{cases} \frac{dJ}{d\lambda} = \frac{\partial J}{\partial \lambda} - \psi^T \frac{\partial E}{\partial \lambda} \\ \frac{d^2 J}{d\lambda^2} = D_{\lambda}^{(1)} J - \psi^T D_{\lambda}^{(1)} E \end{cases}$$

• Paramètre de dérivation géométrique (ν)

$$\begin{cases} \frac{dJ}{d\nu} = -\phi^T \frac{\partial L}{\partial X_p} \frac{dX_p}{d\nu} \\ \\ \frac{d^2J}{d\nu^2} = D_{W,\nu}^{(2)} J - \psi^T D_{W,\nu}^{(2)} E - \phi^T \frac{\partial L}{\partial X_p} \frac{d^2 X_p}{d\nu^2} \end{cases}$$

Surface de réponse de Duchon avec dérivées premières et secondes

• Objectif: trouver une fonction f^* approchant la fonction f à partir de D données exactes

$$f^* = min_f \in F_{Q_1,...,Q_D}J(f)$$

J = critère de qualité basé sur la semi-norme de Duchon

- $f^* = \text{noyau polynomial} + \text{fonction caractéristique} (+ \text{dérivées})$
- D_i = modèle de Duchon d'ordre i passant par les données exactes d'ordre ≤ i.
 Ex: D₂ respecte valeurs de l'observation + tangentes et courbures
- Algorithme d'enrichissement D_{ik} : calcul exact de la fonction au point d'écart maximal entre D_i et D_k .
- Possibilité d'intégrer des données de natures différentes (points sans dérivée, points avec dérivées 1, points avec dérivées 1 et 2)

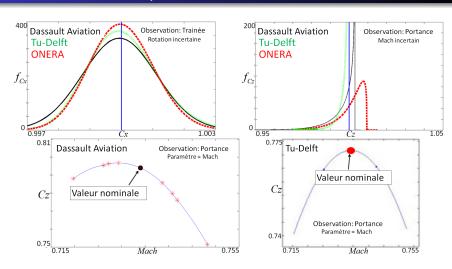
probabilité de défaillance: aile ONERA m6 (Euler 3D avec M=0.84; α =3.06)

Estimation de la **probabilité de défaillance**: $P[Cx > Cx^{TOL}]$

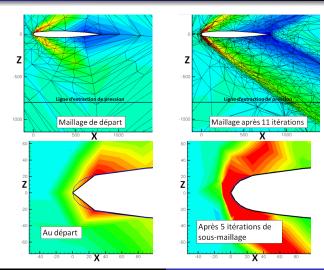
Méthode des moments (PM1: ordre 1, PM2: ordre 2) vs Monte-Carlo approché (MCa)

-	Lois d'entrée uniformes					
-	PM1 PM2 MCa					
$Cx^{TOL} = 33 \text{ cts}$	9.4	39.8	37.3			
$Cx^{TOL} = 34 \text{ cts}$	0	22.5	21.6			
$Cx^{TOL} = 35 \text{ cts}$	0	12.6	12.3			
$Cx^{TOL} = 36 \text{ cts}$	0	6.6	6.7			
$Cx^{TOL} = 37 \text{ cts}$	0	3.1	3.3			
$Cx^{TOL} = 38 \text{ cts}$	0	1.3	1.5			

projet NODESIM-CFD: RAE2822 (Navier-Stokes 2D avec M=0.734; $\alpha=2.79$)



Observation = pression à une longueur de corde (aile ONERA m6, Euler 3D)



Optimisation déterministe avec contrainte: contexte général

Objectif: trouver l'optimum avec le plus faible coût de calcul lorsque des contraintes sont prises en compte. Valorisation des dérivées secondes exactes de la fonction-coût déterminées par différentiation automatique.

Utilisation d'un algorithme de point intérieur. Pour la direction de descente, variantes d'ordre 2 comparées (version robuste):

- méthode de quasi-Newton (BFGS)
- méthode de Newton

Coût de calcul *Ct* donné par:

$$C_t = N_F + (1 + N_C) \frac{N_G}{20} + N_X \frac{N_H}{20}$$

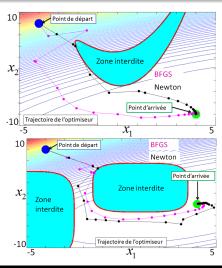
 N_F , N_G , N_H = nombre d'appels de fonction, gradient et hessien

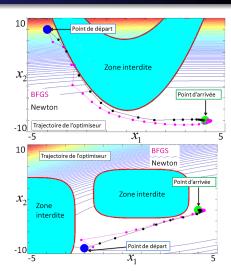
 N_X = nombre de variables d'optimisation

 N_C = nombre de contraintes

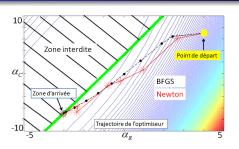
Résolution linéaire estimée à 1/20 d'une résolution non-linéaire

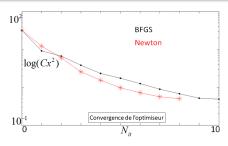
Optimisation déterministe avec contrainte: exemples analytiques





Optimisation déterministe avec contrainte: aile ONERA m6



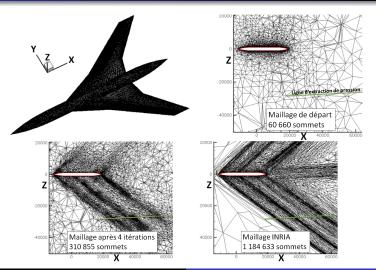


Minimisation de la traînée au carré $(Cx)^2$ vis-à-vis des angles de rotation α_R et de cambrure α_C

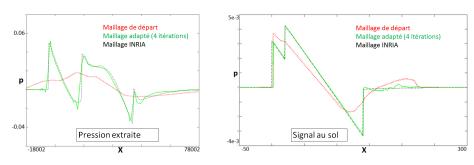
$(\alpha_R^{(0)}, \alpha_C^{(0)})$	contrainte	méthode	N _F	N_G	N _H	C_t
(4.7)	Cz > 0.2	BFGS	22	11	0	23.1
(4,7)	C2 > 0.2	Newton	17	9	9	18.8

Newton \rightarrow 19% de gain par rapport à BFGS (85% par rapport au gradient simple)

Observation = pression à une longueur d'avion (forme HISAC, Euler 3D)



Observation = pression à une longueur d'avion (forme HISAC, Euler 3D)



Validation de notre méthodologie d'adaptation par comparaison au résultat INRIA