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- LBE Models
D2Q9 for diffusion
D2Q9 and D2Q13 for Navier-Stokes
- Mode analysis
Dispersion equation
Equivalent equations
- Errors in advection terms
- Some simulations



Diffusion with D2Q9
d'Humieres approach

Moment Rate Equilibrium
p 0 p
jx S1 P Vx
.jy S1 P Vy
E ss pla+3(Vi+ V)
XX s p(VZ = V)
XY S4 p(Vi V)
Jx S6 qp Vi
dy S6 qpVy

w ss p(B—3(VZ+ V)



Domain with periodic boundary conditions
Define phase factors and time increment

p=expiks, q=expik,, z

mi(i,j, t) = mkop' ¢ 2’

with my =1+ hp, my = V. + hj, and m3 =V, + hj,.
Linearize with respect to h.
Perform collision and propagation.

myg1 = Qmyy = zmyg



Dispersion equation
State at site {/,/}

&(i,j) ={ai,)), - (i, )}

or moments

m= Mo

One time step
Relaxation

m* = (I 4+ C)m

(1)
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Propagation in f space
b, = M Im* (4)

Then multiply each component of ®. by a phase factor

Cix

P q

with
p = expiky, q = expik,
to get @, (represented by multiplication by Pj)

For a domain with periodic boundary conditions and after
linearization, one has a system of difference equations with solution

V(t+1)=zV(t) (5)

with a time increment z given by one of the eigenvalues of the
system

(MY +C)M)Py, = zI (6)



Dispersion equation is a polynomial of degree n in z.
For kx = k, =0,

D(z) = (1—2)"NL, (1 -z—s) (7)

Other techniques yield w(ky, k) to be compared to log z.
Although limited to periodic situations and linearized states, this is
useful to determine linear stability.

For small values of ki, k,, hydrodynamic solutions (z close to 1),
can be obtained by successive approximations.



Developments in space using space derivatives of f5 or of the
moments.

For time, one can use Taylor expansion as done by Dubois, or
decompose the time increment in dt; 4+ dt, + .. following
Chapman-Enskog.

Up to order 2, same results.

At higher orders, the Chapman-Enskog approach is delicate due to
non commutations.

So we use one of these techniques to “reduce” the 9x9 problem to
a 1x1 or 3x3 system (depending on the number of conserved
quantities).

One can use these reduced set of equations to compute the same
quantities as with the dispersion equation.
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Properties of D2Q9 for diffusion
- Usual Chapman-Enskog treatment ~» diffusivity

independent of V., V.
- Equivalent equations

Otp + ViOxp + V,0yp + kAp+ O3 =0
with

03 = Z Habc(VX7 Vy)ﬁabcp

abc

odd terms contribute to the phase and thus modify advection.



For plane wave of wave vector {ky, k,}, phase factor

Vike + V, k
k : y(1+A(kX7kY))
A of order 2 in k.
Isotropy is obtained for
1 1
=—1 or = —
q 0104 1o
oi = Sl, — 5 (Hénon parameter)
for g=—1

1
Ag = ﬂ(Z + o+ o1(4aos — 804) + 03(32 + 8a))

for o104 = %

1
Ao = 7—2(7 —qg+3a+ 120’10’3(1 — o+ q) — O'%(96 —|—240z))



Next order in the development in equivalent equations leads to
corrections to the diffusivity.

Ii(k) = Iio(l + ligf(k))

where f(k) is second order in k. Ky is the “hyperdiffusivity”. It has
been discussed, among others, at DFSD in Florianopolis (august

2008).



Athermal fluid simulated with D2Q9
The model is very similar to the thermal case, however there are 3
conserved moments and thus 3 equivalent equations.

Moment Rate Equilibrium
p 0 p
Jx 0 Jx
Jy 0 Jy
E ss pa+30g +ip)/p
XX s Ux —Jp)/p
XY 54 Usdy)/p
ax 56 —Jx
dy 56 _jy

w s pB—305+4))/p



Consider a small amplitude flow (p, jx,j,) carried by a large
velocity field V,, V). The equivalent equation split in space
derivatives of increasing order can be put as

O 0 0
MO — 0 (3t O
0 0 o
0 Ox Oy
My = [ (& — V2)o, — ViV, 0, 2Vidx + V,0, Vi,
(&2 — V2)0, — ViV, 0k Vi, Ox Vi Ox +2V,0,

Cumbersome expressions for My, M3, etc...



Case of plane waves :

D(x,y,t) = 1+ p(0)exp(wt)cos(kex + k,y)
Je(x,y,t) = Vi+j(0)exp(wt) cos(kyx + kyy)
J(x,y,t) =V, +j,(0)exp(wt)cos(kxx + k,y)

(8)

Apply a rotation of angle 6 to put the Ox axis along the wave
vector to highlight the presence of 2 longitudinal modes (sound
modes) and 1 transverse mode (shear mode).

For an applied velocity V' perpendicular to the wave vector,

W k O
Moy+My=| 2k w 0
0 V k w
0 0 0
M, = 0 Q03204 (] — 3\/2)k? 0
22V o4 k? 0 —304k>



At order 3,

0 —k 0
Ms = | hg+ hiV? g1f1(6) h3V —gsVh(6) | K

e V2h(0) hV —gV2h(0)  gVA(Y)
with coefficients h; and g; depending on the relaxation rates and
f1(0) = sin40 and £(A) = sin?26.

For « = —2 and g = 1 (standard values for D2Q9), the angular
dependences in M3 are eliminated when o3 = 04 and o406 = 1/12.



Summary
-Shear wave for V perppendicular to k

Order Phase Velocity Damping
1 0
2 0'4/3

3 V(]. — 120‘40’6)f1(9)/24
-Shear wave for V parallel to k

Order Phase Velocity Damping
1 V
2 04/3(1 —3V?)
3 V(204(0§ 06) + 1— 120406f (9))

Similar expressions are readlly obtained for acoustic waves showing
dissymmetries between forward and backward propagating sound
waves.



Athermal fluid simulated with D2Q13

The main difference with D2Q9 occurs in the presence of 2
additional heat flux moments allowing to eliminate the velocity
dependence of the shear viscosity.

Partial table of moments

Moment Rate Equilibrium
G S6 jx(cl — 22352 +Jy))
qy S6 Jy(cl— 36" 35(JX +47))
re Sg _/x( 63cé—|—65 _|_ q./x + 42q— 105J§)
ry Sg ./y( 63C1—|—65 _|_qu 42q 105 2)




Summary
-Shear wave and V perpendicular to k

Order Phase Velocity Damping
1 0
3 746
; (8977206 +3088805)—10055 :Cl 74t~ % 31(:? V)
o o6+ 0g)—
3 : 157080 Vi (0)
-Shear wave and V parallel to k
Order Phase Velocity Damping
1 \Y
3 7+6
: S190y(1 - B0 v2)

3 V(C + Df(0))
with an angular dependence (D) that can be suppressed for :

for which the constant term (C) is :

3+

C=x

(1207 — 1)



Example of anomalous advection
V' along X-axis, k (of modulus 1) at an angle 6.

T T T e T T T T
0 100 200 300 360
Angle

Figure : D2Q13 : solid line, D2Q9 : dashed line.



Test on Plane Waves with D2Q13
Domain : square 240 x 240

with periodic boundary conditions.
Initial conditions :

D(x,y,0) = 14 pp coskyx + kyy
Ji(x,y,0) Vi + jxofx (X, y)
Jy(x,y,0) Vy + Jyofy (%, y)

f. and f, (appropriate sum of cos and sin).
During simulation, measure correlation functions, C,(t), C.(t),

Cy(t).



Relaxation of shear waves

Two groups of 4 cases are simulated for the same set of wave
vector :
ke/ko ky/ko k/ko
A 5 12 13
B 10 24 26
C 13 0 13
D 26 0 26

with ko = £&.

In both cases there is a uniform velocity V = 0.07 which is either
perpendicular or parallel to the wavec vector.



Shear Wave for V perpendicular to K

N
Vo
Be 6
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Figure : Relaxation of shear waves. Uniform velocity perpendicular to the
wave vector.



Case V parallel to K

0.4891— T T

Figure : Shear wave for a uniform velocity parallel to the wave vector.



For the parallel case, the phase velocity is given in units of the

exact value k V.
Case Theory Measurement

0.9960 0.9959
0.9840 0.9827
0.9917 0.9915
0.9666 0.9652

N0 ™ >



Gaussian initial conditions

r
p(r,0) = goexp —(—)?
1
at time t

5 (x = Vat)? + (v = Vyt)?

r,t) = 80————€xXp —
pr: 1) Org+4/<;t P ré + 4kt

Same formulae for the stream function (x replaced by v).



D2Q9 for diffusion
Periodic domain 101%. ry = 5.0,k = 0.008,V, = 0.10,V, = 0.00,
3200 time steps.

1004

T
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Figure : Middle : any parameters. Top :q = —1. Bottom : 120704 = L



D2Q9 for flow
r0 = 8.0, v = 0.0035 V, = .03, 9000 time steps. Left :
120406 = 1.
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D2Q13 for flow
ro = 11.0, v = 0.003, 2770 time steps. V, = .10 at left, 0 at right.
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Introduction of anomalous advection in a spectral code.
The initial state of the gaussian dot situated in a square periodic
domain can be written in Fourier Transform space as

Trg Z exp(—rg (k2 + k)%)/4)
kx ,ky

In a linear regime, each Fourier component evolves as

exp(—v(ki + k) + lg(k)V)t

A backward Fourier transformation can then be performed.
Domain size 802 (use Temperton FFT), initial rp = 4.0, Main
velocity at 14° from Ox. g(k) = 1+ 0.01(cos 40 — cos 260)k?>.
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Figure : Top : after travelling twice the size of the domain , Bottom,
initial state.



Unsolved question

How to analyze non linear situations even in the simpler case
where the advective part is a plane wave ?

Early work was done for the Taylor-Green vortex with d"Humieres.
It was observed that successive spatial harmonics of D3Q13 (and
D3Q19) did not appear in time as computed with an accurate
spectral code.

Case : square periodic domain 144 x 144 for LBE and 72 x 72 for
spectral case, with periodic boundary conditions.

Initial conditions : sum of two plane waves

ki = {2,1}, amplitude a;

ko = {5,4}, amplitude a;
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Figure : Relaxation of the initial waves.
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Figure : Relaxation of the initial wave and generation of the first
“beat-notes”
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Figure : Minion situation. Time evolution of v2 and vf computed with
D2Q9, D2Q13 and Spectral-FFT.



Detail

0.39]™TT
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0.37

Figure : Minion situation. Detail of the time evolution of v and vf
computed with D2Q9, D2Q13 and Spectral-FFT. {A, B, C}, (0.10, 0.05,
0.025). S spectral, dashed line D2Q13.



3-d Taylor-Green
Mode 4,6,4

0.01723

Mode 4 6 4

0.015

0.00103

Temps
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12.19



