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CONTEXT
Equations to be solved numerically

> systems of conservation laws:

O¢W + div (F(W)) — div(D(x, W)VW) = S

> example: the ideal MHD equations
op+V-(pu)=0
potu+pu-Vu+Vp—(VxB)xB=0
Op+V - (pu) +(y—1)pV-u=0
OB -V x(uxB)=0
V-B=0

Challenges
Two characteristics:
El nonlinear systems of equations,

H waves associated with different time scales = we want to resolve only some of these scales.

Numerically they imply that:
> explicit schemes have very restrictive CFL conditions, due to the fastest time scales,

> implicit schemes involve nonlinear operator inversion, expensive matrices storage and
inversions.
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LATTICE-BOLTZMANN AND VECTORIAL SCHEMES

Equations to be solved numerically

AW + div (F(W)) — div (D(x, W)VW) = §

Lattice-Boltzmann methods

> inspired from the kinetic theory,

» discrete set of velocities: choice of a Lattice
(ex: D2Q9)

N
v 0T,
ZARN
> collision step: fi(t, x) = £29(t,x)
> shift step: fi(t + At, x) = fi(t,x — V;At)
> macrosopic variables: p = >, f;,
pu =3 vifi, E =3 |vif?/2f
= Navier-Stokes equations,

> equivalent kinetic equation with BGK
collision operator (LBGK scheme):

atfi+Vi~Vfi=ef1 (79— )

!

Vectorial kinetic schemes

> generalization of Jin-Xin relaxation
scheme [Jin and Xin, 1995]
)

W + 0xZ =0
HZ + NoW =€ (FIW)-2)
V2T
> ex: D2Q4 scheme: -
Vi l Yo
V3

> kinetic equations with relaxation source
term:

Ot +v; - Vi = e (77— f)

> macroscopic variables: p = >, f;,
pu= 320G, pv =3 hi...

> properties of this approach are detailed in
[Perthame, 1990, Natalini, 1998,
Aregba-Driollet and Natalini, 2000,
Bouchut, 2004, Chen et al., 1994]
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AN EXAMPLE OF LBGK CODE

Vectorial kinetic systems

o9 —f
Of+AVE= ———
€

Ideas in the kirsch codelCoulette etal. 2018]

> Time integration:

- time splitting approach,

- second-order Crank-Nicolson integration for both steps
= implicit relation between fl”;r1 and f{;, = large time
steps,

- higher time order thanks to composition
methods,[S“Z“k" 1990]

> transport step: high-order DG on H20 grids,
> two levels of parallelism:

Kl parallelization over the kinetic velocities,

B grid decomposition into macrocells and cartesian
sub-grids:
- the linear system is block-triangular,
« inversion of matrices in sub-grids (using KLU),
- graph of macro-cells resolution:
f +1 O n+1 1—(1—0) n (1—0)q; o
i =1 . i ij
14 6q; 1+ 0q; 1+ 0q;

—1

> task-scheduling programming (StarPU). 4/23
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ISSUE OF THE BOUNDARY CONDITIONS

One of the current issues of the LBM approach is the treatment of the boundary
conditions:
» ex: nD2Q4 scheme,
» here f; and f3 are outgoing quantities
= no problem,
» fy and f, are incoming quantities
= what are their values?

» the macroscopic equation provides
only one boundary condition,

=- one relation is missing!

Obijectives of this work
» Study of the second order over-relaxation scheme used to solve nD1Q2 relaxation

systems,
» design boundary conditions that preserve the scheme second order.
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> relation with the vectorial kinetic schemes,
> splitting and composition strategies,
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v
The over-relaxation scheme:
» derivation from the standard relaxation approach,
» equivalent equation and properties of the over-relaxation scheme,
> stability condition for the 1D transport equation.
v
Boundary conditions:
> usual boundary conditions for LBM,
> inflow/outflow conditions,
> numerical results. y
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THE JIN-XIN RELAXATION SCHEME

Equations to be solved (1D)

oV + 0,F(V) =0 o)
recall: nonlinear flux functions V — F(V).
The relaxation model
> approximate systems (1) by systems of linear-flux equations:" @9 Xin. 1995]
oW +9xZ. = 0, (2
1
DZo+NoW. = —(F(W.)—Z.), @)
g

> a Chapman-Enskog development gives:

- atzerothorderine: Z. = F(W.) + O(¢),
- at first order in e:

AW, + 8F(W.) = edy ((AZ - \8F(Ws)\2> axwg) 1 0(?)

> consistency of equation (4) with equation (1),
» stability under the subcharacteristic condition: A > |9F(W.)|.

Numerical scheme

Numerical resolution of system (2)-(3) in the e = 0 limit.
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VECTORIAL KINETIC SCHEMES
From Jin-Xin to D1Q2 system

> Jin-Xin relaxation model:

» Riemann invariants:

» system for the Riemann invariants (nD1Q2):

» equilibrium functions:

B[W + axz = 0,
HZ+ NoW = (F(W)—2),

f,=W+2Z/A, f_=W-2/x

Aty + Nouf, e (157 — 1),
of_ —xoxf_ = (%9 —1_),

99 =W+ F(W)/\, 9 =W — F(W)/X
v

2D and 3D systems

> Kinetic relaxation
systems:

> consistency conditions:
[Aregba-Driollet and Natalini, 2000]

[Audusse et al., 2004]

1
Of+AVE = —
€
Pf=W.

PFI(W) = W,
PAf*I (W) = F(W).

(F9w) -

f), Example: V2

D2Q4 T
system o

wl

A = diag { (A, 0), (=, 0),
(07 >‘)7 (07 _>‘)} )

P=(1,1,1,1).
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SPLITTING APPROACH AND TIME INTEGRATION (1)
Kinetic system to be solved
o+ AVE= 1 (1°9W) — 1) |
€ v
Operator splitting
> Transport step: of+AVE=0, (5)
1
> Relaxation step: of = - (W) — ), (6)
v

Transport step over time step h: T(h)

Possible numerical schemes:
> exact transport on cartesian grid:
fi(t + h,x) = fi(t,x — v;ih),
= h must be compatible with the grid,
> Semi-Lagrangian schemes:
f(t+ h,X) = f(t,x — vih)

= backward SL: interpolation at the foot
of the characteristics,
= forward SL: projection on the mesh,

> high-order FV or DG schemes,

= implicit schemes require matrix
inversion.

Source integration: R(h)

Possible integrations over time step h:
> exact solution of (6), with e > 0:
f(t + h,x) = %9 + exp(—h/e)(f(t, x) — 1°9),
= 1% is invariant during the integration,
> projection on the equilibrium (e = 0):
(t+ h,x) = £9(1,x),
= provides first-order approximation with
the splitting approach,

> Crank-Nicolson integration:
f(t + h,x) = (1 — 0)f%9(t, x) + 0f(t,x)
with 6 = (2e — h)/(2e + h),

= second-order when e = 0.
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SPLITTING APPROACH AND TIME INTEGRATION (2)

Kinetic system to be solved

o+ AVE= 1 (1°9W) — 1) |
€

Lie and Strang splitting
Lie splitting: Strang splitting: S(h) = T(h/2)R(h)T(h/2)
L(h) = T(h)R(h) » second-order splitting with Crank-Nicolson,

> first-order splitting > higher-order composition not possible...

Time-symmetry property
Let P(h) be a discrete operator, dependent on time step h,
> definition of time symmetry: P(—h)P(h) = land P(0) = |,

> property: if P(h) is consistent with a continuous operator P, then it is a second-order
consistency [Hairer et al., 2006, McLachlan and Quispel, 2002]

> S(h) is not time symmetric when e = 0: S(0) # /.

Time composition schemes

From a second-order time-symmetric operator P(h), one can build even high-order operators with
palindromic composition Q(h):[McLachlan and Quispel, 2002, Hairer et al., 2006, Coulette et al., 2018]

Q(h) = P(voh)P(v1h)...P(vsh)
with v = ys—;, 0 < i < s. Examples in: [Suzuki, 1990, Kahan and Li, 1997].

4
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ExAMPLE OF AN MHD coDE

Features of Patapon

> solves the ideal MHD equations, » cartesian grid and periodic or Dirichlet
BC,

> nD2Q4 approximation,
» Python code using PyOpenCL kernels.

> time-symmetric composition with :
- exact transport step,

- Crank-Nicolson source
integration with 6 = 0.9,

= numerical resistivity.

Example of simulation: tilt instability e s

Computation characteristics
> 1024 x 1024 grid,
> graphic card: Nvidia - 24 GB - 3840 cores
» GPU utilization: 80%
» computation time: 30s (including I/O)

Time: 6.99 s
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DERIVATION OF THE OVER-RELAXATION SCHEME

System to be solved

v + OxF(v) =0

UJ

» Two auxiliary sets of variables: w, z,

> could be considered as relaxation approach with ¢ = 0...

Transport step

E%VV<+ axz = 07
oz + Now = 0,
= exact transport operator:
w(,t+h) \ _ w(-,
( 2(-,t+ h) ) = T(h)(

1 7(h) + 7(—=h
=7 (i =y

and shift operator
(T(h)V)(x) = v(x — Ah).

Z(', t)

(r(h) = m(=h))/X >
7(h) 4+ 7(=h)

Over-relaxation step

> Crank-Nicolson (¢ = 0):

A ()= ( arowy 2 )

> independent of h: Ry.

f)

).

Operator splitting

St = (D) A T o T()

v
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EQUIVALENT EQUATION AND SCHEME PROPERTIES

Over-relaxation scheme

h h h
h)y=T(=)Ro T(<z)Ro T(-).
S:(h) = T() R T(3) R T(3) ®)

Time-symmetric property Theorem 1[Pruietal., 2018]

» T(—h)T(h)=1land T(0) =/ w and z being smooth solutions of a time marching

algorithm with operator (8), the flux error y being defined by
> RyRy = I,
= S(—h)Sy(h) = land Sx(0) = I. y=2z—Fw),

then, up to second order terms in h, w and y satisfy:

0 () (T8 By ) (3) =0

Example: scalar transport equation: Example: Euler equations:

We expect a second-order scheme.

£=0025

1200
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1150
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. = 1100
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1000
00 0z 04 0% 08 10 -100 -075 -050 -025 000 025 050 075 100
x
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STABILITY FOR THE 1D TRANSPORT EQUATION (THEOREM 2)

1D scalar transport equation

Otu+ coxu=0

Equivalent equation
at( ;’)+(8 _Oc)ax( ”y">+AAtzam( ”y”)=O(AtS), ©)
A= (o) —oite )
Conservation of a convex energy
o= [ (0t-055) - L(7)(3)) o= )

> Inserting in (9) reads:

aew+ [ (0§ L )o(3) (5 ) (o (5)-(7)) 0

> integration by part gives:

with

OE(t) = 0.
> E(t) > 0if A > ¢ = subcharacteristic condition!
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CLASSIC BOUNDARY CONDITIONS IN LBM CODES

The bounce-back condition

> principle: an incoming kinetic quantity gets
the value of the outgoing kinetic quantity
with opposite velocity,e9'e" 19931

> ex: D2Q9 scheme:

> Navier-Stokes equations: no-slip boundary
conditions [Cornubert et al., 1991]

Other approaches

> the bounce-back and reflective conditions are not compatible with an implicit method,

» use of relaxation term towards a Dirichlet condition, ©ovete etal.. 2018]

> ex: D1Q2 scheme and no-slip condition:

Reflective conditions

> principle: the normal velocity only is null
[Succi, 2001, Suswaram et al., 2015]

> ex: 3D2Q4 scheme for Euler, u is the
normal velocity, and

p=>_f pu=>_g, pv=>_h,
then
pu= Al — f) = 0,
puv = A(gz — g3) = 0,
puv = A(hg — hy) =0,

provide the relations for the incoming kinetic
quantities.

4

Afo + Aoty = e (57 — o) + 7 (h — f)
Oty — NOxhy = e (9 —R)+ 7 (f — £)

y
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INFLOW/OUTFLOW CONDITIONS FOR THE OVER-RELAXATION SCHEME

Case of the 1D transport equation, but applies to all incoming waves.

t=002s

10
08
06
04 ,"

0z / LY

00

00 02 04 06 08 10

Inflow condition
According to the equivalent equation, w is incoming, y is outgoing.

n n+1/4
wg + w,

2

> imposed condition on w: = v(—c(tr +

At
8

=)
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INFLOW/OUTFLOW CONDITIONS FOR THE OVER-RELAXATION SCHEME

Case of the 1D transport equation, but applies to all incoming waves.

t=002s
10 —w
¥
08
06
P
04 S
/
/ N
\
/! Y
0z 7 A\
S N
00 E
[ 06 08 10

00 02

Outflow condition (at right boundary)
According to the equivalent equation, w is outgoing, y is incoming. Three strategies:

n n+1/4
> Exact strategy: imposed condition on w, W1 + Wi — v(1 — c(t At
5 V(1 = ot + ).
» Dirichlet strategy: equilibrium value for z, 20+ zl’\’,ﬂ/“ - CW;'M + w,’\}ﬂ/“ o
2 2 ’
> Neumann strategy: uniform disequilibrium n+1/4 n+1/4 n+1/4 n+1/4
By =0, Inpt T W =2y T ey
v
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NUMERICAL RESULTS - TRANSPORT EQUATION

Equation to be solved

Ot 4+ coxu = 0.
Initial condition:
u(x, t) = exp (A(x —a— ct)z), y(x,t) =0,

with
c=1, A=2, thax=1, a=0, =0 A=-80, and B=0.
Illustration Convergence
1.5 ‘
—H1
- ZE: —n o 7 s
- = lmax; 10—2 - st
! —— w-Exact (E - AT 15" order
s — — w-Dirichlet « C A a4 *(V — 2" order
----- w-Neumann % A~ a” _ /CV + w-Exact
0.5 . 10—4 G ~A- w-Dirichlet
@ - -O- w-Neumann
CV/
0 \Al
106

p—135—125,—115—10 —9 5—8 »—7
Ax
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NUMERICAL RESULTS - EULER EQUATIONS
Equations to be solved (barotropic Euler)
O+ 9xf(u) =0

(2 0 () oo

Initial condition:

p(x,0) = po + Coxp(D(x — X)),  (pV)(x,0) = p(X, O)vo,

with

c=10.

po =1.0,vp = 3c.

C=0.2, D=-80, xo=-0.5,
and
W, (x,0) = p(x,0), Wov(x,0) = (pv)(X,0), ¥o(X,0),¥,v(x,0) =0,
v
Illustration Convergence
1.2
_ 10—2
- p(t=0,x)
1.15 — — — w-Dirichlet
----- w-Neumann — 15t order
s 11 ~ <3 1074 — 2" order

]

i \\ © ~A- wp-Dirichlet
1.05 — ,' ‘.‘ -O- wp-Neumann

i

i\ 106 |

1 L L
T T T T T
—1 —0.5 0 0.5 1 T
p—18,—12,—11,—10 ,—9 ,—8 »—7 22/23
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CONCLUSION
Objectives:

» solve nonlinear systems of equations with HPC algorithms,
» ensure high-order and stable numerical schemes,
» deal with boundary conditions issues,
» simulate MHD physical problems.
Achievements:
» LBM and vectorial kinetic schemes show good compatibility with HPC (kirsch
and patapon codes),

> time-symmetric and high-order in time schemes have been developed (the basic
component being the over-relaxation scheme),

» the analysis of the equivalent equation of the over-relaxation scheme shows how
to design compatible boundary conditions,

» 1D second-order boundary conditions have been developed.
Perspectives:
» 2D and 3D boundary conditions,

» analysis and boundary conditions for other kinetic schemes (ex: D1Q3) and LBM
approaches.

Thank you for your attention!

23/23



Introduction

Relaxation Over-relaxation

Boundaries Conclusion

CONCLUSION

[

[

Aregba-Driollet, D. and Natalini, R. (2000).

Discrete kinetic schemes for multidimensional systems of
conservation laws.

SIAM Journal on Numerical Analysis, 37(6):1973-2004.

Audusse, E., Bouchut, F,, Bristeau, M.-O., Klein, R., and
Perthame, B. (2004).

A fast and stable well-balanced scheme with hydrostatic
reconstruction for shallow water flows.

SIAM Journal on Scientific Computing, 25(6):2050—-2065.

Bouchut, F. (2004).
A reduced stability condition for nonlinear relaxation to
conservation laws.

Journal of Hyperbolic Differential Equations.
01(01):149-170

Chen, G.-Q., Levermore, C. D., and Liu, T.-P. (1994).
Hyperbolic conservation laws with stiff relaxation terms
and entropy.

Communication on Pure and Applied Mathematics,
47(6):787-830

Cornubert, R., d'Humiéres, D., and Levermore, D. (1991).

A knudsen layer theory for lattice gases.

Physica D: Nonlinear Phenomena, 47(1):241 — 259

Coulette, D., Franck, E., Helluy, P., Mehrenberger, M., and
Navoret, L. (2018).

High-order implicit palindromic discontinuous galerkin
method for kinetic-relaxation approximation.

submitted to JSC.
Drui, F., Franck, E., Helluy, P, and Navoret, L. (2018).

An analysis of over-relaxation in kinetic approximation.
submitted to Comptes Rendus Mécanique.

Hairer, E., Lubich, C., and Wanner, G. (2006).

Geometric numerical integration: structure-preserving
algorithms for ordinary differential equations, volume 31.

Springer Science & Business Media.

Jin, S. and Xin, Z. (1995).

The relaxation schemes for systems of conservation laws
in arbitrary space dimensions.

Communication on Pure Applied Mathematics,
48(3):235-276.

Kahan, W. and Li, R.-C. (1997).

Composition constants for raising the orders of

unconventional schemes for ordinary differential equations.

Mathematics of Computation of the American
Mathematical Society, 66(219):1089-1099.

McLachlan, R. I. and Quispel, G. R. W. (2002).

Splitting methods.
Acta Numerica, 11:341-434
23/23



Natalini, R. (1998).

A discrete kinetic approximation of entropy solutions to
multidimensional scalar conservation laws.

Journal of Differential Equations, 148(2):292 — 317

Perthame, B. (1990).

Boltzmann type schemes for gas dynamics and the
entropy property.

SIAM Journal on Numerical Analysis, 27(6):1405—1421.

Succi, S. (2001).

The Lattice Boltzmann Equation dor Fluid Dynamics and
Beyond.

Clearendon Press - Oxford

=l

Suswaram, R. R., Deshmukh, R., and Kotnala, S. (2015).

A lattice boltzmann relaxation scheme for inviscid
compressible flows.

preprint.

Suzuki, M. (1990).

Fractal decomposition of exponential operators with
applications to many-body theories and monte carlo
simulations.

Physics Letters A, 146(6):319-323.

Ziegler, D. P. (1993).

Boundary conditions for lattice boltzmann simulations.
Journal of Statistical Physics, 71(5):1171-1177.

0/0



	Introduction
	Relaxation models and schemes
	The over-relaxation scheme
	Boundary conditions
	Conclusion

