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CONTEXT

Equations to be solved numerically

I systems of conservation laws:

∂t W + div (F(W))− div (D(x,W)∇W) = S

I example: the ideal MHD equations

∂tρ +∇ · (ρu) = 0

ρ∂t u + ρu · ∇u +∇p − (∇× B)× B = 0

∂t p +∇ · (ρu) + (γ − 1)p∇ · u = 0

∂t B−∇× (u× B) = 0

∇ · B = 0

Challenges

Two characteristics:

1 nonlinear systems of equations,

2 waves associated with different time scales⇒ we want to resolve only some of these scales.

Numerically they imply that:
I explicit schemes have very restrictive CFL conditions, due to the fastest time scales,
I implicit schemes involve nonlinear operator inversion, expensive matrices storage and

inversions.
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LATTICE-BOLTZMANN AND VECTORIAL SCHEMES

Equations to be solved numerically

∂t W + div (F(W))− div (D(x,W)∇W) = S

Lattice-Boltzmann methods

I inspired from the kinetic theory,
I discrete set of velocities: choice of a Lattice

(ex: D2Q9)

o
v2 v1

v3

v4

v5

v6 v7

v8

I collision step: fi (t, x) = f eq
i (t, x)

I shift step: fi (t + ∆t, x) = fi (t, x− vi ∆t)
I macrosopic variables: ρ =

∑
i fi ,

ρu =
∑

i vi fi , E =
∑

i |vi |2/2fi

⇒ Navier-Stokes equations,
I equivalent kinetic equation with BGK

collision operator (LBGK scheme):

∂t fi + vi ·∇fi = ε
−1
i

(
f eq
i − fi

)

Vectorial kinetic schemes

I generalization of Jin-Xin relaxation
scheme,[Jin and Xin, 1995]{
∂t W + ∂x Z = 0
∂t Z + λ2∂x W = ε−1 (F (W )− Z )

I ex: D2Q4 scheme: o
v1 v0

v2

v3

I kinetic equations with relaxation source
term:

∂t fi + vi ·∇fi = ε
−1(f eq

i − fi )

I macroscopic variables: ρ =
∑

i fi ,
ρu =

∑
i gi , ρv =

∑
i hi ...

I properties of this approach are detailed in
[Perthame, 1990, Natalini, 1998,
Aregba-Driollet and Natalini, 2000,
Bouchut, 2004, Chen et al., 1994]
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AN EXAMPLE OF LBGK CODE

Vectorial kinetic systems

∂t f + Λ∇f =
feq − f
ε

Ideas in the kirsch code[Coulette et al., 2018]

I Time integration:
• time splitting approach,
• second-order Crank-Nicolson integration for both steps
⇒ implicit relation between f n+1

i,j and f n
i,j ,⇒ large time

steps,
• higher time order thanks to composition

methods,[Suzuki, 1990]

I transport step: high-order DG on H20 grids,
I two levels of parallelism:

1 parallelization over the kinetic velocities,

2 grid decomposition into macrocells and cartesian
sub-grids:

• the linear system is block-triangular,
• inversion of matrices in sub-grids (using KLU),
• graph of macro-cells resolution:

f n+1
i,j =

θαi

1 + θαi
f n+1
i,j−1 +

1− (1− θ)αi

1 + θαi
f n
i,j +

(1− θ)αi

1 + θαi
f n
i,j−1

I task-scheduling programming (StarPU). 4 / 23
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ISSUE OF THE BOUNDARY CONDITIONS

One of the current issues of the LBM approach is the treatment of the boundary
conditions:
I ex: nD2Q4 scheme,
I here f1 and f3 are outgoing quantities
⇒ no problem,

I f0 and f2 are incoming quantities
⇒ what are their values?

I the macroscopic equation provides
only one boundary condition,

⇒ one relation is missing!

o
v1 v0

v2

v3

Objectives of this work

I Study of the second order over-relaxation scheme used to solve nD1Q2 relaxation
systems,

I design boundary conditions that preserve the scheme second order.
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CONTENTS OF THE PRESENTATION

Relaxation schemes:

I the Jin-Xin relaxation model,
I relation with the vectorial kinetic schemes,
I splitting and composition strategies,
I an example of MHD code.

The over-relaxation scheme:

I derivation from the standard relaxation approach,
I equivalent equation and properties of the over-relaxation scheme,
I stability condition for the 1D transport equation.

Boundary conditions:

I usual boundary conditions for LBM,
I inflow/outflow conditions,
I numerical results.
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THE JIN-XIN RELAXATION SCHEME

Equations to be solved (1D)

∂t V + ∂x F(V) = 0 (1)

recall: nonlinear flux functions V 7→ F(V).

The relaxation model

I approximate systems (1) by systems of linear-flux equations:[Jin and Xin, 1995]

∂t Wε + ∂x Zε = 0, (2)

∂t Zε + λ
2
∂x Wε =

1
ε

(F(Wε)− Zε), (3)

I a Chapman-Enskog development gives:

• at zeroth order in ε: Zε = F(Wε) + O(ε),
• at first order in ε:

∂t Wε + ∂x F(Wε) = ε∂x

((
λ

2 − |∂F(Wε)|2
)
∂x Wε

)
+ O(ε2) (4)

I consistency of equation (4) with equation (1),
I stability under the subcharacteristic condition: λ > |∂F(Wε)|.

Numerical scheme

Numerical resolution of system (2)-(3) in the ε = 0 limit.
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VECTORIAL KINETIC SCHEMES

From Jin-Xin to D1Q2 system

I Jin-Xin relaxation model:

I Riemann invariants:

I system for the Riemann invariants (nD1Q2):

I equilibrium functions:

∂t W + ∂x Z = 0,

∂t Z + λ
2
∂x W = ε

−1(F(W)− Z),

f+ = W + Z/λ, f− = W− Z/λ

∂t f+ + λ∂x f+ = ε
−1(feq

+ − f+),

∂t f− − λ∂x f− = ε
−1(feq

− − f−),

feq
+ = W + F(W)/λ, feq

− = W− F(W)/λ

2D and 3D systems

I Kinetic relaxation
systems:

I consistency conditions:
[Aregba-Driollet and Natalini, 2000]

[Audusse et al., 2004]

∂t f+Λ∇f =
1
ε

(
feq(W)− f

)
,

Pf = W.

Pfeq(W) = W,

PΛfeq(W) = F(W).

Example:
D2Q4
system o

v1 v0

v2

v3

Λ = diag { (λ, 0), (−λ, 0),

(0, λ), (0,−λ)} ,

P = (1, 1, 1, 1) .
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SPLITTING APPROACH AND TIME INTEGRATION (1)
Kinetic system to be solved

∂t f + Λ∇f =
1
ε

(
feq(W)− f

)
,

Operator splitting

I Transport step:

I Relaxation step:

∂t f + Λ∇f = 0, (5)

∂t f =
1
ε

(
feq(W)− f

)
, (6)

Transport step over time step h: T (h)

Possible numerical schemes:
I exact transport on cartesian grid:

fi (t + h, x) = fi (t, x− vi h),

⇒ h must be compatible with the grid,
I Semi-Lagrangian schemes:

fi (t + h, x) = fi (t, x− vi h)

⇒ backward SL: interpolation at the foot
of the characteristics,

⇒ forward SL: projection on the mesh,
I high-order FV or DG schemes,

⇒ implicit schemes require matrix
inversion.

Source integration: R(h)

Possible integrations over time step h:
I exact solution of (6), with ε > 0:

f(t + h, x) = feq + exp(−h/ε)(f(t, x)− feq),

⇒ feq is invariant during the integration,
I projection on the equilibrium (ε = 0):

f(t + h, x) = feq(t, x),

⇒ provides first-order approximation with
the splitting approach,

I Crank-Nicolson integration:
f(t + h, x) = (1− θ)feq(t, x) + θf(t, x)
with θ = (2ε− h)/(2ε + h),

⇒ second-order when ε = 0.
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SPLITTING APPROACH AND TIME INTEGRATION (2)
Kinetic system to be solved

∂t f + Λ∇f =
1
ε

(
feq(W)− f

)
,

Lie and Strang splitting

Lie splitting:
L(h) = T (h)R(h)

I first-order splitting

Strang splitting: S(h) = T (h/2)R(h)T (h/2)

I second-order splitting with Crank-Nicolson,
I higher-order composition not possible...

Time-symmetry property

Let P(h) be a discrete operator, dependent on time step h,
I definition of time symmetry: P(−h)P(h) = I and P(0) = I,
I property: if P(h) is consistent with a continuous operator P , then it is a second-order

consistency,[Hairer et al., 2006, McLachlan and Quispel, 2002]

I S(h) is not time symmetric when ε = 0: S(0) 6= I.

Time composition schemes

From a second-order time-symmetric operator P(h), one can build even high-order operators with
palindromic composition Q(h):[McLachlan and Quispel, 2002, Hairer et al., 2006, Coulette et al., 2018]

Q(h) = P(γ0h)P(γ1h)...P(γsh)

with γi = γs−i , 0 ≤ i ≤ s. Examples in: [Suzuki, 1990, Kahan and Li, 1997].
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EXAMPLE OF AN MHD CODE

Features of Patapon

I solves the ideal MHD equations,
I nD2Q4 approximation,
I time-symmetric composition with :

• exact transport step,
• Crank-Nicolson source

integration with θ = 0.9,
⇒ numerical resistivity.

I cartesian grid and periodic or Dirichlet
BC,

I Python code using PyOpenCL kernels.

Example of simulation: tilt instability

Computation characteristics

I 1024× 1024 grid,
I graphic card: Nvidia - 24 GB - 3840 cores
I GPU utilization: 80%
I computation time: 30s (including I/O)

Simulation results
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DERIVATION OF THE OVER-RELAXATION SCHEME

System to be solved

∂t v + ∂x F(v) = 0 (7)

I Two auxiliary sets of variables: w, z,
I could be considered as relaxation approach with ε = 0...

Transport step

∂t w + ∂x z = 0,

∂t z + λ
2
∂x w = 0,

⇒ exact transport operator:(
w(·, t + h)
z(·, t + h)

)
= T (h)

(
w(·, t)
z(·, t)

)
,

with

T (h) :=
1
2

(
τ(h) + τ(−h) (τ(h)− τ(−h))/λ

λ(τ(h)− τ(−h)) τ(h) + τ(−h)

)
and shift operator

(τ(h)v)(x) = v(x − λh).

Over-relaxation step

I Crank-Nicolson (ε = 0):

R0(h)

(
w
z

)
=

(
w

2F(w)− z

)
I independent of h : R0.

Operator splitting

S2(h) := T (
h
4

) R0 T (
h
2

) R0 T (
h
4

)
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EQUIVALENT EQUATION AND SCHEME PROPERTIES

Over-relaxation scheme

S2(h) := T (
h
4

) R0 T (
h
2

) R0 T (
h
4

). (8)

Time-symmetric property

I T (−h)T (h) = I and T (0) = I
I R0R0 = I,

⇒ S2(−h)S2(h) = I and S2(0) = I.

We expect a second-order scheme.

Theorem 1[Drui et al., 2018]

w and z being smooth solutions of a time marching
algorithm with operator (8), the flux error y being defined by

y := z− F(w),

then, up to second order terms in h, w and y satisfy:

∂t

(
w
y

)
+

(
F′(w) 0

0 −F′(w)

)
∂x

(
w
y

)
= 0.

Example: scalar transport equation: Example: Euler equations:
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STABILITY FOR THE 1D TRANSPORT EQUATION (THEOREM 2)
1D scalar transport equation

∂t u + c∂x u = 0

Equivalent equation

∂t

(
w
y

)
+

(
c 0
0 −c

)
∂x

(
w
y

)
+ A∆t2

∂xxx

(
w
y

)
= O(∆t3), (9)

with

A =

(
(λ2 − c2) 3c

3c(λ2 − c2) −(λ2 − c2)

)
.

Conservation of a convex energy

E(t) =

∫
Ω

(
(λ2 − c2)

w2

2
+

y2

2

)
=

∫
Ω

(
D
(

w
y

)
,

(
w
y

))
, D =

(
λ2 − c2 0

0 1

)

I Inserting in (9) reads:

∂t E(t) +

∫
Ω

(
D
(

c 0
0 −c

)
∂x

(
w
y

)
,

(
w
y

))
+

∫
Ω

(
DA∂xxx

(
w
y

)
,

(
w
y

))
= 0

I integration by part gives:

∂t E(t) = 0.
I E(t) > 0 if λ > c⇒ subcharacteristic condition!
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CLASSIC BOUNDARY CONDITIONS IN LBM CODES

The bounce-back condition

I principle: an incoming kinetic quantity gets
the value of the outgoing kinetic quantity
with opposite velocity.[Ziegler, 1993]

I ex: D2Q9 scheme:

o
v2 v1

v3

v4v6 v7

v5v8

f1 = f2, f3 = f4,

f5 = f6, f8 = f7.

I Navier-Stokes equations: no-slip boundary
conditions.[Cornubert et al., 1991]

Reflective conditions

I principle: the normal velocity only is null
[Succi, 2001, Suswaram et al., 2015]

I ex: 3D2Q4 scheme for Euler, u is the
normal velocity, and

ρ =
∑

fi , ρu =
∑

gi , ρv =
∑

hi ,

then

ρu = λ(f0 − f1) = 0,

ρuv = λ(g2 − g3) = 0,

ρuv = λ(h0 − h1) = 0,

provide the relations for the incoming kinetic
quantities.

Other approaches

I the bounce-back and reflective conditions are not compatible with an implicit method,

I use of relaxation term towards a Dirichlet condition,[Coulette et al., 2018]

I ex: D1Q2 scheme and no-slip condition:

∂t f0 + λ∂x f0 = ε
−1(f eq

0 − f0) + τ
−1(f1 − f0)

∂t f1 − λ∂x f1 = ε
−1(f eq

1 − f1) + τ
−1(f0 − f1)
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INFLOW/OUTFLOW CONDITIONS FOR THE OVER-RELAXATION SCHEME

Case of the 1D transport equation, but applies to all incoming waves.

Inflow condition

According to the equivalent equation, w is incoming, y is outgoing.

I imposed condition on w : wn
0 + wn+1/4

0

2
= v(−c(tn +

∆t
8

)),
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INFLOW/OUTFLOW CONDITIONS FOR THE OVER-RELAXATION SCHEME

Case of the 1D transport equation, but applies to all incoming waves.

Outflow condition (at right boundary)

According to the equivalent equation, w is outgoing, y is incoming. Three strategies:

I Exact strategy: imposed condition on w ,

I Dirichlet strategy: equilibrium value for z,

I Neumann strategy: uniform disequilibrium
∂x y = 0,

wn
N+1 + wn+1/4

N+1

2
= v(1− c(tn +

∆t
8

)).

zn
N+1 + zn+1/4

N+1

2
− c

wn
N+1 + wn+1/4

N+1

2
= 0,

zn+1/4
N+1 − cwn+1/4

N+1 = zn+1/4
N − cwn+1/4

N .

Comments:
I the exact strategy requires known value of w at the boundary: rarely the case in practice,
I the Dirichlet strategy forces z = zeq , while, due to numerical errors, z 6= zeq inside the

domain.

20 / 23



Introduction Relaxation Over-relaxation Boundaries Conclusion

NUMERICAL RESULTS - TRANSPORT EQUATION

Equation to be solved

∂t u + c∂x u = 0.

Initial condition:
u(x, t) = exp

(
A(x − α− ct)2

)
, y(x, t) = 0,

with
c = 1, λ = 2, tmax = 1, α = 0, β = 0 A = −80, and B = 0.

Illustration

0 0.5 1

0

0.5

1

1.5

x

w

u(t = 0, x)

u(t = tmax, x)

w-Exact

w-Dirichlet

w-Neumann

Convergence

2−72−82−92−102−112−122−13

10−6

10−4

10−2

∆x

en ∆
x

1st order

2nd order

w-Exact

w-Dirichlet

w-Neumann
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NUMERICAL RESULTS - EULER EQUATIONS

Equations to be solved (barotropic Euler)

∂t u + ∂x f(u) = 0

u =

(
ρ
ρv

)
, f(u) =

(
ρv

(ρv)2/ρ + c2ρ

)
, ρ > 0, c = 10.

Initial condition:

ρ(x, 0) = ρ0 + C exp(D(x − x0)), (ρv)(x, 0) = ρ(x, 0)v0, ρ0 = 1.0, v0 = 3c.

with
C = 0.2, D = −80, x0 = −0.5,

and
wρ(x, 0) = ρ(x, 0), wρv (x, 0) = (ρv)(x, 0), yρ(x, 0), yρv (x, 0) = 0,

Illustration

−1 −0.5 0 0.5 1

1

1.05

1.1

1.15

1.2

x

w

ρ(t = 0, x)

w-Dirichlet

w-Neumann

Convergence

2−72−82−92−102−112−122−13

10−6

10−4

10−2

∆x

en ∆
x

1st order

2nd order

wρ -Dirichlet

wρ -Neumann
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CONCLUSION
Objectives:

I solve nonlinear systems of equations with HPC algorithms,
I ensure high-order and stable numerical schemes,
I deal with boundary conditions issues,
I simulate MHD physical problems.

Achievements:
I LBM and vectorial kinetic schemes show good compatibility with HPC (kirsch

and patapon codes),
I time-symmetric and high-order in time schemes have been developed (the basic

component being the over-relaxation scheme),
I the analysis of the equivalent equation of the over-relaxation scheme shows how

to design compatible boundary conditions,
I 1D second-order boundary conditions have been developed.

Perspectives:
I 2D and 3D boundary conditions,
I analysis and boundary conditions for other kinetic schemes (ex: D1Q3) and LBM

approaches.

Thank you for your attention!
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