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Introduction

Context: Deterministic simulations

Discrete velocity approximation for multi-species rarefied flows

Global discrete velocity grid (Cartesian) commonly used for the whole
Computationa| domain (Kyoto group, Aristov et al., etc.)

Pb: For practical applications in aerodynamics, grid unadapted
= computational ressources (memory storage and CPU time) huge

One solution: adaptative methods in the velocity variable.
Rarefied gases: [F.Filbet, T.Rey]|, [K.Xu], [V.Kolobov],
= [S. Brull, L. Mieussens]
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Motivations

To reduce numerical cost = adaptative method in the velocity variable
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Velocity grids

ftxw)

Figure: Small temperature or big mass

Figure: Big temperature or small mass
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Local velocity grid

Idea: define a velocity grid different forall t and x and for each species
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Numerical approximation of velocity domains

@ Objective: Derive a deterministic numerical method using dynamic
local velocity grids for gas mixtures in 1d case
Generalisation of [S.Brull, L.Mieussens, 2014] (single species)

@ v € R = Choice of a suitable subset C R = depend on velocities,
temperatures and molecular masses

o (o, t", x;) = Local discrete velocity grids (LDV):
V,-a’": velocity grid for species «, at time t,, and space point x;

VT =ik k€ {1, Ny} = possibility of N, (/)

fe: distribution of species av = £7," =~ £ (t", x;, v}")

= " is known only on V"
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Multi-species kinetic model

e Gas mixture of N species of molecular masses m!, ..., m"

o B
Reduced mass: p®% = _mm
me 4+ mP

o f(t,x,v): Ry x QxR Ry: distribution function of species «
e Multi-species kinetic equation, for a € {1, ..., N}:

Oef® + D (vF®) =CH(fL, .., fN), teRy, xeQCR, veR,
@ Macroscopic quantities:
/ f*dv = n®, / mvfdv = m*“n®u® = p*u®,
R R

avzoc « 1 a,af,,a)\2 ]'a «
m*—f%dv = E* = —m*“n“(u®)" + =n“kg T
e 2 2 2
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BGK operator for multi-species flows

e BGK operator [Andries, Aoki, Perthame, 2001]:

ca;::ua(ﬂiﬂfl,”,fN)-fa), ae{l,....,N}

M (F) = -2 exp (— =2
o W' (F) = T ep (-5 5)

@ Fictitious mixture velocities T and temperatures T

N
2
ot = Ut E uaﬁxaﬁnﬁ(uﬁ—ua>
vem
=1

—a m<
= T _ —a o2
2[70‘/(3(” Y )
N
2 £ L T R Ul i &
ven®kg = m® 4+ mP 2
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Properties of BGK operator

Model constructed to reproduce some exchanges of the Boltzmann
operator for Maxwell molecules

= BGK operator has the same moments w.r.t. {1; v; v2} per species as
the Boltzmann operator for Maxwell molecules

Collision kernel

n-(v—wv)

B (n- (v = ). |v - ) = B(w), w = T

Definition of y*?

Xaﬁ—/ cos2(w)§aﬁ(w)dw, 1/“’3—/ §aﬁ(w)dw
52 52

N N

Condition: v > 3 x®nf = vo = 3 1p2Bpb
B=1 =1

The model satisfies H theorem
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Computation of the discrete velocity grids

1%t step: Define V" ol ={v o on+1 ...,v,.‘f‘,’\;’jl}
Bounds (V_)% "*1, (Vo g.ven by:

1 1

a,n+1 a,n+1 a kB T,'a’n—i_l a
(Vo) " =" £ B I € {4; 5}

Remark: Correct bounds if f¢ close to a Maxwellian distribution
2y/RT(z)

)

u(x) = ey/RT(x) u(x) u(z) + ¢/ RT(x)
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Computation of the discrete velocity grids

Set of discrete velocities V"™ = {v "+1, Vi ”H} once the bounds
(VO)®™ (V)™ have been computed:

a,n a,n % ?z,n+17 V_ q,nJrl
gt = (v - R )

= Regular mesh in each local grid

= Need to compute macroscopic quantities at time ¢t"t1
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Computation of macroscopic quantities

@ Semi-discretization of equation on f¢:

]

+ ARSI () — £ (1))

T (v) = £ (v )—7(¢>,+1( V) =5 (v)

e Upwind flux: gf) ( )

@ Computing moments of f* = Conservation laws

1 1 1
= Computation of n?" ntl u?’”+ , TI.O"”+ _

= Computation of V" o+l
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Conservation laws

1 1
/ m;v £ (v)dv :/ m;v £ (v)dv
R %m;v2 R %m;v2
1 At
[ | a6 ()
R lm-vz X 2 2
2 1
1 1
+ / miv | Aty M (0) = £ (V) dv
R %miVZ

Remark
/ miv(M;" () = £ (v))dv # 0
R
[ 5maA W W) = £ ) £ 0
R
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Conservation laws

@ Equations on concentrations:

At
gt o _ AE / (657 — 27 )dv.
R

Ax i+3 =3

e Equations on momenta: Va € {1,..., N},

a,n+l a,n+1 _  a,n, a,n At a,n
Pi u; =p; U = AX/ V(¢,+1 _¢i_%)dv
+ 2Atnl?é,"+1 Z Maﬂxaﬁniﬁ,n+1(uiﬁ,"+l N uiOé,"Jrl)
B=1

a,n+1)

o (u; « coupled = N x N linear system to solve for each x;

o Equations on internal energies: N x N linear system coupling
a,n+1
(e )a for each x;

i
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Computation of fl-a‘"+1

Semi-discretization (variable v kept continuous):

a,n a,n A a,n a,n
) = ) - G0~ 6 ()

ARSI () — £ (1)

Computation of the Maxwellian

1 1 1 1 =+l vnt1
(n " T TR = (@ TTT) = (M

Implicitation of the BGK model = AP scheme toward Euler
a,n+1

Vi

= +00 = kinetic scheme for Euler
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Problem of grids

Computation of the flux (;S?:L"l (v) on V&t

2

[y

o7 (V) = 5 (v (FE1(V) + 777()) = vl (F37(v) = £77(v))
TP A flif are not known on the same velocity grid

a,n a,n a,n a,n a,n a,n+1 a,n+1
R I A /A TR AR R e P <V

= Pb to compute on V" i

How to communicate between the different grids V", V7, Vi, vt
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Computation of f, i

Reconstruction procedure

The scheme writes: V va i+l o VI.(X’"H

— At /— .
,n+1 a,n ,n+1 a,n ,n+1 a,n ,n+1
= R - A (SR = (v

a,n+1 70,n+1 a,n+1
+ At (M — )

ozn

a,n+1

5 i+ interpolation on V" using ENO 4 scheme.
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Shifted velocity grids (Motivations)

Aim: Obtain velocity grids with common points=- diminish interpolations

Choice: 0 belongs to all velocity grids
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Shifted velocity grids (Constructions)

Modifications of the steps

Av?
Ava,O

min

1AV, |x] : nearest integer to x.

Av; =|

Modify bounds: (m)?o (m)?o

(Vmin)?’0 ——«a,0 T \o,0 (Vmax);'l’0 ——a,0

(Vmin),%ozl A a,0 JAVI ) (Vmax),' _(
Vi

|x|: integer part of x, [x]: integer part of x + 1

(Vmin)(.”o, (Vmax)?’o, E?’O multiples of AveP

min

Stéphane BRULL Local discrete velocity grids for multi-species January 7t 2020

19/



Shifted velocity grids (Constructions)

Aim: Obtain bounds and steps at t"*1 multiples of the same quantity

AvETT = min (Av©"Th).

min i
i

15t situation: Av©7 T S AT

min = min

(Avmin)a,n—l-l

\a,n+1 __ a,n
(Ame) - L Ava?n -|Avmin'
min
nd _: I a,n+1 a,n
2" situation: Av_ - < Ay
- 1
\a,n+1 __ a,n
(AVimin) " = WAvmin'
Avr(r):iynn
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Test case: Blast waves

o Initial data:

pe | u® T
x€[0,01] [1]0 4,8
x€[0.1,09] | 1 | 0 |4,810°
x € [0.9,1] 1|0 |4810°¢

@ Simulation parameters:

o Final time: tr = 0.05
o Velocity grids:

| N, | CPU time
LDV |5 30 279s
DVM | 5 | 200 516s
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Two interacting blast waves

Before (up), after (down)
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LDV: 30 points. DVM: 30 points. Converged DVM: 200 points
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Test case: Shock waves

o Initial data:

x€[0,05] | 1 | 10% | 300
x€[05,1] | 1 | —10% | 300

@ Simulation parameters:
o Final time: tr =10"%s
o Velocity grids:

/ N, | CPU time
LDV 5 30 147s
DVM | 180 | 2000 1824s
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Shock wave (Velocity)

Velocity

— LDV
{ --- DWM

e Converged DVM

0.0

Figure: Velocity for a shock waves test case

Position
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Shock wave (Temperature)
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Figure: Temperature for a shock waves test case
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Heat transfert
( pﬂ )
t=0] u=
Ty =T}

T =T, =300sur[0,1], T(1) = Tg = 1000, p° = pg, u® = 0.

Ty Tr

ONNNNNNNNNANN
OUONNNNNNNNANN
RRRRRRRNNN

8
|
o

r=1

Diffuse boundary conditions f(t,x =0,v > 0) = —%MW

For small t, the support of f¢(t,x ~ 1, v) is non symetric

VR,
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Test case: Heat transfert

Kn =10

@ Initial data:

p* | u® T
x € [0,1] 0 | 300
x=1 1| 0 | 1000
@ Simulation parameters:
o Final time: ty =1,31073
o Velocity grids:
/ N, | CPU time
LDV 5 | 150 223s
SLDV | 5 | 150 138s
DVM | 20 | 600 274s
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Extension of the grid: algorithm

Problem: If £ is far from a Maxwellian (K, > 1072)
Splitting between transport and collision

Transport step

o Computation off,- +3 for each v"+1 of Vit

o w= v,"fl
o loop left

ow=w— Av"+1

o Compute f, (w) by the scheme
nt+i n rn rn n n
2 w) = Bw) | Bw) —Faw) | Bw) - f(w)

At tw Dx tw Ax

o If fn+%( ) too big add w to the grid and go on
° W—VIN() + loop right

Collision step

Stéphane BRULL
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Velocity-Converged case
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Figure: I =5, N, = 150 for LDV, SLDV. | =20, N, = 600 for reference DVM
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Temperature-Converged case
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Figure: I =5, N, = 150 for LDV, SLDV. | =20, N, = 600 for reference DVM
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Temperature-Non converged case
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Figure: | =4, N, =50 LDV, SLDV, DVM. | =20, N, = 600 for reference DVM
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Conclusion

@ Deterministic adaptative method for multi-species kinetic equations
@ Very good results when compared to classical methods

@ Related result: Reduce interpolation cost = Shifted grids

@ Perspectives

— Higher dimensions

— Implement other BGK models for Gas Mixtures:
[S. Brull, V. Pavan, J. Schneider, 2012], [S. Brull, 2015]

< Chemical reactions
Implementation of the model [Groppi, Spiga, 2004]:
Generalisation of [Andries, Aoki, Perthame] for slow chemical reactions
[Bisi, Brull, Groppi, Prigent], in progress
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Thank you for your attention.
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