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oo Introduction of D2Q9 LB scheme

Let X € R? and t € R be the spatial position and the B
time respectively. The Boltzmann equation (without y
force term): B /
€6 € €5 Ax
o T e . { &
5 %0+ vT. V(R t) = O(f), B
& & \&

f(X, A&, t+ At) = F*(X — A\&AL, A&, t), (1)

Y
D2Q9 LB scheme and
elementary direction vector
&, Vi e {0,...,8}.

where A = % is the numerical lattice velocity and f*

the density distribution after collision. Let V; = A€ be
the discrete velocity vector. The dynamic is divided in
two steps: streaming and collision.

Tools to recover the equivalent PDEs simulated by the LB scheme:

Taylor Expansion [1, 2] and Moments space [3]

@ F. Dubois, “Une introduction au schéma de Boltzmann sur réseau,” in ESAIM: proceedings, vol. 18,
pp. 181-215, EDP Sciences, 2007

@ F. Dubois, “Third order equivalent equation of lattice Boltzmann scheme,” Discrete & Continuous
Dynamical Systems-A, vol. 23, no. 1&2, p. 221, 2009.

@ D. d'Humiéres, "“Generalized lattice-Boltzmann equations,” in Rarefied Gas Dynamics: Theory and
Simulations, vol. 159, pp. 450-458, AIAA Progress in Aeronautics and Astronautics, 1992.




oo Introduction of D2Q9 LB scheme

Let X € R? and t € R be the spatial position and the PENE-CN
time respectively. The Boltzmann equation (without y
force term): B /
€6 € €5 Ax
4 . T S - G
af(x,t)—&—v VF(X,t) = O(f), &
(R A&, t+ At) = F* (X — N&AL,AELt), (1) N
Y
where X\ = % is the numerical lattice velocity and f* D2Q9 LB .sche.me and
the density distribution after collision. Let v; = \é&; be elemfntary direction vector
the discrete velocity vector. The dynamic is divided in &, Vi€ {0,...,8}.
two steps: streaming and collision.
1- Taylor expansion of (1) at third order writes:
0 At? 52 At
X, t) + At — (X — oAt
AR, €) + At (%, 6) + S-SR, 8) + S SR, 6) + O(AY)
£2

= 7(%,8) - AV (R, 8) + ST H (5 (5,0)
3
- ATtv,Tﬁ (FTH(F (7, 0) %) + O Ar),

Acoustic scale <= % = ¢ = O(N"At") = O(Ax") = O(At").
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oo Introduction of D2Q9 LB scheme

Let X € R? and t € R be the spatial position and the PENE-CN
time respectively. The Boltzmann equation (without 4
force term): B /
€6 € €5 Ax
o . . OT S - G &
af(x,t)—&—v VF(X,t) = O(f), )
(R A&, t+ At) = F* (X — N&AL,AELt), (1) N
Y
where X\ = % is the numerical lattice velocity and f* D2Q9 LB .sche.me and
the density distribution after collision. Let v; = \é&; be elemfntary direction vector
the discrete velocity vector. The dynamic is divided in &, Vi€ {0,...,8}.

two steps: streaming and collision.
2- Moments space and moments vector i defined by

AR, 1) = MF(X,7,t) < (X 7, t) = MRz, ),

where M is the invertible transformation matrix.
The collision step in the moment space writes:

mp = (1= s )me +semy?, Vke{1,2,...,8},

where s; is the relaxation time and m}? the equilibrium moment as function of the
conserved variable T.
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oo Introduction of D2Q9 LB scheme

Let X € R? and t € R be the spatial position and the PENE-CN
time respectively. The Boltzmann equation (without 4
force term): B /
€6 € €5 Ax
o o ) G &
af(z, t)+ v -VF(X,t) = O(f), B
g & \&

F(X, A&, t + At) = F*(X — A\&AL, &, t), (1)

Y
D2Q9 LB scheme and
elementary direction vector
&, Vi e {0,...,8}.

where A = % is the numerical lattice velocity and f*

the density distribution after collision. Let V; = A€ be
the discrete velocity vector. The dynamic is divided in
two steps: streaming and collision.

2- Moments space and moments vector i defined by

-

AR, 1) = MF(X,7,t) < (X 7, t) = MRz, ),
where M is the invertible transformation matrix.

The construction of M is linked with the physical moment
used to recover the equivalent PDEs.

moment T Jx Jy E Pxx Pxy qx Ay X
equilibrium 1 Adj >\¢jy )‘2¢H A2¢pxx >\2¢ny >\3¢jx dax )‘3¢jy ¢‘Iy )‘443(
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oo Introduction of D2Q9 LB scheme

Let X € R? and t € R be the spatial position and the PENE-CN
time respectively. The Boltzmann equation (without y
force term): B /
€6 € €5 Ax
o T S - CR
af(x,t)—&—v VF(X,t) = O(f), &
(R A&, t+ At) = F* (X — N&AL,AELt), (1) N
y
where X\ = % is the numerical lattice velocity and f* D2Q9 LB .sche.me and
the density distribution after collision. Let v; = \é&; be elemfntary direction vector
the discrete velocity vector. The dynamic is divided in &, Vi€ {0,...,8}.

two steps: streaming and collision.
The PDE to be simulated by the LB scheme (1):

% T(%, t) + V- (W(X) T(%, 1)) — kAT(X, t) = 0.

A diffusion and non-constant advection problem
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oa 1aylor expansion for advection-diffusion problems

Zero-order
The moment my and the density distribution f; verify
my = mj; + O(At) = m{? + O(At) and
fi = f* + O(At) = ££9 + O(At).
moment T Jx Jy E Pxx Pxy
equilibrium | 1 | A, A, A2y P Moy
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oa 1aylor expansion for advection-diffusion problems

First-order
The conserved variable T verify:
o _ _ T
O (At) = 5 T(X,t) + AV-(W(X)T(x,t)).
moment T Jx Jy E Pxx Pxy

equilibrium | 1 | Aw, (X) | Awy (X) & Moo Moy

I 4/13



oa 1aylor expansion for advection-diffusion problems

The conserved variable T verify:

o (ar) :% T(%,t) + AV- (W(%) T(%, 1))

where o) =

. oo\ - 2 - .
from the non-constant advection vector w(X) in % T(X,t) calculation.

2

— AtX2d o1 AT(R, t) —AtA 201 V- [T(X, t)J (W(X)) - w(X)] |

are coefficient introduced by Hénon [4].The additional term arises

moment

Jx

Jy

E

P

Pxy

equilibrium

A (

Xy

)

Awy (X)

w(z)||2
32 <¢(;+‘ @l )

A% (ws(%)? = wy (%)%)

X2 wse(R)wy (%)

@ M. Hénon, “Viscosity of a lattice gas,” Complex Systems, vol. 1, no. 4, pp. 763-789, 1987.

Second-order
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oa 1aylor expansion for advection-diffusion problems

The conserved variable T verify:

O (At?) :% T(X,t) + AV (WT(X, t))

where o) =

— At g0 AT(R, t),

case permits to recover the PDE without additional term.

1 are coefficient introduced by Hénon [4]. The constant advection

moment

Jx

Jy

E

P

Pxy

equilibrium

Awy

A2 (¢(;+ W)

A2 (WX2 — Wf)

2
A wiwy,

@ M. Hénon, “Viscosity of a lattice gas,” Complex Systems, vol. 1, no. 4, pp. 763-789, 1987.

Second-order
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oa Third order for constant advection case

Equivalent PDE

For constant advection case, the conserved variable T verify:

O (At) :% T(X,t) + A\V-(WT (R, t)) — AtA’¢,o1 AT (X, t).

where o) =
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oa Third order for constant advection case

Equivalent PDE

For constant advection case, the conserved variable T verify:

O (At) :% T(X,t) + A\V-(WT (X, 1)) — AtA\2¢,o1 AT (X, t)

YN ) [af — %] WV (A(T))

Wy ¢X_)\3¢;_>\3M T_‘
RN {0103 - %} (Wy h:y e A3'"§'2D ¥ (A(T))

AMo2 o A3 o 3 T
PNCY P I G e e R R ) | I L
12 %3 Ox2  Oy?

Wy /\3
3 321\ T 2
+2A¢2 [0105 — ! ] (Wy [2¢qy —A A WX]) v ( o T) .

WE - 7Wx2 7>‘3+¢‘7y
E Wy [2¢fb< -3 - A3W3] Oxdy
where o) = si

_1
K 2°
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oa Third order for constant advection case

Equivalent PDE

For constant advection case, the conserved variable T verify:
O (At) :% T(X,t) + A\V-(WT (X, 1)) — AtA\2¢,o1 AT (X, t)
12
2 T
1 Wy X_)\S :_>\3”WH .
]( o = X0 =20 % NG

+ At? {0103 - — Si2
12 wy [¢qy _ )\34.]/3 _ )\3 HV‘;”
3 3 T
AP 1] [ | Z w2 =3 w2+ X —do |\ - /8% 82 ;
FAT T T ] L, (22 - 22 1] Ve "o

17 (wy [2dg, =N = N2\ o[ &
204 - = (T 31 -V T).
- ["“’5 12] (WX [2¢q, — X = 23] xdy

The proposed set of relaxation time (with MRT hypothesis):

YN ) [af — i] WV (A(T))

1
Sk

where o) = = — %

1
01 =03 =04 =05 = \/? (06 and og free).
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oa Third order for constant advection case

Numerical Validation of third order accuracy

Initial condition: T(X,0) = sin (QTI'ET-)?), VX e Q;

Analytic solution: T™(%, t) = sin (2mk™- (% — th)) e ll2mklne
VX € Q, VvVt >0

Boundaries Conditions: Periodic for all boundaries (avoid boundary
accuracy);

Physical variables: k = 2.1072 and w = (10717 _5'1072)T;
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oa Third order for constant advection case

Numerical Validation of third order accuracy

Initial condition: T(X,0) = sin (QTI'ET-)?), VX e Q;

Analytic solution: T™(%, t) = sin (2mk™- (% — th)) e ll2mklne
VX € Q, VvVt >0

Boundaries Conditions: Periodic for all boundaries (avoid boundary
accuracy);

Physical variables: k = 2.1072 and w = (10717 _5'1072)T;

LB variable: X = 5.10%, Ax = e Vee{1,2,...,10},

At:%v%im dax = day = ¢x =0,
s¢ =2 and sg = 1.2;

Error betwenn numerical and analytic solution:

Err (TLB - T'“) = Ax2X.€Z£ (THB(X) — TH(x))*.
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oa Third order for constant advection case

Numerical Validation of third order accuracy

Initial condition: T(X,0) = sin (27rl?T->?), VX e Q;

Analytic solution: T™(%, t) = sin (2mk™- (% — th)) e lI2mkllet Lo LB Scheme 1
VX e Q, VYVt > 0; 7E+ p=3 ,E

Boundaries Conditions: Periodic for all boundaries (avoid boundary
accuracy);

Physical variables: s = 2-1072 and w = (10717 —5-1072)T

LB variable: A = 5.10%, Ax = m ve e {1,2,...,10},
Ar= 5 ¢ = 1At>\2 dax = day = ¢x =0, ox
s =2and s =12 LB scheme: p ~ 2.98

Error betwenn numerical and analytic solution:

Err (TLB - T'“) = Ax2X.€Z£ (THB(X) — T*(x))*.
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oo LB method as image processing

Context
Marine radar images: low contrast, weak contours and
a strong interference noise (in the

Range-Doppler Map: a Fourier
domain);

Distance (metre)

-1000 -750 ~-500 -250 0 250 500 750
Fréquence Doppler (Hz)

Raw marine radar images (in

Range-Doppler Map) with a
target at 12900m.
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oo LB method as image processing

Marine radar images: low contrast, weak contours and
a strong interference noise (in the
Range-Doppler Map: a Fourier
domain);

First noise extraction: by image/signal processing, the
signal of interest still contains noise
and may lose clarity;

Context

12950

W

£ 12850

tre)

e (m

5 12300
a
12750

12700

-1000 750 -500 -250 0 250 500 750
Fréquence Doppler (Hz)

Marine radar images after first
noise extraction (in
Range-Doppler Map) with a
target at 12900m.
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oo LB method as image processing

Marine radar images: low contrast, weak contours and
a strong interference noise (in the
Range-Doppler Map: a Fourier
domain);

First noise extraction: by image/signal processing, the
signal of interest still contains noise
and may lose clarity;

The LB scheme goals: enhance the remaining signal +
reduce the noise arising from the
image processing.

Context

12950

12900

tre)

£ 12850

e (m

5 12300
a
12750

12700

-1000 750 -500 -250 0 250 500 750
Fréquence Doppler (Hz)

Marine radar images after first
noise extraction (in
Range-Doppler Map) with a
target at 12900m.
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oo LB method as image processing

Methodology

The LB scheme goals: enhance the remaining signal + reduce the noise arising from
the image processing.

I 9/13



oo LB method as image processing

Methodology
The LB scheme goals: enhance the remaining signal + reduce the noise arising from
the image processing.

Enhancement: provided by an advection term driven by the remaining information

gradient pointing to the maxima (w(X));
Noise reduction: provided by the Cahn-Hilliard energy [5]:

o diffusion term (kK = -2
¢W

o a double well potential (the force term).

@ S. M. Allen and J. W. Cahn, “A microscopic theory for antiphase boundary motion and its application to
antiphase domain coarsening,” Acta metallurgica, vol. 27, no. 6, pp. 1085-1095, 1979.
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oo LB method as image processing

Methodology
The LB scheme goals: enhance the remaining signal + reduce the noise arising from
the image processing.
Enhancement: provided by an advection term driven by the remaining information
gradient pointing to the maxima (w(X));
Noise reduction: provided by the Cahn-Hilliard energy [5]:

o diffusion term (n = 5¢W>

o a double well potential (the force term).

Boundaries condition: left and right: periodic; top and bottom: homogeneous
Neumann.

@ S. M. Allen and J. W. Cahn, “A microscopic theory for antiphase boundary motion and its application to
antiphase domain coarsening,” Acta metallurgica, vol. 27, no. 6, pp. 1085-1095, 1979.
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oo LB method as image processing

Methodology

The LB scheme goals: enhance the remaining signal + reduce the noise arising from
the image processing.
Enhancement: provided by an advection term driven by the remaining information
gradient pointing to the maxima (w(X));
Noise reduction: provided by the Cahn-Hilliard energy [5]:

o diffusion term (n = £¢W>

o a double well potential (the force term).
Boundaries condition: left and right: periodic; top and bottom: homogeneous
Neumann.

The LB scheme simulates the PDE

) ,-::T force term
e T(X,t)+ V- (W(X)T(X,t)) — s¢— AT(Xt) = ———W'(T),
w 54‘

where the double well potential W (x) = 0.5x2 (1 — x)? and

1
m:Awmw:%
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oo LB method as image processing

Experiments
LB variables: Ax =107, At =107, = 755, dq, = ¢g, = 1073, ¢x =0,
E'j:v_s}andse:SQ;:l.
The temporal iterations are stopped when the relative error
ITEB(x, t + At) — TR, 1) 2

< tol.
[ TLE(X, t + At)|2 B
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oo LB method as image processing

Experiments
LB variables: Ax =10"1, At =10"2, ¢, = can o = do, = 1073, ¢, =0,
E'j»:v_t}andsG:ngl.

o Additional term: lowest numerical influence in the temporal evolution of the
temperature T — negligible;

AW (WRTED)] | -AgaaT(@ )| | —AaV-[T(x, 01 (W(9) -w(D)]

.
.
‘ W

12650 2

e (métre)

£ 12800
°
12750

12700

1000 ~750 -500 250 0 250 500 750
Fréquence Doppler (Hz)

1000 -750 -500 -250 O 250 500 750

1000 -750 -500 -250 © 250 500 750
Fréquence Doppler (Hz)

Fréquence Doppler (Hz)

(a) Advection term. (b) Diffusion term. (c) Additional term.

Figure: Terms of the equivalent PDE at second order after scheme convergence, induced by the
non-constant advection of an advection-diffusion equation.
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oo LB method as image processing

Experiments
LB variables: Ax =1071, At =1072, ¢, = 0127’:)\2 dqo = ¢q, = 1073, ¢ =0,
c';r:v_s}and%253:1.

o Additional term: lowest numerical influence in the temporal evolution of the
temperature T — negligible;

o Previous setting for relaxation time to suppress certain second order terms;

12950 12950

12900 12900

12850 12850

12800

Distance (métre)
Distance (métre)

12800
12750 12750

12700 12700

-1000 -750 ~-500 -250 O 250 500 750

-1000 -750 -500 -250 O 250 500 750
Fréquence Doppler (Hz)

Fréquence Doppler (Hz)

(a) Initial condition. (b) Temperature after scheme convergence.

Figure: Temperature T after scheme convergence, seen in the RDM and following an
advection-diffusion LB scheme with non-constant advection.
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oo LB method as image processing

Experiments

: . _10-1 —10-2 ——— — —10-3 _

LB variables: Ax =10"1, At =102, ¢}, = CY]TI:)\Z ¢q = ¢q}/ =103 ¢, =0,
c';rzv'o}and%:s;:l.
o Additional term: lowest numerical influence in the temporal evolution of the
temperature T — negligible;
o Previous setting for relaxation time to suppress certain second order terms;
® Result improvement by correction of s;.

12950 12950
12900 12900
12850 12850

12800

Distance (métre)
Distance (métre)

12800
12750 12750

12700 12700

-1000 -750 ~-500 -250 O 250 500 750

-1000 -750 -500 -250 O 250 500 750
Fréquence Doppler (Hz)

Fréquence Doppler (Hz)

(a) Initial condition. (b) Temperature after scheme convergence.

Figure: Temperature T after scheme convergence, seen in the RDM and following an
advection-diffusion LB scheme with non-constant advection.
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oo LB method as image processing

Comparison of SRT and MRT LB scheme

SRT or BGK: few LB parameters but lack of
stability [6, 7];

ﬁ T. Geback and A. Heintz, “A lattice Boltzmann method for the

advection-diffusion equation with Neumann boundary conditions,”
Communications in Computational Physics, vol. 15, no. 2,
pp. 487-505, 2014.

ﬁ L. Li, R. Mei, and J. F. Klausner, “Lattice Boltzmann Models for

the convection-diffusion equation: D2Q5 vs D2Q9,” International
Journal of Heat and Mass Transfer, vol. 108, pp. 41-62, 2017.
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oo LB method as image processing

Comparison of SRT and MRT LB scheme

SRT or BGK: few LB parameters but lack of
stability [6, 7];

MRT: significant number of parameters.
Higher order calculations drive the
choice of certain parameters;

B T. Geback and A. Heintz, “A lattice Boltzmann method for the

advection-diffusion equation with Neumann boundary conditions,”
Communications in Computational Physics, vol. 15, no. 2,
pp. 487-505, 2014.

ﬁ L. Li, R. Mei, and J. F. Klausner, “Lattice Boltzmann Models for

the convection-diffusion equation: D2Q5 vs D2Q9,” International
Journal of Heat and Mass Transfer, vol. 108, pp. 41-62, 2017.
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LB method as image processing

Comparison of SRT and MRT LB scheme

SRT or BGK: few LB parameters but lack of
stability [6, 7];

MRT: significant number of parameters.
Higher order calculations drive the
choice of certain parameters;

For the stability study, the relative error:

[TH (X t+ At) — THE(X, 1),
[ TEE(X, t + At)] 12 7

ﬁ T. Geback and A. Heintz, “A lattice Boltzmann method for the
advection-diffusion equation with Neumann boundary conditions,”
Communications in Computational Physics, vol. 15, no. 2,
pp. 487-505, 2014.

[

L. Li, R. Mei, and J. F. Klausner, “Lattice Boltzmann Models for

the convection-diffusion equation: D2Q5 vs D2Q9,” International
Journal of Heat and Mass Transfer, vol. 108, pp. 41-62, 2017.

Relative Error

Relative Error

0 100 200 300 400 500 60 700
Number of temporal iteration

SRT LB Scheme

— at=0.005
a=0.007
— at=0012

0 100 200 300 400 500 60 700
Number of temporal iteration

MRT LB Scheme
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@a Conclusion

® A set of relaxation time to have third order accuracy for advection-diffusion
problem;

® Simulated PDE of a diffusion and non constant advection problem (MRT-LB
scheme to D2Q9 lattice);

® The additional term may negligible up to the context;

© Efficient signal enhancement (real time) for marine radar images;
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@a Appendix

2 8 Af?
8 A2 92 -
mk+At8 my + meq:m:—AtZMk-

t .

8
v 3
2 ek > Miiv H (779) % + O@a8),

|13/13



©'a Appendix

9 NSNS 8 A2 8
Ar— € _ % 22 A 3
e+ At my AtE_O:Mk, RV 5 E:o: (f )v,+(’)(At ).

For k = 0, the moment mg = ma‘ = mgq =T.
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©'a Appendix
; ATz é (f”) T + O(Ar%).

a2 92 -
—mT = mp — ALY My 7V

a
my + At—my + —
k at v T2 o

i=

For k = 0, the moment mg = m§ = moq =T

8 A% 92 LI a2 8
THA—T+ — —T=T-At> 7V + — > 7 H (£ +0o(At
ot 2 a2 P 2 ,:ov' (I )v’ (ar)
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Appendix

8 N 8 Te. AR S T (ped) 3
et At my = m = my —AtS My 7V, +T§ My i H (£99) -7 + O(ar).
i=l i

For k = 0, the moment mg = m§ = moq =T

3 A2 52 LI
THAt—T+ ——T=T-Aty v.Vf
ot 2 ot? =

8
The ter \ZTﬁf,* is decomposed by the formula
i=0

(My i, zi)

8 8
zifi(%,t) = my.
; Z 1M1
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Appendix

F) 2 8

o)) = At—T + AtV — At vl 8

o FAVT = | () W g T
i=0
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Appendix

3 N e\ . O
O(A) = At—T + AtV* — —— .-H(f,. )-v,-——T
t = ot?
The use of previous approximation of non-conserved moment (for j*) leads to
a R A a?
3y _ g 2 _T eq) -
O(At") = At—T + AtV 7 — At <7——) ViH ()W, — —T|.
(a8) ot J s 2 g ! ( i " a2

For second order terms and using the same decomposition formula, one obtains
2

T

2 2
SO (55) 7 = 2 {% (404 Stom) T+ 250 (doy T) s (40— 340 ) T]
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Appendix

T (57) 5 - SLT]

o) = a2 T4 A Al (i - 1) 28: 7 H (f.eq) - a—zr
ot s 2/ |="7 i " a2

For second order terms and using the same decomposition formula, one obtains
2

2 2
S (1) =7 [ (04 Som) T2 (b T) + g (6= 340 ) 7]

T

For second derivative in time, one obtains

azrf 2 (702 T) + 0(an) = X2V [#(F) V- (7 T, ¢ o(at
ST ==V (w0 )+ (A1) = N2V [#(R) V- (#(3) T(%, £))] + O(At)

dx2

2D (s &
= < (R@TE ) + 250y (M (T, 1)

2
+% (WRTE 8) = V-[T(%, 4 (7)) .W(z)]) +0(An).
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Appendix

o'a

For second order terms and using the same decomposition formula, one obtains
82 1 92 02 1
7T eq) .7 — 22 | 2 z 7 g _
z]_:", H (fl ) Vi = A |:6x2 (¢E + 2¢pxx) T+28x8y (¢pxy T) + By2 (¢E 2¢pxx> T

For second derivative in time, one obtains
2 F) )

- T =—-AV- <”(>‘<’)a T) + O(At) = XV [W(X)V- (W(X)T(X, t))] + O(At)

Rwy () T(Z, 1))

(2 (B@TE ) +2 o (
— (Wi (X)T(X, — (w,
ax2 x OxOy x

(X)T(x, t)) — V- [T(x, t)J (W(X)) - v'v'()?)]) + O(At).

9%
5,2 (Wy
Therefore, the following system has to be solved:

1 2 _ =112 =2
do + Sépx —Wx = & a4 H"‘;H = ¢ + ||W2H
¢ny — wywy =0 <— ¢pxy = wxwy

= _ 2 2
o b = We — W,

1 2
¢ — 5dp — wy
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©'a Appendix

For second order terms and using the same decomposition formula, one obtains

T feq) - 2| 0 1 22 82 1
Z"i -H (fi )'Vi:)‘ ) ¢E+5¢pxx T+2m (¢nyT)+87y2 ¢E*5¢pxx T
7

For second derivative in time, one obtains
2

T=-\V a2 T O(AL) = N2V [W(R) V- (W(K) T(X, t o(At
o T=- -(w(x@ )+ (At) = NV [#(R) V- (F(R) T(F, )] + O(A)

2 & s = & o
=3 { 5z (MEOTE ) + 2 (s (Rwy (R T(R. 1)

8 , ,
57 (W@T(F, 1) = V[T, ) (#(2) -v'v'()?)]) +O(A).

Therefore, the following system has to be solved:

1 2 _ =112 =2
do + Sépx —Wx = & a4 H"‘;H = ¢ + ||W2H
¢pxy —1 Wx Wy , =0 <— ¢pxy = w;wy '
¢ — §¢pxx -w =a bppe = Wy — wy

o (Atz) = % T(X, t) + AV- (W(R) T(%, ) — AN L o1 AT (R, t) — AtA?0 V- [T(X, £)d (W(R)) - w(X)]
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