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Kinetic algorithm
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Conservation laws

System of m conservation laws in dimension d

∂tW +
d∑

i=1

∂iQ
i (W ) = 0,

I Unknown: W (X , t) ∈ Rm, space variable: X = (x1 . . . xd),
time variable: t.

I ∂i = ∂
∂xi

, ∂t = ∂
∂t .

I Hyperbolicity: let N ∈ Rd be an arbitrary space direction. The
flux

Q(W ,N) =
d∑

i=1

NiQ
i (W )

is supposed to be hyperbolic, i.e. the jacobian of the flux
dWQ(W ,N) is diagonalizable with real eigenvalues.
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Kinetic representation

We consider a set of d + 1 (or more) kinetic velocities Vk ,
k = 0 . . . d + 1, associated to vectorial kinetic functions
Fk(W ) ∈ Rm. The macroscopic data are related to the kinetic data
by

W =
∑
k

Fk .

We also define “Maxwellian” equilibrium functions Mk(W ) ∈ Rm

such that
W =

∑
k

Mk(W ).

The kinetic BGK representation is given by transport equations
with relaxation source terms [Bou99, ADN00]

∂tFk + Vk · ∇XFk =
1
τ

(Mk(W )− Fk) .
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Kinetic representation

When the relaxation time τ → 0+, the kinetic model is formally
equivalent to the initial system of conservation laws if

W =
∑
k

Mk(W ),
∑
k

V i
kMk(W ) = Q i (W ), i = 1, . . . , d .

I Linear system of size m(d + 1)×m(d + 1) for finding the
Maxwellian. One expects a unique solution.

I In practice it is difficult to solve directly the BGK system. A
splitting is preferable.
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Kinetic algorithm

1. Start with W (·, 0). Construct kinetic vectors Fk(·, 0) such that
W =

∑
k Fk (not unique);

2. solve the free transport equations ∂tFk + V i
k · ∂iFk = 0 for a

duration of ∆t. This gives

Fk(X ,∆t−) = Fk(X −∆tVk , 0);

3. define
W (·,∆t) =

∑
k

Fk(·,∆t−);

4. apply a relaxation

Fk(·,∆t+) = ωMk(W (·,∆t)) + (1− ω)Fk(·,∆t−).

Interesting cases: ω = 1, ω = 2, ω is a matrix.
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Flux error representation

During the computations, one expects that
∑

k V
i
kFk ' Q i (W ), we

thus introduce the approximated flux Z , and the flux error Y

Z i =
∑
k

V i
kFk , Y i = Z i − Q i (W ).

The kinetic algorithm is then a functional operatorM(∆t) that
maps (W (·, 0),Y i (·, 0)) to (W (·,∆t),Y i (·,∆t+)).
1. The operatorM is made of (linear) shift operations and

(non-linear) local relaxations.
2. In the (W ,Y i ) variables, when ω = 2, the relaxation operation

simply reads
Y i (·,∆t+) = −Y i (·,∆t−).

This induces fast oscillations of the flux error. For the analysis
it is better to replaceM byM◦M.
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Equivalent equation

In principle it is now easy, while tedious, to compute the equivalent
equation of the kinetic algorithm: simply compute a Taylor
expansion of

M(∆t/2)−M(−∆t/2)

∆t

with respect to ∆t up to order O(∆t2).
I The term X −∆tVk in the shift operation generates partial

derivatives in space.
I Because of symmetries, when ω = 2, the even order terms

vanish.
I And finally, the relaxation introduce non linearities. We end up

with a system of non-linear conservation laws of first order in
(W ,Y i ).
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One-dimensional case
We consider the case d = 1, we have d + 1 = 2 kinetic velocities.
We take V0 = −λ, V1 = λ, W = F0 + F1. The equivalent equation
for ω = 2 at order O(∆t2) is

∂tW + ∂xQ(W ) = 0,

(of course) and
∂tY − dWQ(W )∂xY = 0.

I We observe that the system is hyperbolic and that the waves
for W and Y move in opposite direction.

I No assumption of smallness of Y !
I It is necessary to analyze the third order terms to find the

sub-characteristic stability condition

λ ≥ max
1≤i≤m

|λi (W )| ,

where λi (W ) are the eigenvalues of dWQ(W ).
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Two-dimensional case
We consider the case d = 2, we have d + 1 = 3 kinetic velocities.
We take

Vk = λ

(
cos 2kπ

3
sin 2kπ

3

)
The equivalent equation on W for ω = 2 at order O(∆t2) is

∂tW + ∂1Q
1(W ) + ∂2Q

2(W ) = 0,

(of course). Setting Ai (W ) = dWQ i (W ), the equation for Y is

∂t

(
Y1
Y2

)
+

(
λ
2 I − A1(W ) 0
−A2(W ) −λ

2

)
∂1

(
Y1
Y2

)
+(

0 −λ
2 I − A1(W )

−λ
2 −A2(W )

)
∂2

(
Y1
Y2

)
= O(∆t2),

We can prove that the equivalent system is symmetrizable, and
thus hyperbolic, if λ is large enough (sub-characteristic condition).



12/26

Magnetohydrodynamics
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Magnetohydrodynamics (MHD) equations
We consider the MHD equations with Divergence Cleaning
[DKK+02]

W =


ρ
ρU
E
B
ψ

 , Q(W ,N) =


ρU · N

ρ(U · N)U + (p + B·B
2 )N − (B · N)B

(E + p + B·B
2 )U · N − (B · U)(B · N)

(U · N)B − (B · N)U + ψN
c2
hB · N

 .

The velocity and magnetic field are denoted

U = (u1, u2, u3)T , B = (b1, b2, b3)T ,

the pressure is given by a perfect-gas law with a constant polytropic
exponent γ > 1

p = (γ − 1)(E − ρU · U
2
− B · B

2
).
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Lattice-Boltzmann scheme

In the Lattice-Boltzmann approach, one considers a structured
cartesian grid of step ∆x and four kinetic velocities

Vk = λ

(
cos kπ

2
sin kπ

2

)
, k = 0, . . . , 3.

I Because 4 > d + 1, the Maxwellian is not unique [Fév14]
I With a time-step ∆t = ∆x/λ, the transport steps can be

exactly solved by simple shifts.
I The scheme is then the scheme of [Dub14].
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GPU implementation

We have implemented the LBM method with PyOpenCL and an
efficient memory layout. The algorithm is memory bound. We are
not far from the optimal memory bandwidth [BDF+21].
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Numerical results
Orszag-Tang vortex on a 4096× 4096 grid and ω = 1.8

s
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Tilt instability
Test case described in [BDF+21].
I Instability with appearance of a current sheet (Dirac measure

on a curve).
I We measure the correct instability rate.
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Explicit, CFL-free, Discontinuous Galerkin
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Discontinuous Galerkin (DG) solver

The main task is to solve a single transport equation

∂t f + V · ∇f = 0

in a domain Ω with a complex geometry. The characteristic method
is no more a good idea (problems with stability, conservation,
boundaries).
I Unstructured mesh of Ω made of tetrahedral cells.
I The transported function f is approximated in cell L by a

linear expansion on basis functions

f (x , n∆t) ' f nL (x) =
∑
j

f nL,jψ
L
j (x), x ∈ L. (1)

I The unknowns are the coefficients f nL,j of the linear expansion.
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Implicit DG
Implicit DG approximation scheme for going from time step n − 1
to time step n: for all cell L and ∀i ,∫
L

f nL − f n−1
L

∆t
ψL
i −
∫
L
V ·∇ψL

i f
n
L +

∫
∂L

(
V · N+f nL + V · N−f nR

)
ψL
i = 0.

(2)
I R denotes the neighbor cells along ∂L.
I V · N + = max(V · N, 0), V · N − = min(V · N, 0). We thus

use an upwind numerical flux.
I N is the unit normal vector on ∂L oriented from L to R .
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Downwind algorithm
The scheme seems to be implicit, but it is actually explicit.

I The solution can be explicitly computed by following a
topological ordering of a Direct Acyclic Graph (DAG), e.g. 3,
7, 0, 15, 1, etc.

I In addition there is parallelism: (3,7) can be computed in
parallel, then (0,15,1) can be computed in parallel, etc.

I Low storage: the solution can be replaced in memory during
the computations.
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Rust implementation
We have implemented the downwind algorithm in Rust:
I Recent programming language (2010) oriented towards

concision, speed and security.
I Most common bugs are avoided at compile time: memory

leaks and segfaults, uninitialized data, race conditions.
I Automatic parallelization tools: if the sequential code works,

the parallel version is guaranteed to be correct.
I Fast. More details in [GHMD21].
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Numerical results
I Maxwell’s equation: W = (ET ,HT )T , with electric field

E ∈ R3 and magnetic field H ∈ R3.
I Maxwell flux:

Q(W ,N) =

(
−N × H
N × E

)
.

.
I Unstructured mesh of the unit cube made with large and small

cells
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Numerical results

I We compute a plane wave on the above mesh.
I We check second order accuracy and the CFL-less feature
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Conclusion

The kinetic approach is a generalization of the LBM:
I Can handle arbitrary Mach flows.
I Very fast computations on Cartesian grids.
I Construction of CFL-free explicit DG scheme on unstructured

meshes.
I Equivalent equation: useful theoretical tool (stability analysis,

boundary conditions, behavior of hidden variables).
Future works: boundary conditions, better parallelism (IMEX
approach), other applications (cavitation).
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