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Kinetic algorithm



Conservation laws

System of m conservation laws in dimension d
d .
W+ 0:Q/(W) =0,
i=1

» Unknown: W(X,t) € R"™, space variable: X = (xi...xq),
time variable: t.

> 9 = 8%, O = %
» Hyperbolicity: let N € RY be an arbitrary space direction. The
flux

d
QIW.N) =) NQ(W)
i=1

is supposed to be hyperbolic, i.e. the jacobian of the flux
dw Q(W, N) is diagonalizable with real eigenvalues.



Kinetic representation

We consider a set of d + 1 (or more) kinetic velocities V4,
k=0...d+ 1, associated to vectorial kinetic functions
Fi(W) € R™. The macroscopic data are related to the kinetic data

by
W = ZFk.
k

We also define “Maxwellian” equilibrium functions M, (W) € R™
such that

W=>" M (W).
k

The kinetic BGK representation is given by transport equations
with relaxation source terms [Bou99, ADNOO]

1
OtFr + Vi - VxFy = ; (Mk(W) — Fk).



Kinetic representation

When the relaxation time 7 — 0T, the kinetic model is formally
equivalent to the initial system of conservation laws if

W=> M(W), > ViM(W)=Q W), i=1,...d
k k

» Linear system of size m(d + 1) x m(d + 1) for finding the
Maxwellian. One expects a unique solution.

» In practice it is difficult to solve directly the BGK system. A
splitting is preferable.



Kinetic algorithm

1. Start with W(-,0). Construct kinetic vectors Fi(+,0) such that
W =", Fk (not unique);

2. solve the free transport equations 0; Fy + V,i -0;F; =0 for a
duration of At. This gives

Fk(X,At_) = Fk(X — Ath,O);

3. define
W(,At)=> Fu(, At7);
k

4. apply a relaxation
Fk('7 At+) = WMk(W('7 At)) + (1 - w)Fk('a At—)'

Interesting cases: w =1, w = 2, w is a matrix.



Flux error representation

During the computations, one expects that Y, V}Fx ~ Q'(W), we
thus introduce the approximated flux Z, and the flux error Y

Z'=>"ViF, Y =Z-Q(w)
k

The kinetic algorithm is then a functional operator M(At) that
maps (W(70)7 Y’(,O)) to (W('>At)7 YI('>At+))'
1. The operator M is made of (linear) shift operations and
(non-linear) local relaxations.

2. In the (W, Y7) variables, when w = 2, the relaxation operation
simply reads ' '
Y'(,AtT) = =Y'(, At7).
This induces fast oscillations of the flux error. For the analysis
it is better to replace M by M o M.



Equivalent equation

In principle it is now easy, while tedious, to compute the equivalent
equation of the kinetic algorithm: simply compute a Taylor

expansion of

M(At/2) — M(—At/2)
At
with respect to At up to order O(At?).
» The term X — AtV in the shift operation generates partial
derivatives in space.
» Because of symmetries, when w = 2, the even order terms

vanish.
» And finally, the relaxation introduce non linearities. We end up
with a system of non-linear conservation laws of first order in

(W, Y.



One-dimensional case

We consider the case d = 1, we have d + 1 = 2 kinetic velocities.
We take Vo = =\, Vi = A\, W = Fg + F1. The equivalent equation
for w = 2 at order O(At?) is

W + 8, Q(W) =0,

(of course) and
OtY —dwQ(W)osY = 0.

» We observe that the system is hyperbolic and that the waves
for W and Y move in opposite direction.
» No assumption of smallness of Y'!

> |t is necessary to analyze the third order terms to find the
sub-characteristic stability condition

A> max [M(W),

1<i<m

where \;(W) are the eigenvalues of dy, Q(W).



Two-dimensional case

We consider the case d = 2, we have d + 1 = 3 kinetic velocities.

We take ok
cos =37
Vi = 3
The equivalent equation on W for w = 2 at order O(At?) is

W + 01QH(W) + 5,Q*(W) = 0,

(of course). Setting A/(W) = dw Q'(W), the equation for Y is
Yi =AY (W) 0 Y1
() (Pl 5 ) (%)
0 -3/ —AYW) Y1\ )

We can prove that the equivalent system is symmetrizable, and
thus hyperbolic, if A is large enough (sub-characteristic condition).



Magnetohydrodynamics



Magnetohydrodynamics (MHD) equations

We consider the MHD equations with Divergence Cleaning
[DKK*02]

p pU-N

pU p(U-N)U+(p+ EF)N — (B - N)B
W= g , QW,N) = (5—|—p—}-¥) -N—(B )(B N)

B (U-N)B (B )U—I—?,/JN

Y c?B- N

The velocity and magnetic field are denoted

U: (u17u27u3)T) B = (b17b27b3)T>
the pressure is given by a perfect-gas law with a constant polytropic
exponent v > 1

vu-U B-B

p=(—-1)(E€- P =" )



Lattice-Boltzmann scheme

In the Lattice-Boltzmann approach, one considers a structured
cartesian grid of step Ax and four kinetic velocities

km
vk:A<C°sk3r ) k=0,...,3.

sin

» Because 4 > d + 1, the Maxwellian is not unique [Fév14]

» With a time-step At = Ax/J, the transport steps can be
exactly solved by simple shifts.

» The scheme is then the scheme of [Dub14].



GPU implementation

We have implemented the LBM method with PyOpenCL and an
efficient memory layout. The algorithm is memory bound. We are

not far from the optimal memory bandwidth [BDF*21].

[ prec. [b (GB/s, shift-only)[b (GB/s, shift-relax) max. theoretical b (GB/s)]

Intel |float32 17.58 13.38 60
Intel |float64 19.12 17.48 60
Iris 640|float32 26.20 24.98 34
Iris 640|float64 20.08 3.78 34
GTX |float32 147.54 146.94 192
GTX |float64 148.76 49.72 192
Quadro|float32 336.45 329.06 432
Quadro|float64 344.50 127.21 432
V100 |float32 692.31 676.44 900
V100 |float64 705.88 610.17 900

Table 2 Bandwidth efficiency of the LBM algorithm. Comparison of the data transfer
rates of the shift-only algorithm and of the shift-and-relaxation algorithm. The resulting
bandwidth is compared with the maximal memory bandwidth advertised by the vendors

of the hardware devices.




Numerical results
Orszag-Tang vortex on a 4096 x 4096 grid and w = 1.8

1




Tilt instability
Test case described in [BDF21].
» Instability with appearance of a current sheet (Dirac measure

on a curve).
> \We measure the correct instability rate.
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Fig. 9 Snapshots of the magnetic current density recorded at time ¢ = 6 in a spatial zone
around the current sheets. Grid sizes are Na X Ny = 256 x 256, Nz x Ny = 1024 x 1024,
Nzx x Ny = 4096 x 4096.



Explicit, CFL-free, Discontinuous Galerkin



Discontinuous Galerkin (DG) solver

The main task is to solve a single transport equation
Of +V-VFf=0

in a domain Q with a complex geometry. The characteristic method
is no more a good idea (problems with stability, conservation,
boundaries).

» Unstructured mesh of Q made of tetrahedral cells.

» The transported function f is approximated in cell L by a
linear expansion on basis functions

f(x, nAt) Z flf(x), x€L (1)

» The unknowns are the coefficients £ of the linear expansion.



Implicit DG
Implicit DG approximation scheme for going from time step n — 1
to time step n: for all cell L and Vi,

fn__fn ' Lgn +rn —rn L
L At oL
(2)
» R denotes the neighbor cells along JL.
> V. N+ =max(V-N,0), VN~ =min(V - N,0). We thus
use an upwind numerical flux.
» N is the unit normal vector on JL oriented from L to R.
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Downwind algorithm

The scheme seems to be implicit, but it is actually explicit.
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» The solution can be explicitly computed by following a
topological ordering of a Direct Acyclic Graph (DAG), e.g. 3,
7,0, 15, 1, etc.

» In addition there is parallelism: (3,7) can be computed in
parallel, then (0,15,1) can be computed in parallel, etc.

» Low storage: the solution can be replaced in memory during
the computations.



Rust implementation
We have implemented the downwind algorithm in Rust:

» Recent programming language (2010) oriented towards
concision, speed and security.

» Most common bugs are avoided at compile time: memory
leaks and segfaults, uninitialized data, race conditions.

» Automatic parallelization tools: if the sequential code works,
the parallel version is guaranteed to be correct.

» Fast. More details in [GHMD21].

Error e, CPU (s)

Method CFL 3 At v=2 v=>5 1 thread 24 threads
RK3DG 0.37 0.00009 0.00070 0.01238 4.607.95 T85.28
D3p4P 0.37 0.00009 0.00103 0.01467 1.524.45 23448
RK3DG 0.93 0.00023 0.00070 0.01238 2.189.76 384.79
D34P 0.93 0.00023 0.00103 0.01467 613.44 90.84
RK3DG 1.85 0.00046 0.00070 0.01238 1.121.96 212.60
D3g4P 185 0.00046 000103 001467 30441 1514
D3Q4P 3.70 0.00091 0.00103 0.01468 153.09 22.40
D3Q4P 9.25 0.00228 0.00104 0.01479 61.60 8.96
D3p4P 18.50 0.00456 0.00115 0.01619 30.76 4.53
D3p4P 37.00 0.00912 0.00210 0.02092 15.34 2.46
D34P 92.50 0.02281 0.01107 0.16589 6.17 0.92

D3Q4P 185.00 0.04562 0.04509 0.40344 3.10 0.48




Numerical results

» Maxwell's equation: W = (ET,HT)T, with electric field
E € R3 and magnetic field H € R3.

> Maxwell flux:
—N x H
aw.m = ().

» Unstructured mesh of the unit cube made with large and small
cells




Numerical results

» We compute a plane wave on the above mesh.
» We check second order accuracy and the CFL-less feature
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Conclusion

The kinetic approach is a generalization of the LBM:
» Can handle arbitrary Mach flows.
» Very fast computations on Cartesian grids.
» Construction of CFL-free explicit DG scheme on unstructured
meshes.
» Equivalent equation: useful theoretical tool (stability analysis,
boundary conditions, behavior of hidden variables).
Future works: boundary conditions, better parallelism (IMEX
approach), other applications (cavitation).
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