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Lattice-Boltzmann basics

Moments, distributions, lattices, discretization
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Navier-Stokes-Fourier system

Mass, momentum and energy conservations,

∂ρ

∂t
+

∂ρuβ
∂xβ

= 0 , (1)

∂ρuα
∂t

+
∂ [ρuαuβ + pδαβ − Tαβ]

∂xβ
= 0 . (2)

∂ρ(e + u2α/2)

∂t
+

∂
[
(ρ(e + u2α/2) + p)uβ + qβ − uαTαβ

]
∂xβ

= 0 . (3)

Equations of state, e.g.

p = ρRT , (4)

e = CvT + e0 . (5)

Constitutive equations,
qα = −λ

∂T

∂xα
, (6)

Tαβ = µ

[
∂uα
∂xβ

+
∂uβ
∂xα

− δαβ
2

3

∂uγ
∂xγ

]
. (7)
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Late 1980s, birth of Lattice-Boltzmann Methods

Figure 1: Guy R. McNamara and Gianluigi Zanetti, first Lattice-Boltzmann Model.

LBM algorithm is basically :

• Collision, local step

• Streaming, memory-shift

� Attractive method ! �
Figure 2: O’Brien’s schematic streaming.

� McNamara, G. R., & Zanetti, G. Use of the Boltzmann equation to simulate lattice-gas automata, Physical review letters, 1988.

� O’Brien, P. M. A framework for digital watercolor , MSc thesis, Texas A&M University, 2008.
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Velocity space discretization

Figure 3: D2Q9 lattice.

Figure 4: D3Q15, D3Q19 and D3Q27
lattices.

Each different lattice leads to a different Discrete Velocity Boltzmann Equation,

∂fi
∂t

+ ciα
∂fi
∂xα

= −1

τ

(
fi − f eqi

)
= −1

τ
f neqi , (8)

ci with i = 0, ..., q-1 and fi (t, x)=f (t, x , ci ).
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Time integration

• Discrete Velocity Boltzmann Equation (DVBE) with BGK collision kernel,
∂fi
∂t

+ ciα
∂fi
∂xα

= −1

τ

(
fi − f eqi

)
= −1

τ
f neqi . (9)

• Integration along characteristic dx = cidt and Crank-Nicolson,

fi (t+∆t, x+ci∆t) = fi (t, x)−
∆t

2

{ [
1

τ
f neqi

]
(t, x)+

[
1

τ
f neqi

]
(t+∆t, x+ci∆t)

}
.

• Change of variables f i = fi +
∆t
2τ f

neq
i and τ = τ +∆t/2,

f i (t +∆t, x + ci∆t) =

{
fi −

∆t

2τ
f neqi

}
(t, x) , (10)

=

{
f eqi +

[
1− ∆t

2τ

]
f neqi

}
(t, x) , (11)

=

{
f eqi +

[
1− ∆t

τ +∆t/2

]
f
neq
i

}
(t, x) . (12)
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Equilibrium, non-equilibrium and moments

By definition in Lattice-Boltzmann fi = f eqi + f neqi :

ρ = Πf ,(0) =
∑
i

fi =
∑
i

f eqi , ρuα = Πf ,(1)
α =

∑
i

ciαfi =
∑
i

ciαf
eq
i , (13)

additionally, f eqi is also built such that,

ρuαuβ + pδαβ = Π
f eq ,(2)
αβ =

∑
i

ciαciβf
eq
i . (14)

Discrete Velocity Boltzmann Equation,
∂fi
∂t

+ ciα
∂fi
∂xα

= Ωi . (15)

Mass and momentum conservations are obtained using moments, e.g. :
∂ρ

∂t
+

∂ρuα
∂xα

=
∑
i

Ωi , (16)

∂ρuα
∂t

+
∂
[
ρuαuβ + pδαβ +Π

f neq ,(2)
αβ

]
∂xβ

=
∑
i

ciαΩi , (17)
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Distributions or Moments ?

Lattice-Boltzmann with q velocities could be understood in 2 equivalent ways :

DVBE,
∂fi
∂t

+ ciα
∂fi
∂xα

= Ωi

describes q equations for fi .

��

Extended hydrodynamic system,

∂Π
f ,(n)
α1···αn

∂t
+

∂Π
f ,(n+1)
α1···αnαn+1

∂xαn+1

= Π
Ω,(n)
α1···αn

describes q equations for Π
f ,(n)
α1···αn .

• What about boundary and initial conditions ?

• Which lattice closure, f eq and collision kernel should be used ?

• What is the range of validity in term of Pr, Ma, Re, etc ?

”Higher-order hydrodynamics” is a research field by itself. Some of these mod-

els fail to reproduce physical results (e.g. Burnett with Bobylev instabilities).

� Can we avoid those uncertainties ? �
9



Lattice-Boltzmann modeling

Lattice-Boltzmann is something in between Boltzmann and Navier-Stokes-Fourier.

� How to model compressible flows with Lattice-Boltzmann ? �

Nowadays, Lattice-Boltzmann is a fully fledged numerical method used for different

applications : fluids, solids, Schrödinger equation, finance, advection-diffusion etc...

� We can use classical tools : Taylor expansion and dimensional analysis. �
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Athermal Lattice-Boltzmann

Description of classical Lattice-Boltzmann
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Athermal Lattice-Boltzmann-BGK

This model is summarized by

• Equilibrium,

f eqi = ωi

{
H(0)ρ+

H(1)
iα

c2s
ρuα +

H(2)
iαβ

2c4s
[ρuαuβ] +

H(3)
iαβγ

6c6s
[ρuαuβuγ ]

}
. (18)

• Collide & stream, BGK,

f i (t +∆t, x) =
{
f eqi +

(
1− ∆t

τ +∆t/2

)[
f i − f eqi

]}
(t, x − ci∆t) . (19)

• Macroscopic reconstruction,

ρ(t +∆t, x) =
q−1∑
i=0

f i (t +∆t, x) , (20)

ρuα(t +∆t, x) =
q−1∑
i=1

ciαf i (t +∆t, x) . (21)
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Where to find the stress-tensor ?

∂Π
f ,(n)
α1···αn

∂t
+

∂Π
f ,(n+1)
α1···αnαn+1

∂xαn+1

= −1

τ
Π
f neq ,(n)
α1···αn +O(∆t2) (22)

↓ ↓ ↓ ↓

n = 0
∂ρ

∂t
+

∂ρuβ
∂xβ

= O(∆t2)

n = 1
∂ρuα
∂t

+
∂
[
ρuαuβ + ρc2s δαβ +Π

f neq ,(2)
αβ

]
∂xβ

= O(∆t2)

n = 2
∂
[
Π
f eq ,(2)
αβ +Π

f neq ,(2)
αβ

]
∂t

+
∂
[
Π
f eq ,(3)
αβγ +Π

f neq ,(3)
αβγ

]
∂xγ

= −1

τ
Π
f neq ,(2)
αβ +O(∆t2)

n = ... · · ·
13



Athermal model : Constitutive equation

The stress-tensor evolution equation is

−Π
f neq ,(2)
αβ = τρc2s

[
∂uα
∂xβ

+
∂uβ
∂xα

]
+O

(
τ ∂ρu3

∂x

)
+O(∆t2)

+τ
∂Π

f neq ,(2)
αβ

∂t
+ τ

∂Π
f neq ,(3)
αβγ

∂xγ
− τ

[
uα

∂Π
f neq ,(2)
βγ

∂xγ
+ uβ

∂Π
f neq ,(2)
αγ

∂xγ

]
. (23)

Usual low-Mach stress-tensor,

−Π
f neq ,(2)
αβ ≈ τρc2s︸︷︷︸

µ

[
∂uα
∂xβ

+
∂uβ
∂xα

]
. (24)

O
(
u3
)
error,

O
(
τ
∂ρu3

∂x

)
∝ u3 . (25)

Open system because

Π
f neq ,(3)
αβγ is unknown. Time evolution.
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Athermal constitutive equation, dimensional analysis 1/2

Assuming ts is the shortest characteristic time, nondimensional variables ∗ are

O(1),
∂

∂t
=

1

ts

∂

∂t∗
,

∂

∂x
=

1

L0

∂

∂x∗
, (26)

Π
f neq ,(2)
αβ = Π0Π

∗,f neq ,(2)
αβ , Π

f neq ,(3)
αβγ = Q0Π

∗,f neq ,(3)
αβγ , (27)

u = U0u
∗ , ρ = ρ0ρ

∗ , T = T0T
∗ , (28)

neglecting numerical errors, the nondimensional stress-tensor is expressed as

−Π
∗,f neq ,(2)
αβ =

µU0

L0Π0

[
∂u∗α
∂x∗β

+
∂u∗β
∂x∗α

]
+O

(
µU0

L0Π0
Ma2

)
+O

(
µU0

L0Π0

Q0

ρ0c2s U0

)
+O

(
τ

ts

)
+O

(
Ma2

Re

)
. (29)

When the classical low-Mach constitutive equation is verified, only the blue part

remains, in which case µU0
L0Π0

= 1. 15



Athermal constitutive equation, dimensional analysis 2/2

• −Π
∗,f neq ,(2)
αβ =

[
∂u∗α
∂x∗β

+
∂u∗β
∂x∗α

]
”hydrodynamic limit”.

• Ma2 ≪ 1 error coming from u3 isotropy defect can be neglected.

•
Q0

ρ0c2s U0
≪ 1 higher-order contributions from Π

f neq ,(3)
αβγ can be neglected.

•
τ

ts
≪ 1 stress-tensor time derivative can be neglected.

•
Ma2

Re
≪ 1 other terms can be neglected.

� Kn ∝ Ma/Re is not the only parameter that controls the consistency. �
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Time evolution of f neqi

To get more insight on the interpretation of the non-equilibrium evolution, let

recall the DVBE,
∂fi
∂t

+ ciα
∂fi
∂xα

= −1

τ

{
fi − f eqi

}
+O

(
∆t2

)
. (30)

Let also recall that fi = f eqi + f neqi such that the DVBE yields,

∂f neqi

∂t
+ ciα

∂f neqi

∂xα
= −1

τ

{
f neqi − Λi

}
+O

(
∆t2

)
, (31)

with Λi =
[
− τ

∂f eqi
∂t − τciα

∂f eqi
∂xα

]
. f neqi relaxes towards Λi with a characteristic

time τ .

� f neqi has its own ”equilibrium” : Λi . �
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Time evolution of Πf neq ,(2)
αβ

Hence, stress-tensor follows the compact equation,

∂Π
f neq ,(2)
αβ

∂t
+

∂Π
f neq ,(3)
αβγ

∂xγ
= −1

τ

{
Π
f neq ,(2)
αβ − Π

Λ,(2)
αβ

}
+O

(
∆t2

)
. (32)

• Small lattices → ”isotropy defects” e.g. Π(3) ∝ c2s Π
(1) (this explains the

O(u3) error in stress-tensor).

• Isotropy defect is even worse for higher order moments.

� Closure : regularization, higher order moments are filtered. �
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The concept of regularized kernels

Collision,
f colli = f eqi + (1−∆t/τ)f

neq
i , (33)

can be projected onto moments,

Πcoll ,(3) = Πeq,(3) + (1−∆t/τ)Π
neq,(3)

, (34)

Π
neq,(3)

is regularized (replaced) by Π̃neq,(3),

Πcoll ,(3) = Πeq,(3) + (1−∆t/τ)Π̃neq,(3) . (35)

Exemple : When Latt & Chopard regularization is applied to D3Q19, the rank

q = 19 of the solver is reduced to q̃ = 10.

� We are not anymore solving the Discrete Velocity Boltzmann Equation �

� Latt, J., & Chopard, B. Lattice Boltzmann method with regularized pre-collision distribution functions, Mathematics and Computers in

Simulation, 2006. 19
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Regularized Lattice-Boltzmann models

Regularized Lattice-Boltzmann model is obtained using Taylor expansion,

∂ρ

∂t
+

∂ρuβ
∂xβ

=O(∆t2) , (36)

∂ρuα
∂t

+
∂
[
ρuαuβ + ρc2s δαβ +Π

f neq ,(2)
αβ

]
∂xβ

=O(∆t2) , (37)

∂Π
f neq ,(2)
αβ

∂t
+

∂Π̃
f neq ,(3)
αβγ

∂xγ
= −1

τ

{
Π
f neq ,(2)
αβ − Π

Λ,(2)
αβ

}
+O (∆t) . (38)

Stress-tensor evolution is O (∆t) accurate, but Π̃neq,(3) can be freely changed

to increase stability/accuracy.
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Thermal Lattice-Boltzmann

Hybrid coupling, entropy equation and traceless collision

21



Different paths towards thermal flows

Due to isotropy errors (Π(3) ∝ c2s Π
(1)), energy conservation is wrong with stan-

dard lattices (e.g. D3Q19). Possible solutions,

• Multispeed, one large set of distributions. Computational efficiency is at

stake. ✗

• Double Distributions coupling, 2 sets of distributions, one for

mass/momentum and another for energy. Computational efficiency is at

stake. ✗

• Hybrid coupling, 1 small set of distributions and 1 energy equation

discretized by a finite difference scheme. Cheaper, allows coupling with a

wide variety of models. ✓
22



The entropy equation in non-conservative form

The entropy is a mode of the linearized Euler system, its coupling with

mass/momentum is weaker than using e.g. total energy or enthaply.

Entropy equation in the frame ref-

erence of a plane discontinuity,

u
∂s

∂x
= 0 . (39)

Contact discontinuity is compati-
ble. Shock is not, because u ̸= 0

such that ∂s/∂x = 0 is necessary.

1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

Figure 5: Entropy jump error with
entropy equation as a function of Ma.
γ = 1.2, 1.4, 1.6, 1.8 (top to bottom).

� Acceptable errors on plane shocks (∼ 5%) up to Mach 1.4 �
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Step-by-step Lattice-Boltzmann scheme from t to t + ∆t

• Initial solution, ρ(t, x), uα(t, x), T (t, x) and Π
f neq ,(2)
αβ (t, x) are known.

↓ ↓
Lattice-Boltzmann

• Compute Equilibrium f eqi (t, x)
and Non-Equilibrium f

neq
i (t, x).

• Collide & Stream provides the

updated distribution f i (t +∆t, x).
• Macroscopic update provides

ρ(t +∆t, x) and uα(t +∆t, x).

Finite Differences

• Compute the updated Entropy

s(t +∆t, x) using a one step

explicit scheme. MUSCL-Hancock

for advection and centered schemes

for heat diffusion and viscous heat.

↓ ↓
• Temperature update T (t +∆t, x) using ρ(t +∆t, x) and s(t +∆t, x).
• Stress-tensor update Πf

neq

αβ (t +∆t, x) using
[
Πf
αβ, ρ, uα,T

]
(t +∆t, x).

� Interface bewteen LBM/FD is the second order moment �
24
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for advection and centered schemes

for heat diffusion and viscous heat.

↓ ↓
• Temperature update T (t +∆t, x) using ρ(t +∆t, x) and s(t +∆t, x).
• Stress-tensor update Πf

neq

αβ (t +∆t, x) using
[
Πf
αβ, ρ, uα,T

]
(t +∆t, x).

� Interface bewteen LBM/FD is the second order moment �
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Step-by-step Lattice-Boltzmann scheme from t to t + ∆t

• Initial solution, ρ(t, x), uα(t, x), T (t, x) and Π
f neq ,(2)
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Thermal coupling, traceless collision

Πf
neq

αβ uses Πf
αβ, ρ, uα (LBM) and p (LBM/FD),

Πf
neq

αβ =
(
Πf
αβ − Πf eq

αβ

)
=

(
Πf
αβ − [ρuαuβ + pδαβ]

)
. (40)

Coupling errors between LBM/FD are stacked in the trace of Πf
neq

αβ .

A compressible scheme traditionally uses Stokes Hypothesis (traceless Π
f neq ,(2)
αβ ),

−Π
f neq ,(2)
αβ = µ

[
∂uα
∂xβ

+
∂uβ
∂xα

−
2δαβ
3

∂uγ
∂xγ

]
, (41)

The trace Πf
neq

αα is pure errors, it could be safely replaced by 0.

� New regularization Πf
neq

αα = 0 improves the stability. �

� Farag, G. & Zhao, S. & Coratger, T. & Boivin, P. & Sagaut, P. A pressure-based regularized lattice-Boltzmann method for the simulation of

compressible flows, Physics of Fluids, 2020. 25
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Compressible models & applications

Pressure-based model, unified model, applications

26



M2P2 Lattice-Boltzmann models 1/2

During the past few years, M2P2 designed different compressible models,

• Density based (ρ-based), 2019,
� Y. Feng, P. Boivin, J. Jacob and P. Sagaut. Hybrid recursive regularized thermal lattice Boltzmann model for

high subsonic compressible flows. Journal of Computational Physics, 2019.

� F. Renard, Y. Feng, , JF. Boussuge and P. Sagaut. Improved compressible Hybrid Lattice Boltzmann Method

on standard lattice for subsonic and supersonic flows. Computers & Fluids, 2021.

• Pressure based (p-based), early 2020,
� G. Farag, S. Zhao, T. Coratger, P. Boivin, G. Chiavassa and P. Sagaut. A pressure-based regularized

lattice-Boltzmann method for the simulation of compressible flows. Physics of Fluids, 2020.

• Improved-density based (iρ-based), late 2020,
� S. Guo, Y. Feng and P. Sagaut. Improved standard thermal lattice Boltzmann model with hybrid recursive

regularization for compressible laminar and turbulent flows. Physics of Fluids, 2020.

� How do they differ from one another ? Which one should be used ? �

27



M2P2 Lattice-Boltzmann models 2/2

Their 2nd -order distributions are :

f ρ,eqi = ωi

{
ρ +

H(1)
iα

c2s
ρuα +

H(2)
iαβ

2c4s

[
ρuαuβ + δαβρc

2
s (θ − 1)

] }
(42)

f p,eq
i = ωi

{
ρθ +

H(1)
iα

c2s
ρuα +

H(2)
iαβ

2c4s
[ρuαuβ + δαβ0]

}
(43)

f iρ,eq
i = ωi

{
ρ +

H(1)
iα

c2s
ρuα +

H(2)
iαβ

2c4s
[ρuαuβ + δαβ0] +

ωi − δ0i
ωi

ρ[θ − 1]
}

(44)

With 2 different update rules for mass :

• ρ/iρ-based : ρ(t +∆t, x) =
∑q−1

i=0 f i (t +∆t, x) (45)

• p-based : ρ(t +∆t, x) =
∑q−1

i=0 f i (t +∆t, x)+ρ(t, x)[1− θ(t, x)] (46)

� Very close equations, let us try to find a generalized formulation. � 28



A generalized equilibrium on D3Q19

Considering the D3Q19 lattice a function can be projected onto its basis(
H(0)

i ,H(1)
ix ,H(1)

iy ,H(1)
iz ,H(2)

ixx ,H
(2)
iyy ,H

(2)
izz ,H

(2)
ixy ,H

(2)
ixz ,H

(2)
iyz ,

H(3)
ixxy ,H

(3)
ixxz ,H

(3)
iyyx ,H

(3)
iyyz ,H

(3)
izzx ,H

(3)
izzy ,Ai ,Bi , Ci

)
(47)

The equilibrium distribution that generalizes M2P2 models is

f eqi = ωi

{
H(0)ρ+

H(1)
iα

c2s
ρuα +

H(2)
iαβ

2c4s

[
ρuαuβ + δαβρc

2
s (θ − 1)

]
+

H(3)
iαβγ

6c6s

[
ρuαuβuγ

− κρc2s (uαδβγ + uβδγα + uγδαβ)
]
− Ai + Bi + Ci

12c4s
ρ[θ − 1](1− ζ)

}
. (48)

• ζ = 1 and κ = 1− θ is the classical ρ-based.

• ζ = 0 and κ = 0 is for p-based and iρ-based. Same core model !

� Differences between models are inside 3rd and 4th-order moments. � 29



Unified model on D3Q19, ingredients

1/ Classical thermal equilibrium up to 2nd -order � Consistent mass and momentum

Euler conservation.

2/ Higher-order equilibrium moments related to Ai Bi and Ci polynomials and force

correction term similar to pressure-based model � Improved stability.

3/ Athermal 3rd order equilibrium moments ρuαuβuγ � Improved stability and more

reasonable errors O( Ma2CFL2

Re(Ma+1)2
) compared to O(Ma2

Re
) +O( 1

RePr
) in classical density-based

thermal model.

4/ Entropy equation using MUSCL-Hancock scheme � Reasonable trade-off between

small stencil (1D is 5points), both stability and accuracy are improved.

5/ Discontinuity sensor based on density � Increased viscosity in both shocks and

contact discontinuities.

6/ Small artificial bulk viscosity � Necessary for very high Mach ⪆ 1.7.

7/ Recursive regularization and regularization of stress-tensor trace � Improved

stability.

� Farag, G. & Coratger, T. & Wissocq G. & Zhao S. & Boivin P. & Sagaut P. A unified hybrid lattice-Boltzmann method for compressible flows:

Bridging between pressure-based and density-based methods, Physics of Fluids, 2021.
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Unified model validation : Thermal Couette flow

Figure 6: □, × and ⃝ are the Ma = 1.3, 2.3, 3.3 analytical solution.
correspond to numerical solutions with the unified model.

100× 1× 1 mesh, CFL ranging between 0.5 and 0.2.

� Accurate viscosity, heat diffusion and viscous heat �
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Unified model validation : Isenstropic vortex advection

Figure 7: Isentropic vortex advection
after 20 flow-through-time periods for

different Mach numbers.

Figure 8: y = 0 density slices after
20 periods for different Ma.

200× 200× 1 mesh, CFL from 0.3

to 0.1 and µ = 0.

� Low numerical

dissipation/dispersion �
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Unified model validation : Entropy spot advection

Figure 9: Entropy spot advection
after 20 flow-through-time periods for

different Mach numbers.

Figure 10: y = 0 density slices after
20 periods for different Ma.

200× 200× 1 mesh, CFL from 0.3

to 0.1 and µ = 0.

� Low numerical

dissipation/dispersion �
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Unified model : 2D Riemann problems

Figure 11: Lax & Liu 2D Riemann
problems : Density fields of

configurations 4-6-11-12-13-16.

400× 400× 1 grid, ∆t/∆x = 0.22

extremely close to Lax & Liu’s

article, µ = 0 and discontinuity

sensor.

� Robust �
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Unified model : Compressible double shear layer

Figure 12: Vorticity (top) and Mach
(bottom) at time tc (left) and 2tc (right)

using the 512× 512 grid.

Figure 13: Diagonal Vorticity and Mach
slices at time tc for different resolutions.

Initial CFL = 0.28 and µ = 0.

� Robust � 35



Unified model : Vortex / Ma 1.2 shock interaction

Figure 14:
Vortex/shock
interaction :
density fields

at time
t = 3, 6, 10.

Figure 15:
Different
acoustic
slices

compared
to

reference.

CFL = 0.83 and

discontinuity sensor.

Other parameters are

identical to reference.

� Robust �
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Unified model : Entropy spot / Ma 1.2 shock interaction

Figure 16: Transmitted
entropy, vorticity and pressure

fields. From left to right
γ = 1.2, 1.4 and 1.6. Analytical

and numerical solutions
respectively correspond to y < 0

and y ≥ 0.

Initial CFL = 0.42 and µ = 0.

� Robust �
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Conclusion

1/ In the absence of a careful study of higher-order terms, the Lattice-Boltzmann link

with kinetic theory is blurred.

2/ ∆t → 0 is the sole necessary assumption to study a LB model. Being cheaper in term

of assumptions, the dimensional analysis outperforms Chapman-Enskog.

3/ M2P2 models are now unified under a single formalism.

4/ ”Kinetic-theory-inspired” LB schemes is not necessarily the most efficient path towards

stability/accuracy.

5/ The regularization has been extended to the trace of the stress-tensor : Πneq
αα. This

drastically improves the stability.
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