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Lattice-Boltzmann basics

Moments, distributions, lattices, discretization



Navier-Stokes-Fourier system
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Navier-Stokes-Fourier system

Mass, momentum and energy conservations,
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Late 1980s, birth of Lattice-Boltzmann Methods

VOLUME 61, NUMBER 20 PHYSICAL REVIEW LETTERS 14 NOVEMBER 1988

Use of the Boltzmann Equation to Simulate Lattice-Gas Automata
Guy R. McNamara and Gianluigi Zanetti®
The Research Institutes, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637

Figure 1: Guy R. McNamara and Gianluigi Zanetti, first Lattice-Boltzmann Model.

NV
LBM algorithm is basically : }K N 7 %
e Collision, local step |f‘>
e Streaming, memory-shift % LD N
. v NN
|
9 Attractive method | € Figure 2: O'Brien’s schematic streaming.

& McNamara, G. R., & Zanetti, G. Use of the Boltzmann equation to simulate lattice-gas automata, Physical review letters, 1988.

& O'Brien, P. M. A framework for digital watercolor, MSc thesis, Texas A&M University, 2008.




Velocity space discretization
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c, cs cs Figure 4: D3Q15, D3Q19 and D3Q27
, . lattices.
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Figure 3: D2Q9 lattice.

Each different lattice leads to a different Discrete Velocity Boltzmann Equation,
of; of; 1 1
7 P _ 2 f;-—f.eq _ _Zfneq 8
ot Oxq T ( ) T (8)

with i =0,...,¢-1 and fi(t,x)=f(t, x, c;).




Time integration

e Discrete Velocity Boltzmann Equation (DVBE) with BGK collision kernel,
of; of; 1 1
Lt Canr = —= (i = £59) = =9, 9
ot te 0o, T ( ! ) T )
e Integration along characteristic dx = c;dt and Crank-Nicolson,
At 1 1
fi(t+At, x+c;At) = fi(t, x)_T{ [ﬁneq] (t,x)+ {fl_neq} (t+At, x+ciAt)}.
T T

1

e Change of variables f; = f; + %fineq and T =7 + At/2,

_ At
fi(t+ At,x + ¢iAt) = {f,._Zfineq}(t,x), (10)
T
A
_ {f,eu {1 - t] f} (t.x). (11)
27




Equilibrium, non-equilibrium and moments

By definition in Lattice-Boltzmann f; = f.eq 4 f”eq ;
9 PUq = I_lf Z CIO(fI = Z C,afeq (13)

additionally, fieq is also built such that,

pugup + p5(13 - I_liej(z) - Z Ci(\zciﬁf,'eq . (14)
Discrete Velocity Boltzmann Equation,
of; of;
— 4 =Q;. 15
ot + Cia OXe (15)
Mass and momentum conservations are obtained using moments, e.g. :
3 8 o
P Zsz,, (16)

8xa

S *(2)
8pua 0 |:,0UQU‘A«3 + PO(}S + I_IO(B }
= a2, 1
prals o Z Cia (17)




Distributions or Moments ?

Lattice-Boltzmann with g velocities could be understood in 2 equivalent ways :

DVBE, Extended hydrodynamic system,
" . f f,(n+1
of O o ey | NG, | NN e
ot O0Xqy ot 8Xan+1 ) a1 Qn
describes ¢ equations for describes g equations for I'Ia"l(.'?.)an.

e What about boundary and initial conditions ?
e Which lattice closure, €9 and collision kernel should be used ?
e What is the range of validity in term of Pr, Ma, Re, etc ?

"Higher-order hydrodynamics” is a research field by itself. Some of these mod-

els fail to reproduce physical results (e.g. Burnett with Bobylev instabilities).

=» Can we avoid those uncertainties ? €




Lattice-Boltzmann modeling

Lattice-Boltzmann is something in between Boltzmann and

= How to model compressible flows with Lattice-Boltzmann ? €

Nowadays, Lattice-Boltzmann is a fully fledged numerical method used for different
applications : fluids, solids, Schrédinger equation, finance, advection-diffusion etc...

=< We can use classical tools : Taylor expansion and dimensional analysis. €
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Athermal Lattice-Boltzmann

Description of classical Lattice-Boltzmann

11



Athermal Lattice-Boltzmann-BGK

This model is summarized by

e Equilibrium,
(1) 7—[(2) (3)

Hi,
fq—w,{H(O)p+ 2 —& pug + —— 2ct [puau[j]—i- 6 6 [puauﬁuw]} (18)

e Collide & stream, BGK,

Fteran = {4 (1 55 ) - 1 b eox- o). (19)

e Macroscopic reconstruction,

N
L

p(t+ At,x) = Fi(t+ At, x), (20)

Q -
[l
)

pua(t + At,x) = Y ciafi(t + At, x). (21)

i=1
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Where to find the stress-tensor ?

angl(n)a an:;’l(nzlzx +1 1 fneq (n) 2
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Athermal model : Constitutive equation

The stress-tensor evolution equation is
frea(2) 2 auoz 8”6 2
_na/b’ = TpCs |:8X3 8xa] + O(At )
e (2 Fred (3 Fred (2 ne
L o . ont [ oni® i@ )
T T : —Tlu
ot Oxy O Oxy B O0xy
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Athermal model : Constitutive equation

The stress-tensor evolution equation is
frea2) o [Ou  Oug )
M5 77 =T7pcs [axﬁ + aXa] + O(At?)
-l Fred (3 Fred (2 ne
.\ on’ ,(2) . anaﬂv( ) [ al-lﬁ7 () al—lg’yq,(2) (23)
T T —Tlu
ot Oxy O Oxy B O0xy

frea (2) 5 [Ouq  Oug
=M, ~ — + . (24
of \Tp/cs |:0Xj * GXQ:| ( )
w
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Athermal model : Constitutive equation

The stress-tensor evolution equation is

frea2) o [Ou  Oug
o] = TpCs [QXB + 8xa]

on’"" @ Hnf" )
T T o,

-n

(23)

— R TPC
B s
&7 \
I

fned (2) 2 |:0Uu 8u5
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Athermal model : Constitutive equation

The stress-tensor evolution equation is

frea2) o [Ou  Oug
o] = TpCs [QXB + 8xa]

ont;"®  onf e ang. aﬂgnveq’(”}

-n

af
T T o,

(23)

=M R TpPCs

fned (2) 2 |:0Uu 8u5

Open system because

E)

na:ﬁw

is unknown.
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Athermal model : Constitutive equation

The stress-tensor evolution equation is
Frea (2) o [Oua | Oug 2
-n" = — o(At
af TP [ax[j o 8Xa] + 0 )
arf9.(2) [ ",(3) £rea,(2) £red (2
+T()Ha3 + Tanaﬁ”/ — T[u L_Im Mer 77 ! )} (23)
ot Oxy O Oxy O0xy
Usual low-Mach stress-tensor, O (u3) errof,
0@ o 2 | Gl
Mo ™ = Tpcs [ (25)
I
Open system because _ _
I'IZ;:,’G) i< unknown. Time evolution. 1
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Athermal constitutive equation, dimensional analysis 1/2

Assuming ts is the shortest characteristic time, nondimensional variables * are
O(1),

0 10 0 1 0
- = - —_ 2
ot  ts Ot*’ Ox  Lgox*’ (26)
frea (2) * f e (2) Frea ( *,£7e9 (3)
I'Iaﬁ = oM, I'Ia = @ I'Iaﬁy , (27)
u= UOU ) P:POP ’ T = TOT*7 (28)

neglecting numerical errors, the nondimensional stress-tensor is expressed as

o e Uy | Our  Ouj
-n ; 9,(2)_ HYo Yo LBy
of Lollg ax; (9X(>:
plo Qo T Ma?
@) O — (@) . 29
<L0n0P0C§U0> " <t5> " ( Re > 29)
When the classical low-Mach constitutive equation is verified, only the blue part

remains, in which case [’%0 =1.
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Athermal constitutive equation, dimensional analysis 2/2

pey  [oun | dus], _—
Zﬁ (2 8x 3 g hydrodynamic limit".
° error coming from u? isotropy defect can be neglected.

",(3)

afy

< 1 higher-order contributions from n’ can be neglected.

POCS Uo

T . N
° < 1 stress-tensor time derivative can be neglected.
S

2

Re < 1 other terms can be neglected.
e

= Kn o Ma/Re is not the only parameter that controls the consistency. €

16



Time evolution of 1"

To get more insight on the interpretation of the non-equilibrium evolution, let

recall the DVBE,
of; of; 1
— t Ciaz— = ——

. req 2
R A R IO B
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Time evolution of 1"

To get more insight on the interpretation of the non-equilibrium evolution, let
recall the DVBE,
of; ofi 1

=+ Capy- =

. _ req 2
R e U R P )

Let also recall that f; = £/ + £,"°? such that the DVBE yields,

of Of"d 1 e
. _ q , 2
o o _—T{f,. ~N}p 048 (31)
N req neq
with \; = | — Tdi';’t — TC,-U,(%] fi"eq relaxes towards /\; with a characteristic
time 7.

= £ has its own "equilibrium” : A;. €

17



fre,(2)

af

Time evolution of I

Hence, stress-tensor follows the compact equation,

Fnea (2 f"eq
onty @ onln® @)
8t E)x7 T

+ =M = ngg”} +0(A%) . (32)

e Small lattices — "isotropy defects’ e.g. M) Cs2|_|(1) (this explains the
O(u?) error in stress-tensor).

e |sotropy defect is even worse for higher order moments.

= Closure : regularization, higher order moments are filtered. €

18



The concept of regularized kernels

Collision,

can be projected onto moments,

|—|coll,(3) _ |—|eq,( )

feoll = £59 4 (1 — At/7)F,

+(1— A/t

19



The concept of regularized kernels ZTe

CO“ISIOH, f,-CO” _ f;,eq + (1 . At/?)??eq, (33)
can be projected onto moments,
|—|coll,(3) _ |—|eq,(3) + (1 . At/?)ﬁnem@) ’ (34)

e ® i regularized (replaced) by 117¢%:(3),

neo(3) = nea3) 4 (1 — At/7)1700) . (35)

Exemple : When Latt & Chopard regularization is applied to D3Q19, the rank
g = 19 of the solver is reduced to g = 10.

< We are not anymore solving the Discrete Velocity Boltzmann Equation €

& Latt, J., & Chopard, B. Lattice Boltzmann method with regularized pre-collision distribution functions, Mathematics and Computers in
Simulation, 2006. 19



Regularized Lattice-Boltzmann models

Regularized Lattice-Boltzmann model is obtained using Taylor expansion,

Jp  Opug 5
— =0(A
5+ e =0ae). (39)
2 fred,(2)
8pua 0 [puauﬁ + PCs 6046 + I_I } )
=0(A
et o o(ar),  (37)
8|—|f"q( ) al—lf";q( ) 1 fhea
afy med,(2) A(2)
8t + ox, = ﬂaﬁ — I'Iaﬁ +0 (At) . (38)

Stress-tensor evolution is O (At) accurate, but [17°93) can be freely changed
to increase stability /accuracy.

20



Thermal Lattice-Boltzmann

Hybrid coupling, entropy equation and traceless collision

21



Different paths towards thermal flows

Due to isotropy errors (FI(3) x cszﬂ(l)), energy conservation is wrong with stan-

dard lattices (e.g. D3Q19). Possible solutions,

e Multispeed, one large set of distributions. Computational efficiency is at
stake. X

e Double Distributions coupling, 2 sets of distributions, one for

mass/momentum and another for energy. Computational efficiency is at
stake. X

e Hybrid coupling, 1 small set of distributions and 1 energy equation
discretized by a finite difference scheme. Cheaper, allows coupling with a
wide variety of models. v~

22



The entropy equation in non-conservative form

The entropy is a mode of the linearized Euler system, its coupling with

mass/momentum is weaker than using e.g. total energy or enthaply.

Entropy equation in the frame ref-
erence of a plane discontinuity,

0s

Contact discontinuity is compati-
ble. Shock is not, because u # 0

such that ds/0x = 0 is necessary.

.

\.

Figure 5: Entropy jump error with
entropy equation as a function of Ma.

v=12,1.4,1.6, 1.8 (top to bottom).

=» Acceptable errors on plane shocks (~ 5%) up to Mach 1.4 €

23



Step-by-step Lattice-Boltzmann scheme from t to t + At

[ e Initial solution, p(t, x), u,(t,x), T(t,x) and I'I(';’;q’(z)(t, x) are known.

{ {

24



Step-by-step Lattice-Boltzmann scheme from t to t + At

e Initial solution, p(t, x), u,(t,x), T(t,x) and I'I(';’;q’(z)(t, x) are known. ]

{ {

Lattice-Boltzmann

.

e Compute Equilibrium £9(t, x)
and Non-Equilibrium 7, (t, x).
e Collide & Stream provides the
updated distribution f;(t + At, x).
e Macroscopic update provides
p(t + At, x) and u,(t + At, x).

24



Step-by-step Lattice-Boltzmann scheme from t to t + At

.

e Initial solution, p(t, x), ua(t,x), T(t,x) and 4

fneq’(z)(t, x) are known. ]

1

Lattice-Boltzmann
e Compute Equilibrium £9(t, x)
and Non-Equilibrium ?;wq(t,x).
e Collide & Stream provides the

updated distribution f;(t + At, x).

e Macroscopic update provides
p(t + At, x) and u,(t + At, x).

T

1

e Compute the updated Entropy
using a one step
explicit scheme. MUSCL-Hancock
for advection and centered schemes
for heat diffusion and viscous heat.

1
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Step-by-step Lattice-Boltzmann scheme from t to t + At

.

e Initial solution, p(t, x), ua(t,x), T(t,x) and 4

fneq’(z)(t, x) are known. ]

1

Lattice-Boltzmann
e Compute Equilibrium £9(t, x)
and Non-Equilibrium ?;wq(t,x).
e Collide & Stream provides the

updated distribution f;(t + At, x).

e Macroscopic update provides
p(t + At, x) and u,(t + At, x).

T

1

e Compute the updated Entropy
using a one step
explicit scheme. MUSCL-Hancock
for advection and centered schemes
for heat diffusion and viscous heat.

1

e Temperature update T(t + At, x) using p(t + At, x) and .
e Stress-tensor update I'Igﬂq(t + At, x) using {I'I(';B,p, U, T} (t + At, x).

=» Interface bewteen LBM/FD is the second order moment €

24




Thermal coupling, traceless collision

N7 uses N7 5, p, ua (LBM) and p (LBM/FD),
—neq - e
Nhs = (ngﬂ - ”Z;)

= (I'Izﬂ — [puqus + ,D(Sag]) .

Coupling errors between LBM/FD are stacked in the trace of I'IZ;q.

(40)
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Thermal coupling, traceless collision

N7 uses N7 5, p, ua (LBM) and p (LBM/FD),
fneq feq
nty = (I‘I N )
= (Nt = [ptats + poag]) - (40)

Coupling errors between LBM/FD are stacked in the trace of I'IZ;q

A compressible scheme traditionally uses Stokes Hypothesis (traceless ﬂ . (2))
fmed.(2) 8ua 8Ug 25@5 8u7

— =p|=—+=— - — 41

b a [8X5 OXq 3 Oxy (41)

The trace I'I?neq is pure errors, it could be safely replaced by 0.

= New regularization I_I(m = 0 improves the stability. €

& Farag, G. & Zhao, S. & Coratger, T. & Boivin, P. & Sagaut, P. A pressure-based regularized lattice-Boltzmann method for the simulation of
compressible flows, Physics of Fluids, 2020.

2



Compressible models & applications

Pressure-based model, unified model, applications

26



M2P2 Lattice-Boltzmann models 1/2

During the past few years, M2P2 designed different compressible models,

e Density based (p-based), 2019,

& Y. Feng, P. Boivin, J. Jacob and P. Sagaut. Hybrid recursive regularized thermal lattice Boltzmann model for
high subsonic compressible flows. Journal of Computational Physics, 2019.

& F. Renard, Y. Feng, , JF. Boussuge and P. Sagaut. Improved compressible Hybrid Lattice Boltzmann Method
on standard lattice for subsonic and supersonic flows. Computers & Fluids, 2021.

e Pressure based (p-based), early 2020,

& G. Farag, S. Zhao, T. Coratger, P. Boivin, G. Chiavassa and P. Sagaut. A pressure-based regularized
lattice-Boltzmann method for the simulation of compressible flows. Physics of Fluids, 2020.

e Improved-density based (ip-based), late 2020,

& S. Guo, Y. Feng and P. Sagaut. Improved standard thermal lattice Boltzmann model with hybrid recursive
regularization for compressible laminar and turbulent flows. Physics of Fluids, 2020.

=< How do they differ from one another ? Which one should be used ? €

27



M2P2 Lattice-Boltzmann models 2/2

Their 2"-order distributions are :
WY M,

eq . i 2
FPod — w,{p + 2 pla + 2 [puaus + dappci (6 — 1)) } (42)
(2

peq _ . io iaf )

e = w,{p@ + c2 PUs + 2ch [puqup + 6,,30] } (43)

: HD H) wi — bo;

ipeq __ ia iaB ) i 0/ _
f. = w,{p + 2 pUs + 2 [puqug + 6,,30] + o p[0 1]} (44)

With 2 different update rules for mass :

e p/ip-based :  p(t+ At,x) = Zf’;ol fi(t+ At, x) (45)
e p-based : p(t+ At,x) = Zj’;ol fi(t+ At, x)+p(t, x)[1 — 0(t, x)] (46)

= Very close equations, let us try to find a generalized formulation. €

28



A generalized equilibrium on D3Q19

Considering the D3Q19 lattice a function can be projected onto its basis

(0, 1D, 20 1D, 22 12, 1D, 22 12, 12

I x 2Ry 2Rz o Ixx? 1yy? " Tizzy T Rixy? T ixz? T Riyz)?

) ’ ) ) ) ,A,’,B,‘,C,‘) (47)
The equilibrium distribution that generalizes M2P2 models is
(1) ’H( )

£ = w;{?—[(o)p + —5-pua + 4/ [puqus + Sappc2 (0 — 1] + — [puauLguV

o 2c; 6¢c?d

Ai + B +C;
— 5pC2 (Ualgy + Usdra + h0a) | = “ o —pl0 =1L =)} (48)
S

e ( =1and Kk =1— 0 is the classical p-based.

e ( =0and k =0 is for p-based and ip-based. Same core model !

< Differences between models are inside 3™ and 4t"-order moments. €

29



Unified model on D3Q19, ingredients

1/ Classical thermal equilibrium up to 2"-order < Consistent mass and momentum
Euler conservation.

2/ Higher-order equilibrium moments related to A; 5; and C; polynomials and force
correction term similar to pressure-based model < Improved stability.

3/ Athermal 3" order equilibrium moments pu,ugu, < Improved stability and more

2 2 2 . . .
reasonable errors O(%) compared to O(M&) + O(x&;) in classical density-based

thermal model.

4/ Entropy equation using MUSCL-Hancock scheme = Reasonable trade-off between
small stencil (1D is 5points), both stability and accuracy are improved.

5/ Discontinuity sensor based on density < Increased viscosity in both shocks and
contact discontinuities.

6/ Small artificial bulk viscosity < Necessary for very high Mach 2 1.7.

7/ Recursive regularization and regularization of stress-tensor trace = Improved
stability.

& Farag, G. & Coratger, T. & Wissocq G. & Zhao S. & Boivin P. & Sagaut P. A unified hybrid lattice-Boltzmann method for compressible flows: 30
Bridging between pressure-based and density-based methods, Physics of Fluids, 2021.




Unified model validation : Thermal Couette flow

s 1.4 )
3
1.3 25
: T2
&
= 1.2 = 15
|
1.1
05
1 0
0 05 1 0 05 1
y/H y/H
Figure 6: [J, x and () are the Ma = 1.3, 2.3, 3.3 analytical solution.
— correspond to numerical solutions with the unified model.
100 x 1 x 1 mesh, CFL ranging between 0.5 and 0.2.
= Accurate viscosity, heat diffusion and viscous heat € a1




Unified model validation : Isenstropic vortex advection

3
10 0.999 1
9 0.9985
8 0.998 0.998
Ma=1 Ma=2
7 0.9975 O Ref
0.996 F|— Ma=1
6 / 0.997 - - -Ma=2
f\ ————— Ma=3
5 0.9965 0.994 [ Ma=4
4 0.996 0 2 4 . 6 8 10
3 09955 Figure 8: y = 0 density slices after
Ma=4 Ma=3 . .
B 0.995 20 periods for different Ma.
1 0.9945
. 008 200 x 200 x 1 mesh, CFL from 0.3
0 2 4 6 8 10 ’

Figure 7: Isentfopic vortex advection
after 20 flow-through-time periods for
different Mach numbers.

to 0.1 and = 0.
= Low numerical
dissipation /dispersion €
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Unified model validation :

Entropy spot advection

10 1.001
9 4 1.0009
8 1 1.0008

Ma=1 Ma=2
7 4 1.0007
6 fN 1.0006
5 @ 1.0005
4 &J 1.0004
3 4 1.0003
Ma=14 Ma=3
2 1 1.0002
1 4 1.0001
0 i . i . y
0 2 4 6 8 10

Figure 9: Entropy spot advection
after 20 flow-through-time periods for
different Mach numbers.

1.001 | o Ref *‘
——Ma=1 ® T
1.0008 |- — -Ma=2 § 1.001
_____ Ma=3 1.00098
1.0006 |...... Ma= 100096
§1.0004 L 100004 £

1.00092 |+

1.0002 | 1.0009,

Figure 10: y =0 cjl(ensity slices after
20 periods for different Ma.

200 x 200 x 1 mesh, CFL from 0.3
to 0.1 and = 0.
= Low numerical

dissipation /dispersion €=
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Unified model : 2D Riemann problems

Figure 11: Lax & Liu 2D Riemann
problems : Density fields of
configurations 4-6-11-12-13-16.

400 x 400 x 1 grid, At/Ax = 0.22
extremely close to Lax & Liu's

article, ;1 = 0 and discontinuity

Sensor.

= Robust €
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Figure 12: Vorticity (top) and Mach
(bottom) at time t. (left) and 2t. (right)
using the 512 x 512 grid.

Unified model : Compressible double shear layer

—-—-1282
- - 2562
—>5122

L L L L L
0.1 0.2 0.5 0.6 0.7

n L L L L L L

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 13: Diagonal Vorticity and Mach
slices at time t. for different resolutions.

Initial CFL = 0.28 and o = 0.
= Robust €
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1.3 1.3 1.3
1.2 1.2 1.2 Figure 14:
Vortex/shock
11 11 11 interaction :
; ) ; density fields
at time
: —_—T Mgy o= Mg t =3, 6, 10.
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
x x x
s %1073 %102 Fi .
igure 15:
‘ . & CFL = 0.83 and
. 4 Different ] o
. 2 acoustic discontinuity sensor.
. 2 0 .
= . slices Other parameters are
4 ‘; Comtpared identical to reference.
s ¥ o
N s -100 [ 100 reference. 9 Robust 6

6(deg)
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Unified model : Entropy spot / Ma 1.2 shock interaction

Figure 16: Transmitted
entropy, vorticity and pressure
fields. From left to right
v=1.2, 1.4 and 1.6. Analytical
and solutions
respectively correspond to y < 0

and

Initial CFL = 0.42 and p = 0.
< Robust €
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Conclusion

1/

2/

3/
4/

5/

In the absence of a careful study of higher-order terms, the Lattice-Boltzmann link

with kinetic theory is blurred.

At — 0 is the sole necessary assumption to study a LB model. Being cheaper in term
of assumptions, the dimensional analysis outperforms Chapman-Enskog.

M2P2 models are now unified under a single formalism.

" Kinetic-theory-inspired” LB schemes is not necessarily the most efficient path towards

stability /accuracy.

The regularization has been extended to the trace of the stress-tensor : T2, This

drastically improves the stability.
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