Stabilité non linéaire d'un schéma de Boltzmann sur réseau grâce à une optimisation globale

F. Dubois^{†,§}, <u>C. Saint-Jean*</u> and M. M. Tekitek*

GT Schémas de Boltzmann sur réseau

7 Déc. 2022 - Institut Henri Poincaré

Contexte : Stabilité non linéaire - Cas test Minion

Cas Minion et LB Problématique Critère de stabilité

Exploration des paramètres libres du D2Q9 MRT

Recherche de paramètres stables par optimization globale Cas test Minion Cas test Taylor-Green

Conclusion et perspectives

A doubly periodic double shear layer [MB97]

Equation de Navier-Stokes incompressible sur $[0,1]^2$ avec les conditions initiales :

$$u_{x} = \begin{cases} U_{0} \tanh(k(y - \frac{1}{4})), \ y \leq \frac{1}{2}, \\ U_{0} \tanh(k(\frac{3}{4} - y)), \ y > \frac{1}{2}, \end{cases}$$
$$u_{y} = U_{0} \ \delta \ \sin(2\pi(x + \frac{1}{4})), \\ \rho = \rho_{0} = 1$$

et une contrainte de double périodicité en x et y.

- k contrôle la largeur des cisaillements.
- δ contrôle la magnitude de la perturbation initiale.

Apparition d'artéfacts numériques pour de nombreuses méthodes (ici des tourbillons non physiques).

Figure – Vorticité provenant de la couche de cisaillement pour t = 0.6 à la résolution 256 × 256 (haut) et 128 × 128 (bas) [MB97]

Schéma classique D2Q9 [LL00]

Moments conservés :

 $m_0 \equiv \rho$ (density), $m_1 \equiv q_x$, $m_2 \equiv q_y$ (momentum). Moments non conservés (5 parmi 8) :

$$\begin{split} e &= m_e^{eq} = -2\rho + \frac{3}{\lambda^2}(q_x^2 + q_y^2); & \text{tps de relax.} \quad s_e, \\ \epsilon &= m_e^{eq} = \rho - \frac{3}{\lambda^2}(q_x^2 + q_y^2), & \text{tps de relax.} \quad s_\epsilon; \\ m_5^{eq} &= -\frac{q_x}{\lambda}, & \text{tps de relax.} \quad s_5; \\ m_6^{eq} &= -\frac{q_y}{\lambda}, & \text{tps de relax.} \quad s_5; \\ \rho_{xx} &= \frac{1}{\lambda^2}(q_x^2 - q_y^2), & \text{tps de relax.} \quad s_\nu; \\ \rho_{xy} &= \frac{1}{\lambda^2}q_xq_y, & \text{tps de relax.} \quad s_\nu. \end{split}$$

Cas test Minion - D2Q9 [Del01]

Figure – Vorticité t = 1: $s_e = s_{\nu} (\nu \simeq \zeta)$ (gauche), $s_e \ll s_{\nu} (\nu \ll \zeta)$ (droite)

- Schéma BGK ne fonctionne pas dans ce cas.
- Dellar préconise de prendre $s_e << s_{\nu}$

Nous nous plaçons dans un cas plus général.

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} &= \mathcal{O}(\Delta t^2), \\ \frac{\partial q_x}{\partial t} + \frac{\lambda}{3} \frac{\partial \rho}{\partial x} + \frac{\partial q_x^2}{\partial x} + \frac{\partial q_x q_y}{\partial y} - \frac{\lambda^2}{3} \Delta t \left[\sigma_e \frac{\partial}{\partial x} (\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y}) + \sigma_\nu \Delta q_x \right] &= \mathcal{O}(\Delta t^2), \\ \frac{\partial q_y}{\partial t} + \frac{\lambda}{3} \frac{\partial \rho}{\partial y} + \frac{\partial q_x q_y}{\partial x} + \frac{\partial q_y^2}{\partial y} - \frac{\lambda^2}{3} \Delta t \left[\sigma_e \frac{\partial}{\partial y} (\frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y}) + \sigma_\nu \Delta q_y \right] &= \mathcal{O}(\Delta t^2), \\ \text{Par identification :} \\ \text{Vitesse du son : } c_s^2 &= \frac{\lambda}{3}, \\ \text{Viscosités de volume et de cisaillement :} \end{aligned}$$

$$\zeta \equiv \frac{\Delta t \lambda^2}{3} \sigma_e \equiv \frac{\Delta t \lambda^2}{3} (\frac{1}{s_e} - \frac{1}{2}), \qquad \nu \equiv \frac{\Delta t \lambda^2}{3} \sigma_\nu \equiv \frac{\Delta t \lambda^2}{3} (\frac{1}{s_\nu} - \frac{1}{2}).$$

Problématique :

- BGK Dans le cas d'un schéma BGK, ces paramètres ne sont plus libres et sont fixés (et égaux) par la viscosité
- MRT Pour une viscosité fixée ν , le schéma MRT contient trois paramètres libres (s_e, s_E, s_5). Comment les choisir?

La stabilité d'un schéma D2Q9 MRT est difficile à prouver.

- Analyse *a priori* : Analyse de Von Neumann à un point pour le cas linéaire [LL00].
 - Recherche de vp de la mat $9 \times 9 : G = AM^{-1}CM$
 - Stabilité : $|\lambda_i| <= 1$
- Analyse a posteriori : nous proposons un critère de stabilité lié au temps d'explosion.

Temps d'explosion

La première itération t_exp telle que la densité s'éloigne de $\rho_0(=1)$ en au moins un point :

$$||
ho -
ho_0||_\infty \ge 0.85$$

Quelques remarques pratiques :

- La simulation est demandée pour un nombre maximal d'itérations *Nt* = 20000.
- Rien n'indique que la solution diverge juste après.
- La nature physique de la solution trouvée n'est pas considérée.

Exploration de configurations pour le problème Minion :

$$Nx = Ny = 128, \nu = 1e-4, U_0 = 0.1$$

avec

$$(s_e, s_E, s_5) \in [rac{1}{\sqrt{2}}, 1.9999] imes [rac{1}{\sqrt{2}}, 1.9999] imes [rac{1}{\sqrt{2}}, 1.9999],$$

répartis comme :

50% des valeurs (régulières) dans l'intervalle [¹/_{√2}, 1.99]
50% des valeurs (régulières) dans l'intervalle [1.99, 1.9999]
⇒ 100³ = 10⁶ simulations avec N_t = 20000 comme temps final.

$$(s_e, s_E, s_5) \rightarrow t_{exp}$$

Le résultat peut s'afficher sous la forme d'un nuage de points 3D.

•
$$(s_e, s_E, s_5, couleur = t_{exp})$$

• Si
$$t_{exp} = Nt$$
, afficher (s_e, s_E, s_5) .

Questions :

- Etant donné un triplet (s_e, s_E, s_5) , le schéma induit est il stable? Preuve \Rightarrow Prédiction
- Peut on donner des règles pour le praticien?

Problème de classification binaire :

$$(s_e, s_E, s_5)
ightarrow \mathbbm{1}\{t_{exp} = Nt\}$$

Des dizaines d'algorithmes existent, mais on privilégiera un résultat interprétable.

Les données sont les 10⁶ simulations précédentes.

On utilise un arbre de décision (CART) qui <u>sépare récursivement</u> les simulations afin de regrouper les simulations suivant leurs stabilités. Pour cela, on choisira de façon "optimale" s_e ou s_E ou s_5 <u>et</u> un seuil θ tel que les partitions G et D soit les plus pures possibles.

Au sens de l'entropie, pour G (idem pour D) :

$$H(G) = -(G_s \log G_s + (1 - G_s) \log(1 - G_s))$$

avec G_s la proportion de simulations stables dans G.

Au final, cette méthode cherche à chaque étape le paramètre de relaxation s_e ou s_E ou s_5 et le seuil θ associé

arg
$$min_{s*,\theta}(|G|*H(G)+|D|*H(D))$$

Implémentation : scikit-learn

La recherche de paramètres stables peut être vue comme la minimisation de la fonctionnelle :

$$J(s_e, s_E, s_5) \equiv -t_{exp}$$

avec $J(s_e, s_E, s_5) = -Nt$ si la simulation n'a pas divergée. Mais :

- L'expression de *J* inconnue.
- Les propriétés de J sont inconnues (différentiabilité?)
- Dans le cas de nos simulations, l'évaluation de *J* n'est pas très chère...

Nous avons choisi les algorithmes génétiques parmi les méthodes d'optimisation globale en "Boîte noire".

Implémentation : differential_evolution dans scipy

```
differential_evolution(func, bounds, args=(),
    init='latinhypercube', popsize=15,
    strategy='best1bin', recombination=0.7,
    mutation=(0.5, 1),
    constraints=(), maxiter=1000, seed=None, workers=1, ...)
```

- 1 Initialisation : échantillonnage + popsize + evaluation
- 2 Mutation de x_p : $x'_p = x_{best} + \alpha_{mut}(x_{rand1} x_{rand2})$
- **3** Croisement entre x_p et $x'_p \rightarrow c_p$ (avec un taux de croisement)
- 4 Sélection : x_p est remplacé par c_p si amélioration.
- **5** Revenir à l'étape 2 si non convergence.

Pour le problème Minion (nx = ny = 128) :

visco = 0.001 s_visco = 1.9881 U0 = 0.08 Re = 10240.0	visco = 0.001 s_visco = 1.9881 U0 = 0.08 Re = 10240.0
<pre>Nt = 20000, min_se = 0.7071 se_opt = 0.9483 sE_opt = 0.7525 s5_opt = 1.2242 y_stab = -1 nfev = 184</pre>	<pre>Nt = 20000, min_se = 1.99 se_opt = 1.9992 sE_opt = 1.9943 s5_opt = 1.7882 y_stab = -1 nfev = 679</pre>
Visualisation	Visualisation

Pour le problème Minion (nx = ny = 128) :

visco = 0.0005 s_visco = 1.994 U0 = 0.08 Re = 20480.0	visco = 0.001 s_visco = 1.9881 U0 = 0.16 Re = 20480.0
<pre>Nt = 20000, min_se = 1.99 se_opt = 1.990 sE_opt = 1.983 s5_opt = 1.628 y_stab = -1 nfev = 679</pre>	<pre>Nt = 20000, min_se = 1.99 se_opt = 1.991 sE_opt = 1.950 s5_opt = 1.958 y_stab = -1 nfev = 904</pre>
Visualisation	Visualisation

- Quelles sont les configurations visitées par la méthode d'optimisation (vs Exp. 1)?
- Que se passe t'il pour t > Nt pour des paramètres stables ?
- Que donne la méthode de recherche de paramètres pour un autre problème ?

Problème de Taylor-Green en 2D :

$$\rho = \rho_0 \left[1 - \frac{3\rho_0 \ U_0^2}{4} \left(\cos(4\pi x) + \cos(4\pi y) \right) \right]$$
$$u_x = -U_0 \cos(2\pi x) \sin(2\pi y)$$
$$u_y = U_0 \sin(2\pi x) \ \cos(2\pi y)$$

Dans ce problème, la solution exacte est connue :

$$\rho = \rho_0 \left[1 - \frac{3\rho_0 \ U_0^2}{4} \left(\cos(4\pi x) + \cos(4\pi y) \right) \right] e^{-8\pi^2 \nu t}$$
$$u_x = -U_0 \cos(2\pi x) \sin(2\pi y) e^{-4\pi^2 \nu t}$$
$$u_y = U_0 \sin(2\pi x) \ \cos(2\pi y) e^{-4\pi^2 \nu t}$$

Pour le problème Taylor-Green 2D (nx = ny = 128) :

visco = 0.001s_visco = 1.9881 U0 = 0.08Re = 10240.0 $Nt = 20000, min_{se} = 1.99$ $se_{opt} = 1.9993$ $sE_{opt} = 1.9961$ $s5_opt = 1.7021$ $y_stab = -1$ nfev = 634

Visualisation

 Définition d'un critère de stabilité pour un schéma D2Q9 MRT basé sur le temps d'explosion.

- Exploration "exhaustive" des paramètres libres pour le cas test Minion.
- Caractérisation (prédiction) des zones de stabilité à partir d'un arbre de décision ($\sim 82\%$ de rec.)
- Proposition d'une méthode d'optimisation globale permettant de trouver rapidement un triplet de paramètres LB stables dans le cas non linéaire.
- Minimisation sous contrainte (Ex. : viscosité de volume petite (*se* proche de 2))

Analyse de stabilité *ala* Von Neuman pour des paramètres "plutôt stables" sur **tout le domaine**!

- 1 Réaliser normalement la simulation jusqu'au temps t.
- Construire une version linéarisée de l'opérateur de collision C_{lin}(t) avec le champ de vitesse obtenu à l'étape 1.
- 3 Calculer les k premières valeurs propres de la matrice

$$G(t) = AM^{-1}C_{lin}(t)M$$

④ Tracer l'évolution des valeurs propres G(t_{exp} − d),..., G(t_{exp}).
 Pb. : La matrice G(t) est grande...

$$nx = ny = 128 \rightarrow 128^2 \times 9 = 147456$$

128 (rapide - lente) \rightarrow 16 (rapide - lente)

Minion : nx = ny = 16, visco = 1e-3, U0 = 0.08 (Re = 1280.0)

 Comparer les paramètres stables trouvés entre les différents cas test ⇒ Minion et T.-G. non identiques.

- Recherche de paramètres stables conjoints à plusieurs cas test ⇒ Minion et T.-G. OK.
- Définition alternative de la stabilité ou du critère à optimiser :
 - Contraindre la divergence à être nulle / l'énergie ...
 - Minimiser l'erreur entre la solution LB et la solution exacte.
 - Formuler la recherche de paramètres "magiques" (quartiques) ...
- Etude de la stabilité sur tout le domaine et identifier les modes de l'explosion.
- Appliquer la méthode proposée dans le cas 3D où le nombre de paramètres libres est bien plus important.

[Del01] Paul J. Dellar. "Bulk and shear viscosities in lattice Boltzmann equations". In : <u>Phys. Rev. E</u> 64 (3 août 2001), p. 031203. doi : 10.1103/PhysRevE.64.031203. url : https: //link.aps.org/doi/10.1103/PhysRevE.64.031203.

[LL00] Pierre Lallemand et Li-Shi Luo. "Theory of the lattice Boltzmann method : Dispersion, dissipation, isotropy, Galilean invariance, and stability". In : <u>Phys. Rev. E</u> 61 (6 juin 2000), p. 6546-6562. doi : 10.1103/PhysRevE.61.6546. url : https: //link.aps.org/doi/10.1103/PhysRevE.61.6546.

[MB97] Michael L. Minion et David L. Brown. "Performance of Under-resolved Two-Dimensional Incompressible Flow Simulations, II". In : Journal of Computational Physics 138.2 (1997), p. 734-765. issn : 0021-9991. doi : https://doi.org/10.1006/jcph.1997.5843. url : https://www.sciencedirect.com/science/article/ pii/S0021999197958435.