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Tokamak and fusion
Tokamak: Toroidal chamber containing
hydrogen plasma confined with a magnetic field
and heated to high temperatures, to create
energy.

The drift of the plasma inside a tokamak can be modelized by the
Vlasov-Poisson system

∂tf + v · ∇xf + (E + v ×B) · ∇vf = 0,
E = −∇ϕ,
−∆ϕ = ρ− ρ0,with

• f(x, t, v) the distribution of ions,
• E(x, t) the electric field,
• ρ(x, t) =

∫
f(x, t, v)dv the density,

• ϕ(x, t) the potential,
• B(x, t) the imposed magnetic field.

Romane Hélie Equivalent systems of kinetic relaxation schemes 2 / 49



Challenges

• Capture the small structures, without imposing small time steps,

• Achieve stability at high order,

• Build boundary conditions which are both stable and accurate.

▶ We consider a relaxation kinetic scheme, which approximates a
hyperbolic equation by a set of transport equations with constant
velocities.
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Kinetic approximation
We consider the conservation law in d dimensions

∂tw̄ + ∇ · q(w̄) = 0, (E)

with w̄(x, t) ∈ R, x ∈ Rd, q(w̄) ∈ Rd.

We consider the BGK kinetic model

∂tfi + ∇ · (λifi) = 1
ε

(feq
i (w) − fi) , for i = 1, . . . , nv, (K)

where
• λi are the kinetic velocities,
• f = (fi) is the kinetic unknown such as w =

∑nv
i=1 fi,

• f eq(w) = (feq
i (w)) is the equilibrium kinetic vector which satisfies the

consistency relations

w =
nv∑
i=1

feq
i (w) and q(w) =

nv∑
i=1

λif
eq
i (w).

In the limit ε → 0, w =
∑nv

i=1 fi tends to the solution w̄.
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In the limit ε → 0, w =
∑nv

i=1 fi tends to the solution w̄.

Indeed, as
ε (∂tfi + ∇ · (λifi)) = feq

i − fi,

when ε → 0, we have fi → feq
i .

By summing the nv kinetic equations (K), we obtain

nv∑
i=1

∂tfi +
nv∑
i=1

λi · ∇fi = 1
ε

(
nv∑
i=1

feq
i −

nv∑
i=1

fi

)
= 0.

We took the limit when ε → 0, we have

∂t

(
nv∑
i=1

feq
i

)
+ ∇ ·

(
nv∑
i=1

λif
eq
i

)
= 0.

Using the consistency conditions, we finally retrieve the initial equation (E)

∂tw + ∇ · (q(w)) = 0.
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Example: The D1Q2 model

• In the D1Q2 model, we have nv = 2 opposite
kinetic velocities:

λ1 = (λ), λ2 = (−λ).

λ1λ2

λ3

λ4

The consistency conditions

w =
nv∑
i=1

feq
i and q(w) =

nv∑
i=1

λif
eq
i ,

impose the equilibrium kinetic vector

feq
i (w) = w

2 + λi · q(w)
2λ2 .
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Example: The D2Q4 model

• In the D2Q4 model, we have nv = 4 velocities
along the Cartesian axes:

λ1=

(
λ
0

)
, λ2=

(
−λ
0

)
, λ3=

(
0
λ

)
, λ4=

(
0

−λ

)
.

λ1λ2

λ3

λ4

The 3 consistency equations let us one degree of freedom. We choose
the equilibrium kinetic vector

feq
i (w) = w

4 + λi · q(w)
2λ2 + m3(λi)zeq

3 (w)
4λ4 ,

with
m3(λi) = (λi,1)2 − (λi,2)2,

and
zeq

3 = 0.
Romane Hélie Equivalent systems of kinetic relaxation schemes 9 / 49



Splitting method
To solve in time the kinetic model

∂tfi + λi · ∇fi = 1
ε

(feq
i − fi), (K)

we apply a splitting method:

• Transport step :
∂tfi + λi · ∇fi = 0. (T )

On a structured and adapted mesh, we can solve exactly these
transport equations with the characteristic method

f∗
i (x, t+ ∆t) = fi(x − ∆tλi, t),

or we can approximate the solution on an unstructured mesh.
• Relaxation step :

∂tfi = 1
ε

(feq
i − fi). (Rω)

We approximate it by the relaxation

fn+1
i = f∗

i + ω
(
f∗,eq

i − f∗
i

)
, with ω ∈ [1, 2].
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Application to a plasma model
Before some theoretical results, let us see an example of application of this
model.

We consider the model in 3 dimensions which describes the drift of the
plasma inside a tokamak

∂tρ+ ∇ · (vρ) = 0,
−∆x,yϕ = ρ,
E = −∇x,yϕ,

where
• ρ is the density,
• v = E × ez +B is the velocity,
• E is the electric field,
• B = (− sin(θ)ex + cos(θ)ey)Bθ +Bzez a divergence-free magnetic

field.
We consider a cylinder
Ω = {(r cos(θ), r sin(θ), z) | rmin ⩽ r ⩽ rmax, 0 ⩽ θ ⩽ 2π, 0 ⩽ z ⩽ L = 1} ,
with homogeneous Dirichlet boundary conditions for the potential ϕ.
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Dimensional splitting
As we have different behaviors according to the direction, we split the
transport between the poloidal planes and the toroidal direction.
• In the (x, y) planes, we use a D2Q4 model for solving

∂tρ + ∇(x,y) ·
((

vx

vy

)
ρ

)
= 0:

λ0=

(
λp

0
0

)
, λ1=

( −λp

0
0

)
, λ2=

( 0
λp

0

)
, λ3=

( 0
−λp

0

)
.

• In the z direction, we use a D1Q2 model for solving
∂tρ + ∂z (vzρ) = 0:

λ4=

( 0
0

λz

)
, λ5=

( 0
0

−λz

)
.

z

y

x

In the (x, y) planes In the z direction
Transport equations Discontinuous Galerkin Lattice Boltzmann
Mesh Unstructured Periodic structured
Parallelization OpenMP MPI
Condition CFL-less ∆t = ∆z/λt
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Transport equation in the poloidal plan
• Implicit Discontinuous Galerkin scheme∫

L

fn
L − fn−1

L

∆t ψL
i −

∫
L

λ · ∇ψL
i f

n
L

+
∫

∂L

(
(λ · nLR)+fn

L + (λ · nLR)−fn
R

)
ψL

i = 0,

∀L,∀i, with ψL
i the basis function.

• As the transport equation are at constant velocity, we can use a
downwind algorithm, which makes the resolution explicit.

▶ We extend to the second order time accuracy with the same approach.
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3D Diocotron testcase
We initialize the density with

ρ(r, θ, z, 0) = e− (r−r0)2

2σ2

(
1 + ε cos

(
kθ + lz

2π
L

))
.

Figure: Instability rate observed compared to the theoretical one, with
∆t = 0.0026, nt = 38400, ω = 1.99, np = 128, λp = 7, λz = 3, Bθ = 0.1,
Bz = 1, k = 2, l = 1 and a poloidal mesh of size 80 × 50.
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3D view of the Diocotron testcase

Figure: Evolution of the density in three poloidal planes.

• Execution time ≃ 17, 6 hours
• nCFL ≈ 33
▶ It would have taken 33 times longer with an explicit scheme with CFL !
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Equivalent equations analysis
• To analyze the solution given by a DdQnv kinetic model, it is

classical to consider the equivalent equation on w, see for example
[Dub08,Gra14].

• As the DdQnv model approximates an equation with nv equations
and nv variables fi, we propose to compute an equivalent system on
nv variables: w and nv − 1 equilibrium deviation variables.

• We will compare the subcharacteristic stability condition given by
the analysis of the equivalent equation and the hyperbolicity
condition given by the equivalent system.

• To simplify, we consider the transport equation

∂tw +
d∑

k=1
vi∂iw = 0,

but we could extend these computations to a variable velocity v(x, t).
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Flux errors
We define the approximated fluxes as

zk =
nv∑
i=1

λi,kfi, for 1 ⩽ k ⩽ d,

and the flux errors as

yk = zk − qk(w) ≈ 0, for 1 ⩽ k ⩽ d.

For the D2Q4 model, we add a fourth variable

z3 =
nv∑
i=1

(λ2
i,1 − λ2

i,2)fi ≈ 0.

We will compute the equivalent system in the

(w,y) =
(
w, y1, y2, z3

)
variables.
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Operators

We consider the following operators on (w,y):
• T (∆t) the exact transport operator,
• Rω the relaxation operator of parameter ω ∈ [1, 2].

As each time step, the solution is given by(
w
y

)
(t+ ∆t) = S(∆t)

(
w
y

)
(t)

with
S(∆t) = T

(∆t
4

)
◦ Rω ◦ T

(∆t
2

)
◦ Rω ◦ T

(∆t
4

)
.

▶ When ω = 2, this operator is time-symmetric, and therefore
second-order accurate.
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The equivalent system

Taylor expansion with a Computer Algebra System:

∂t

(
w(t)
y(t)

)
=

(
w
y

)
(t+ ∆t) −

(
w
y

)
(t− ∆t)

2∆t +O(∆t2),

= S(∆t) − S−1(∆t)
2∆t

(
w
y

)
(t) +O(∆t2).

We obtain an equivalent system on (w,y) of the form

∂t

(
w
y

)
− a

∆t

(
0
y

)
+

d∑
i=1

Bi∂i

(
w
y

)
+ ∆t

d∑
i,j=1

Cij∂ij

(
w
y

)
= O(∆t2).
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The equivalent equation

∂t

(
w
y

)
− a

∆t

(
0
y

)
+

d∑
i=1

Bi∂i

(
w
y

)
+ ∆t

d∑
i,j=1

Cij∂ij

(
w
y

)
= O(∆t2).

We assume that y = O(∆t). Inserting this hypothesis in the equivalent
system, we obtain

y = ∆t
a

d∑
i=1

Bi[:, 1]∂iw +O(∆t2).

Then, by replacing y in the first equation of the equivalent system, we
retrieve the equivalent equation on w given in [Dub08,Gra14], of the
form

∂tw +
d∑

i=1
bi∂iw + ∆t

d∑
i,j=1

cij∂
2
ijw = O(∆t2).
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Hyperbolicity condition

We consider a system of the form

∂t

(
w
y

)
+

d∑
k=1

∂kBk

(
w
y

)
= 0.

• This system is hyperbolic if for all unit vector n ∈ Rd, the matrix∑d
k=1 nkBk is diagonalizable in R.

• This system is symmetrizable if it exists a symmetric positive
definite matrix P such as for all unit vector n ∈ Rd, the matrix
P
(∑d

k=1 nkBk

)
is symmetric, or, more simply, such as PBk is

symmetric for all k = 1, . . . , d.

A symmetrizable system is hyperbolic.
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Entropy

A system is symmetrizable if and only if it exists an entropy.

For the transport equation, the entropy is
• a quadratic form on (w,y),
• a diagonal quadratic form on the kinetic variable f , meaning we

have
Σ(f) =

nv∑
i=1

αif
2
i , with αk > 0.
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General methodology

(E) DdQnv
Equivalent

system
Equivalent
equation

w ⇝


f1
f2
f3
f4

 ↔


w
y1
y2
z3

 −→
y=O(∆t)

w

↓ ↓
Hyperbolic

stability
condition

Diffusive
stability

condition
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Application to the D1Q2 model

∂tw + v∂xw = 0

Entropy Σ(f) = 2λ
λ+ v

f2
1 + 2λ

λ− v
f2

2 .

Equivalent system Hyperbolicity
condition

∂t

(
w
y

)
− 1

∆t
ω(2−ω)(ω2−2ω+2)

2(ω−1)2

(
0
y

)

+
(

v γ1
(λ2 − v2)γ1 −vγ2

)
∂x

(
w
y

)
= O(∆t),

with γ1= (ω−2)2(ω2−2ω+2)
8(ω−1)2 and γ2= ω4−4ω3+6ω2−4ω+2

2(ω−1)2 . λ > |v|

Equivalent equation Diffusive stability
condition

∂tw + v∂xw + ∆t2−ω
4ω (λ2 − v2)∂xxw = O(∆t2). λ > |v|
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Numerical verification
We consider monochromatic exact solutions(

w̃
ỹ

)
=
(
w0
y0

)
eikx+γt, with k ∈ N and γ ∈ C.

We obtain the following dispersion relation by injecting this solution

• in the equivalent equation on w(
γeq + vikeq − ∆tck2

eq

)
w̃ = 0,

• in the equivalent system on (w, y)(
γsysI2 − a

∆t +Biksys − ∆tCk2
sys

)(
w̃
ỹ

)
= 0.

For the equivalent system, we obtain two γsys. We choose the one that
makes the solution w decrease slowly.
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Comparison of the equivalent system and the equivalent
equation

We compute the relative errors
∑Nx

i=0
∑Nt

n=0(wi,n − w̃i,n)2∑Nx
i=0

∑Nt
n=0(wi,n)2

according to ω:

▶ For little values of ω, the equivalent equation appears to be the most
accurate.

▶ For greater values of ω, the equivalent system is more relevant.
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Equivalent system for the D2Q4 model
∂tw + v1∂1w + v2∂2w = 0

Equivalent system:

∂t


w
y1
y2
z3

− 1
∆t

ω(ω − 2)(ω2 − 2ω + 2)
4(ω − 1)2


0
y1
y2
z3



+


v1 2γ1 0 0

γ1(λ2−2v1) −v1γ2 0 γ2
2

−2v1v2γ1 −v2γ2 0 0
2λ2v1γ1 λ2γ2 0 0

 ∂1


w
y1
y2
z3



+


v2 0 2γ1 0

−2v1v2γ1 0 −v1γ2 0
γ1(λ2−2v2

2) 0 −v2γ2 − γ2
2

−2λ2v2γ1 0 −λ2γ2 0

 ∂2


w
y1
y2
z3

 = O(∆t),

with γ1 = (ω−2)2(ω2−2ω+2)
16(ω−1)2 and γ2 = ω4−4ω3+6ω2−4ω+2

2(ω−1)2 .
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Numerical validation of the equivalent system when ω = 2
We want to verify that the equivalent system is a good approximation of
the solution given by the D2Q4 model.

We can compare
• yvf : solution of the equivalent equation with a finite volume method,
• ykin =

∑nv
i=1 λifi − q(

∑nv
i=1 fi), with f the solution of (E) with the

D2Q4 model.

We choose Ω = [0, 1] × [0, 1] with a mesh of size 800 × 800,
q′(w) = (1, 1), λ = 3, Tf = 0.06 and a Gaussian initialization

w(x, 0) = exp
(

−∥x − xw
0 ∥2

2σ2

)
and yk(x, 0) = exp

(
−∥x − xy

0∥2

2σ2

)
,

with σ = 0.05, xw
0 = (0.25, 0.25) and xy

0 = (0.5, 0.5).
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Numerical validation of the equivalent system when ω = 2

ykin yvf ∥ykin − yvf ∥

y1

y2

▶ The equivalent system is a good approximation of the scheme, and
therefore it gives useful information about its behavior.
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Equivalent equation on w

If we assume that y = O(∆t), then we retrieve the equivalent equation
on w

∂tw + ∇ · q(w) = ∆t
2

( 1
ω

− 1
2

)
∇ · (D4∇w) +O(∆t2),

with the diffusion matrix

D4 =
(

λ2

2 − v2
1 −v1v2

−v1v2
λ2

2 − v2
2

)
.
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Stability conditions
see [Bou05]

The equivalent system is hyperbolic
if

max(|v1|, |v2|) < λ

2 .

When ω ̸= 2, the equivalent equation
is diffusive iff

v2
1 + v2

2 ⩽
λ2

2 .

▶ The diffusive stability condition
is less restrictive than the
hyperbolicity condition.

What happens if the diffusive stability condition is satisfied but not the
hyperbolicity condition ?
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ω = 2

We choose the velocity v =
(

1
0

)
.

Diffusion condition: λ >
√

2(v2
1 + v2

2) =
√

2
Hyperbolic stability condition: λ > 2 max(|v1|, |v2|) = 2

λ = 1.6 λ = 2.2
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ω = 1.6

We choose the velocity v =
(

1
0

)
.

Diffusion condition: λ >
√

2(v2
1 + v2

2) =
√

2
Hyperbolic stability condition: λ > 2 max(|v1|, |v2|) = 2

λ = 1.6 λ = 2.2
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ω = 1.2

We choose the velocity v =
(

1
0

)
.

Diffusion condition: λ >
√

2(v2
1 + v2

2) =
√

2
Hyperbolic stability condition: λ > 2 max(|v1|, |v2|) = 2

λ = 1.6 λ = 2.2
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Boundary conditions

In theory, the over-relaxation kinetic scheme gives us a second order
accuracy. But in practice, it is achieved only if the boundary conditions are
well adapted.

We want to find boundary conditions that ensures
• stability,
• second order accuracy.

We study the simplified case of transport at constant velocity:

∂tw + v∂xw = 0.

Moreover, we are only supposed to know the solution w on the inflow
border, namely when vn ⩽ 0, with n an outward normal vector.
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Boundary conditions for the D1Q2 model

We approximate the kth kinetic unknown at point xi = i∆x and at time
tn = n∆t by

fk(xi, tn) ≈ (fk)n
i .

We solve the transport step with a Lattice-Boltzmann method. We denote

(f1)n+1,∗
i = (f1)n

i−1 and (f2)n+1,∗
i = (f2)n

i+1.

• On the left border, we need to define f1.
• On the right border, we need to define f2.

We assume that v > 0.

x0 x1 x2

f1 f1 f1

f2 f2 f2

v
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Decreasing of the entropy
The entropy of the D1Q2 model is

Σ(f) = 2λ
λ+ v

f2
1 + 2λ

λ− v
f2

2 .

To be stable, we need the entropy to decrease with time. In other words,
we do not want the quantity which is entering into the geometry to be
greater than the one which is leaving it.

The entropy decreases if |f1| ⩽
√

λ+v
λ−v |f2| on the left border,

|f2| ⩽
√

λ−v
λ+v |f1| on the right border.

(C)

Let us verify that imposing
• the exact solution on w on the inflow border,
• y = 0 on the outflow border,

satisfy the decrease of the entropy.
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At the left inflow border
We have

f1 = λ+ v

2λ w + y

2λ and f2 = λ− v

2λ w − y

2λ.

A Dirichlet boundary condition w = 0, gives us

f1 = −f2.

By inserting this expression in the entropy condition of the left border

|f1| ⩽

√
λ+ v

λ− v
|f2|,

we obtain

1 ⩽

√
λ+ v

λ− v
,

which is true, as we have v > 0 and λ > v (subcharacteristic condition).
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At the right outflow border
We have

f1 = λ+ v

2λ w + y

2λ and f2 = λ− v

2λ w − y

2λ.

A Dirichlet boundary condition on the flux error y = 0, gives us

f1 = λ+ v

λ− v
f2.

By inserting this expression in the entropy condition of the right border

|f2| ⩽

√
λ− v

λ+ v
|f1|

we obtain

1 ⩽

√
λ+ v

λ− v
,

which is true, as we have v > 0 and λ > v (subcharacteristic condition).
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Boundary conditions for the D2Q4 model
• By the same approach of decreasing entropy, we can find stable

boundary conditions in 2 dimensions. We just have to be careful with
the corners.

• We also propose boundary conditions of second order accuracy, but
for which the stability is not satisfied.

Entropy decreasing BC Order 2 BC

Inflow border Exact solution on w
z3 = 0 Exact solution on w

Outflow border λb · y = 0
z3 = 0 Neumann on v · y

Corner inflow/inflow Exact solution on w
z3 = 0

Exact solution on w
z3 = 0

Corner inflow/outflow Exact solution on w
λb · y = 0, z3 = 0

Neumann on v · y
z3 = 0

Corner outflow/outflow y1 = 0, y2 = 0
z3 = 0

Exact solution on w
Neumann on v · y
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Test-cases
We choose a square geometry Ω = [0, 1] × [0, 1].
We initialize w with a function with compact support

w(x, t) =
{

0 if r(x) > 1,
(1 − r(x)2)5 otherwise.

with r(x) =
√

(x1−x0
1)2+(x2−x0

2)2

0.4 , with different centers and velocities:

Test case x0
1 x0

2 v1 v2
1 −0.5 0.5 1 0
2 0.5 0.5 −1 0
3 0 0.5 1 0
4 −

√
2/4 −

√
2/4

√
2/2

√
2/2

5
√

2/4
√

2/4 −
√

2/2 −
√

2/2
4 0 0

√
2/2

√
2/2

We take λ = 2, T = 0.5, and Nt = 16, 32, 64, 128.
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Order of convergence

Entropy decreasing BC Order 2 BC

▶ The entropy decreasing boundary conditions leads to first order
accuracy.

▶ The second boundary conditions give a second order accuracy.
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Evolution of the entropy

Entropy decreasing BC Order 2 BC

▶ As expected, the first boundary conditions respect the decrease of the
entropy.

▶ The second boundary conditions are not stable in large time. The
entropy increases with time.
Work in progress: make them stable !
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Conclusion and perspectives

• We have built stable boundary conditions and second order accuracy
boundary conditions. We could combine them to verify the both
properties.
▶ Work in progress: make the second order boundary conditions stable.

• We have proposed an equivalent system for the equation transport.
We could extend this theory to any hyperbolic system.

• In the application part, we could use poloidal meshes and consider
more realistic physical models with transport in curved torus.
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Thank you for your attention !
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