Passivité et Systèmes Hamiltoniens à Ports

Applications en audio et acoustique musicale

Thomas Hélie, CNRS

Équipe S3AM
Laboratoire des Sciences et Technologies de la Musique et du Son IRCAM - CNRS - Sorbonne Université - Ministère de la Culture Paris, France

Séminaire du GT "Schémas de Boltzmann sur réseau à l'IHP"
5 Octobre 2022
Institut Henri Poincaré, Paris, France

Why PHS for musical audio/acoustic applications ?

Instruments involve \& PHS support:
(1) Multi-physics: mechanics, acoustics, electronics, thermodynamics, etc.
(2) Power balance: conservative/dissipative/external parts $=$ passivity (+ time causality, irreversibility, natural symmetries)
(3) Nonlinearities: amplitude-dependent timbre, self-oscillations, regime bifurcation, chaos, etc.
(4) Non-ideal dissipation: crucial for realism
(5) Modularity: "choose, build, refine your components and assemble them"

Why PHS for musical audio/acoustic applications ?

Instruments involve \& PHS support:
(1) Multi-physics: mechanics, acoustics, electronics, thermodynamics, etc.
(2) Power balance: conservative/dissipative/external parts $=$ passivity (+ time causality, irreversibility, natural symmetries)
(3) Nonlinearities: amplitude-dependent timbre, self-oscillations, regime bifurcation, chaos, etc.
(4) Non-ideal dissipation: crucial for realism
(5) Modularity: "choose, build, refine your components and assemble them"

Objectives

(1) Modelling: Component-based approach
(2) Numerics: power-balanced/passive schemes (accuracy, reject aliasing due to nonlinearities+sampling, etc.)
(3) Computational cost: solvers in view of real-time sound synthesis
(9) Code generator: component netlists \rightarrow equations $\rightarrow \mathrm{C}++$ code
(0) Control: power-balanced reprogrammed physics to reach behaviours (transducer correction, acoustic absorbers, hybrid instruments, etc.)
(1) Motivation
(2) PREAMBLE: reminders on dynamical systems and Lyapunov analysis
(3) MODELLING: Input-State-Output representations of PHS
(4) NUMERICS with sound applications
(5) STATISTICAL PHYSICS and Boltzmann principle for PHS
(6) CONTROL: digital passive controller for hardware
(7) Conclusion

Outline

(1) Motivation
(2) PREAMBLE: reminders on dynamical systems and Lyapunov analysis
(3) MODELLING: Input-State-Output representations of PHS
(4) NUMERICS with sound applications
(5) STATISTICAL PHYSICS and Boltzmann principle for PHS

6 CONTROL: digital passive controller for hardware
(7) Conclusion

PREAMBLE

[Khalil,2002: Nonlinear systems]

Stability and passivity in nonlinear dynamical systems

- Stability of an equilibrium point
- Passivity of an input/output system
(autonomous system)
(input/output system)

PREAMBLE

[Khalil,2002: Nonlinear systems]

Stability and passivity in nonlinear dynamical systems

- Stability of an equilibrium point
- Passivity of an input/output system
(autonomous system)
(input/output system)
\rightarrow Lyapunov analysis

Preamble (1/4): autonomous systems

$$
\begin{aligned}
& \dot{x}(t)=f(x(t)), \text { for } t \geq 0, \text { with } f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad\left(n \in \mathbb{N}^{*}\right) \\
& x(0)=x_{0} \in \mathbb{R}^{n}
\end{aligned}
$$

Preamble (1/4): autonomous systems

$$
\begin{aligned}
& \dot{x}(t)=f(x(t)), \text { for } t \geq 0, \text { with } f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad\left(n \in \mathbb{N}^{*}\right) \\
& x(0)=x_{0} \in \mathbb{R}^{n}
\end{aligned}
$$

Cauchy-Lipschitz theorem: $\quad f$ locally Lipschitz $\Rightarrow \exists!t \mapsto x(t)$
x can be defined on $J_{x_{0}} \subseteq \mathbb{R}$, an open maximal interval that contains 0 , or on interval $J_{x_{0}}^{+}:=J_{x_{0}} \cap \mathbb{R}_{+}$, for its restriction to positive times.

Preamble (1/4): autonomous systems

$$
\begin{aligned}
& \dot{x}(t)=f(x(t)), \text { for } t \geq 0, \text { with } f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad\left(n \in \mathbb{N}^{*}\right) \\
& x(0)=x_{0} \in \mathbb{R}^{n}
\end{aligned}
$$

Cauchy-Lipschitz theorem:
f locally Lipschitz $\Rightarrow \exists!t \mapsto x(t)$
x can be defined on $J_{x_{0}} \subseteq \mathbb{R}$, an open maximal interval that contains 0 , or on interval $J_{x_{0}}^{+}:=J_{x_{0}} \cap \mathbb{R}_{+}$, for its restriction to positive times.

Equilibrium point:

$$
x^{*} \in \mathbb{R}^{n} \text { s.t. } f\left(x^{*}\right)=0
$$

$\mathrm{Rk}: J_{x^{*}}=\mathbb{R}, \quad J_{x^{*}}^{+}=\mathbb{R}^{+}$

Preamble (1/4): autonomous systems

$$
\begin{aligned}
& \dot{x}(t)=f(x(t)), \text { for } t \geq 0, \text { with } f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad\left(n \in \mathbb{N}^{*}\right) \\
& x(0)=x_{0} \in \mathbb{R}^{n}
\end{aligned}
$$

Cauchy-Lipschitz theorem:
 f locally Lipschitz $\Rightarrow \exists!t \mapsto x(t)$

x can be defined on $J_{x_{0}} \subseteq \mathbb{R}$, an open maximal interval that contains 0 , or on interval $J_{x_{0}}^{+}:=J_{x_{0}} \cap \mathbb{R}_{+}$, for its restriction to positive times.

Equilibrium point:

$$
x^{*} \in \mathbb{R}^{n} \text { s.t. } f\left(x^{*}\right)=0
$$

$\mathrm{Rk}: J_{x^{*}}=\mathbb{R}, \quad J_{x^{*}}^{+}=\mathbb{R}^{+}$
Stabilities of x^{*}
(L: local, A: asymptotic, G: global)
(LS) if: $\forall R>0, \exists r(R)>0$ such that $\forall x_{0} \in \mathbb{R}^{n}$,
$\left\|x_{0}-x^{*}\right\|<r(R) \Rightarrow\left\|x(t)-x^{*}\right\|<R, \forall t \in J_{x_{0}}^{+}$
Lemma: if $\left\|x_{0}-x^{*}\right\|<r(R)$, then $J_{x_{0}}^{+}=\mathbb{R}^{+}$
(LAS) if: (LS) and $\exists r>0$ s.t. $\left\|x_{0}-x^{*}\right\|<r \Rightarrow \lim _{t \rightarrow+\infty} x(t)=x^{*}$
(GAS) if: (LAS) for all $r>0$

Preamble (2/4): the Duffing oscillator $\ddot{y}+\alpha \dot{y}+\left(1+\beta y^{2}\right) y=0$

$$
\begin{aligned}
\dot{x}(t)=f(x(t)), \text { with } x & =[y, \dot{y}]^{T}, \\
\text { and } f(x) & =\left[x_{2},-\alpha x_{2}-\left(1+\beta x_{1}^{2}\right) x_{1}\right]^{T}
\end{aligned}
$$

(LS) if: $\forall R>0, \exists r(R)>0$ such that $\forall x_{0} \in \mathbb{R}^{n}$,

$$
\left\|x_{0}-x^{*}\right\|<r(R) \Rightarrow\left\|x(t)-x^{*}\right\|<R, \forall t \in J_{x_{0}}^{+}
$$

(LAS) if: (LS) and $\exists r>0$ s.t. $\left\|x_{0}-x^{*}\right\|<r \Rightarrow \lim _{t \rightarrow+\infty} x(t)=x^{*}$ (GAS) if: (LAS) for all $r>0$

Preamble (3/4): Lyapunov analysis (of a system $\mathcal{S}: \dot{x}=f(x)$)
Definition
(Hyp.: $x^{*}=0$ and $\Omega \subseteq \mathbb{R}^{n}$ open set)
$V: \Omega \longrightarrow \mathbb{R}$ is a Lyapunov function of \mathcal{S} if:
(i) V is \mathcal{C}^{1}-regular on Ω
(ii) $V(0)=0$ and $V(x)>0$ for all $x \neq 0$
(iii) $\frac{\mathrm{d}}{\mathrm{d} t} V \circ x(t) \leq 0$ for all trajectories of \mathcal{S} in Ω
$\left(\Leftrightarrow \nabla V(x)^{\top} f(x) \leq 0\right.$, for all x in $\left.\Omega\right)$
If $\nabla V(x)^{\top} f(x)<0$, for all x in $\Omega \backslash\{0\}, V$ is called a strict Lyapunov fct.

Preamble (3/4): Lyapunov analysis (of a system $\mathcal{S}: \dot{x}=f(x)$)

Definition

(Hyp.: $x^{*}=0$ and $\Omega \subseteq \mathbb{R}^{n}$ open set)
$V: \Omega \longrightarrow \mathbb{R}$ is a Lyapunov function of \mathcal{S} if:
(i) V is \mathcal{C}^{1}-regular on Ω
(ii) $V(0)=0$ and $V(x)>0$ for all $x \neq 0$
(iii) $\frac{\mathrm{d}}{\mathrm{d} t} V \circ x(t) \leq 0$ for all trajectories of \mathcal{S} in Ω $\left(\Leftrightarrow \nabla V(x)^{T} f(x) \leq 0\right.$, for all x in Ω)
If $\nabla V(x)^{T} f(x)<0$, for all x in $\Omega \backslash\{0\}, V$ is called a strict Lyapunov fct.

Lyapunov theorem

If V is a Lyapunov fct . of \mathcal{S}, then $x^{*}=0$ is LS.
If V is strict, then $x^{*}=0$ is LAS.
(GAS? For $\Omega=\mathbb{R}^{n}$, add the condition $V(x) \rightarrow+\infty$ as $\|x\| \rightarrow+\infty$)

Preamble (3/4): Lyapunov analysis (of a system $\mathcal{S}: \dot{x}=f(x)$)

Definition

$$
\text { (Hyp.: } x^{*}=0 \text { and } \Omega \subseteq \mathbb{R}^{n} \text { open set) }
$$

$V: \Omega \longrightarrow \mathbb{R}$ is a Lyapunov function of \mathcal{S} if:
(i) V is \mathcal{C}^{1}-regular on Ω
(ii) $V(0)=0$ and $V(x)>0$ for all $x \neq 0$
(iii) $\frac{\mathrm{d}}{\mathrm{d} t} V \circ x(t) \leq 0$ for all trajectories of \mathcal{S} in Ω

$$
\left(\Leftrightarrow \nabla V(x)^{T} f(x) \leq 0, \text { for all } x \text { in } \Omega\right)
$$

If $\nabla V(x)^{T} f(x)<0$, for all x in $\Omega \backslash\{0\}, V$ is called a strict Lyapunov fct.

Lyapunov theorem

If V is a Lyapunov fct. of \mathcal{S}, then $x^{*}=0$ is LS.
If V is strict, then $x^{*}=0$ is LAS.
(GAS? For $\Omega=\mathbb{R}^{n}$, add the condition $V(x) \rightarrow+\infty$ as $\|x\| \rightarrow+\infty$)

Lasalle principle

(a useful theorem!)
Let \mathcal{I} be the largest subset of $\left\{x \in \Omega\right.$ s.t. $\left.\nabla V(x)^{\top} f(x)=0\right\}$ (points leaving V invariant) that is invariant under the flow in positive time.
Then, all the trajectories of \mathcal{S} converge towards \mathcal{I}.

Preamble (3/4): Lyapunov analysis (of a system $\mathcal{S}: \dot{x}=f(x)$)

Definition

$$
\text { (Hyp.: } x^{*}=0 \text { and } \Omega \subseteq \mathbb{R}^{n} \text { open set) }
$$

$V: \Omega \longrightarrow \mathbb{R}$ is a Lyapunov function of \mathcal{S} if:
(i) V is \mathcal{C}^{1}-regular on Ω
(ii) $V(0)=0$ and $V(x)>0$ for all $x \neq 0$
(iii) $\frac{\mathrm{d}}{\mathrm{dt}} V \circ \times(t) \leq 0$ for all trajectories of \mathcal{S} in Ω

$$
\left(\Leftrightarrow \nabla V(x)^{T} f(x) \leq 0, \text { for all } x \text { in } \Omega\right)
$$

If $\nabla V(x)^{\top} f(x)<0$, for all x in $\Omega \backslash\{0\}, V$ is called a strict Lyapunov fct.

Lyapunov theorem

If V is a Lyapunov fct. of \mathcal{S}, then $x^{*}=0$ is LS.
If V is strict, then $x^{*}=0$ is LAS.
(GAS? For $\Omega=\mathbb{R}^{n}$, add the condition $V(x) \rightarrow+\infty$ as $\|x\| \rightarrow+\infty$)
Lasalle principle
(a useful theorem!)
Let \mathcal{I} be the largest subset of $\left\{x \in \Omega\right.$ s.t. $\left.\nabla V(x)^{\top} f(x)=0\right\}$ (points leaving V invariant) that is invariant under the flow in positive time.
Then, all the trajectories of \mathcal{S} converge towards \mathcal{I}.
Remark: if V is Lyapunov (possibly not strict), then $\mathcal{I}=\{0\} \Rightarrow(L A S)$

Preamble (3/4): Lyapunov analysis (of a system $\mathcal{S}: \dot{x}=f(x)$)

Definition

$V: \Omega \longrightarrow \mathbb{R}$ is a Lyapunov function of \mathcal{S} if:
(i) V is \mathcal{C}^{1}-regular on Ω
(ii) $V(0)=0$ and $V(x)>0$ for all $x \neq 0$
(iii) $\frac{\mathrm{d}}{\mathrm{dt}} V \circ x(t) \leq 0$ for all trajectories of \mathcal{S} in Ω

$$
\left(\Leftrightarrow \nabla V(x)^{T} f(x) \leq 0, \text { for all } x \text { in } \Omega\right)
$$

If $\nabla V(x)^{\top} f(x)<0$, for all x in $\Omega \backslash\{0\}, V$ is called a strict Lyapunov fct.

Lyapunov theorem

If V is a Lyapunov fct. of \mathcal{S}, then $x^{*}=0$ is LS.
If V is strict, then $x^{*}=0$ is LAS.
(GAS? For $\Omega=\mathbb{R}^{n}$, add the condition $V(x) \rightarrow+\infty$ as $\|x\| \rightarrow+\infty$)

Lasalle principle

(a useful theorem!)
Let \mathcal{I} be the largest subset of $\left\{x \in \Omega\right.$ s.t. $\left.\nabla V(x)^{T} f(x)=0\right\}$ (points leaving V invariant) that is invariant under the flow in positive time.
Then, all the trajectories of \mathcal{S} converge towards \mathcal{I}.
Remark: if V is Lyapunov (possibly not strict), then $\mathcal{I}=\{0\} \Rightarrow($ LAS $)$
Usual difficulty: find a Lyapunov function for a given nonlinear f

Preamble (4/4): Passivity
(input/output systems)
Input/output system (u : input, y : output, $\operatorname{dim} u=\operatorname{dim} y \geq 1$)

$$
\mathcal{S}: \quad \dot{x}=f(x, u), \quad y=h(x, u) \quad \text { and } x(0)=x_{0}
$$

Input/output system (u : input, y : output, $\operatorname{dim} u=\operatorname{dim} y \geq 1$)

$$
\mathcal{S}: \quad \dot{x}=f(x, u), \quad y=h(x, u) \quad \text { and } x(0)=x_{0}
$$

Recall (autonomous systems $\dot{x}=f(x)$): V is a Lyapunov fct. if
(i) V is \mathcal{C}^{1}-regular on Ω
(ii) $V(0)=0$ and $V(x)>0$ for all $x \neq 0$
(iii) $\frac{\mathrm{d}}{\mathrm{d} t} V \circ x(t) \leq 0$
$\left(\Leftrightarrow \nabla V(x)^{\top} f(x) \leq 0\right.$, for all $\left.x\right)$

Input/output system (u : input, y : output, $\operatorname{dim} u=\operatorname{dim} y \geq 1$)

$$
\mathcal{S}: \quad \dot{x}=f(x, u), \quad y=h(x, u) \quad \text { and } x(0)=x_{0}
$$

Recall (autonomous systems $\dot{x}=f(x)$): V is a Lyapunov fct. if
(i) V is \mathcal{C}^{1}-regular on Ω
(ii) $V(0)=0$ and $V(x)>0$ for all $x \neq 0$
(iii) $\frac{\mathrm{d}}{\mathrm{d} t} V \circ x(t) \leq 0$
$\left(\Leftrightarrow \nabla V(x)^{\top} f(x) \leq 0\right.$, for all $\left.x\right)$
Passivity: \mathcal{S} is passive if V satisfies (i-ii) and if (iii) is replaced by

$$
\text { Passivity: } \frac{\mathrm{d}}{\mathrm{~d} t} V \circ x(t) \leq y(t)^{\top} u(t) \quad\left(\Leftrightarrow \nabla V(x)^{\top} f(x, u) \leq h(x, u)^{\top} u\right)
$$

Strict passivity: $\frac{\mathrm{d}}{\mathrm{d} t} V \circ x(t) \leq y(t)^{\top} u(t)-\psi(x(t))$

$$
\left(\Leftrightarrow \nabla V(x)^{\top} f(x, u) \leq h(x, u)^{\top} u-\psi(x) \text { for all } x, u\right)
$$

with $\psi: \Omega \rightarrow \mathbb{R}$ s.t. $\psi(0)=0$ and $\psi(x)>0$ for all $x \neq 0$

Input/output system (u : input, y : output, $\operatorname{dim} u=\operatorname{dim} y \geq 1$)

$$
\mathcal{S}: \quad \dot{x}=f(x, u), \quad y=h(x, u) \quad \text { and } x(0)=x_{0}
$$

Recall (autonomous systems $\dot{x}=f(x)$): V is a Lyapunov fct. if
(i) V is \mathcal{C}^{1}-regular on Ω
(ii) $V(0)=0$ and $V(x)>0$ for all $x \neq 0$
(iii) $\frac{\mathrm{d}}{\mathrm{d} t} V \circ x(t) \leq 0$
$\left(\Leftrightarrow \nabla V(x)^{\top} f(x) \leq 0\right.$, for all $\left.x\right)$
Passivity: \mathcal{S} is passive if V satisfies (i-ii) and if (iii) is replaced by

$$
\text { Passivity: } \frac{\mathrm{d}}{\mathrm{~d} t} V \circ x(t) \leq y(t)^{\top} u(t) \quad\left(\Leftrightarrow \nabla V(x)^{\top} f(x, u) \leq h(x, u)^{\top} u\right)
$$

Strict passivity: $\frac{\mathrm{d}}{\mathrm{d} t} V \circ x(t) \leq y(t)^{\top} u(t)-\psi(x(t))$
($\Leftrightarrow \nabla V(x)^{T} f(x, u) \leq h(x, u)^{\top} u-\psi(x)$ for all $\left.x, u\right)$
with $\psi: \Omega \rightarrow \mathbb{R}$ s.t. $\psi(0)=0$ and $\psi(x)>0$ for all $x \neq 0$
\rightarrow Stability for $u=0$
\rightarrow Stabilization for dissipative feedback-loop laws: $\left(u=-R y \Rightarrow y^{\top} u=-R\|y\|^{2} \leq 0\right)$
\rightarrow In physics, a natural Lyapunov function is the energy

Outline

(1) Motivation

2 PREAMBLE: reminders on dynamical systems and Lyapunov analysis
(3) MODELLING: Input-State-Output representations of PHS
(4) NUMERICS with sound applications
(5) STATISTICAL PHYSICS and Boltzmann principle for PHS

6 CONTROL: digital passive controller for hardware
(7) Conclusion

MODELLING: Input-State-Output representations

Port-Hamiltonian Systems
with
a component-based approach

(finite-dimensional case \equiv ODEs)

A physical system is made of．．．

A physical system is made of. . .

(i) Energy-storing components

$$
E=\sum_{n=1}^{N} e_{n} \geq 0
$$

A physical system is made of. . .

(i) Energy-storing components

$$
E=\sum_{n=1}^{N} e_{n} \geq 0
$$

(ii) Memoryless passive components
$P_{\text {diss }}=\sum_{m=1}^{M} d_{m}>0$ (dissipative) or $=0$ (conservative)

A physical system is made of. . .

(i) Energy-storing components

$$
E=\sum_{n=1}^{N} e_{n} \geq 0
$$

(ii) Memoryless passive components
$P_{\text {diss }}=\sum_{m=1}^{M} d_{m}>0$ (dissipative) or $=0$ (conservative)
(iii) External components

$$
P_{\mathrm{ext}}=\sum_{p=1}^{P} s_{p}
$$

A physical system is made of. . .

(i) Energy-storing components $E=\sum_{n=1}^{N} e_{n} \geq 0$
(ii) Memoryless passive components

$$
P_{\text {diss }}=\sum_{m=1}^{M} d_{m}>0 \text { (dissipative) or }=0 \text { (conservative) }
$$

(iii) External components

$$
P_{\mathrm{ext}}=\sum_{p=1}^{P} s_{p}
$$

+ Conservative connections

A physical system is made of. . .

(i) Energy-storing components $E=\sum_{n=1}^{N} e_{n} \geq 0$
(ii) Memoryless passive components
$P_{\text {diss }}=\sum_{m=1}^{M} d_{m}>0$ (dissipative) or $=0$ (conservative)
(iii) External components

$$
P_{\mathrm{ext}}=\sum_{p=1}^{P} s_{p}
$$

+ Conservative connections \rightarrow sum of received powers is zero

A physical system is made of. . .

receiver convention

(i) Energy-storing components \rightarrow store energy $E=\sum_{n=1}^{N} e_{n} \geq 0$
(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\mathrm{diss}}=\sum_{m=1}^{M} d_{m}>0$ (dissipative) or $=0$ (conservative)
(iii) External components
\rightarrow receive power

$$
P_{\mathrm{ext}}=\sum_{p=1}^{P} s_{p}
$$

+ Conservative connections \rightarrow sum of received powers is zero $P_{\text {stored }}+\underbrace{P_{\text {diss }}}_{\geq 0}+P_{\text {ext }}=0$ with $P_{\text {stored }}=\dot{E} \quad$ (power balance)

A physical system is made of. . .

receiver convention

(i) Energy-storing components \rightarrow store energy $E=\sum_{n=1}^{N} e_{n} \geq 0$
(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\mathrm{diss}}=\sum_{m=1}^{M} d_{m}>0$ (dissipative) or $=0$ (conservative)
(iii) External components
\rightarrow receive power

$$
P_{\mathrm{ext}}=\sum_{p=1}^{P} s_{p}
$$

+ Conservative connections \rightarrow sum of received powers is zero $P_{\text {stored }}+\underbrace{P_{\text {diss }}}_{\geq 0}+P_{\text {ext }}=0$ with $P_{\text {stored }}=\dot{E} \quad$ (power balance)

A physical system is made of. . .
receiver convention

(i) Energy-storing components
\rightarrow store energy
$E=H(\mathbf{x})=\sum_{n=1}^{N} H_{n}\left(x_{n}\right) \geq 0$
(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\text {diss }}=\mathbf{z}(\mathbf{w})^{\top} \mathbf{w}=\sum_{m=1}^{M} z_{m}\left(w_{m}\right) w_{m} \geq 0$
(effort \times flow : force \times velocity, voltage \times current, etc)
(iii) External components
\rightarrow receive power
$P_{\mathrm{ext}}=\mathbf{u}^{\top} \mathbf{y}=\sum_{p=1}^{P} u_{p} y_{p}$

+ Conservative connections \rightarrow sum of received powers is zero $\underbrace{\nabla H(\mathbf{x})^{\top} \dot{\mathbf{x}}}_{P_{\text {stored }}=\mathrm{d} E / \mathrm{d} t}+\underbrace{\mathbf{z (w) ^ { \top } \mathbf { w }}}_{\geq 0}+\mathbf{u}^{\top} \mathbf{y}=0$

A physical system is made of. . .
receiver convention

(i) Energy-storing components
\rightarrow store energy

$$
E=H(\mathbf{x})=\sum_{n=1}^{N} H_{n}\left(x_{n}\right) \geq 0
$$

(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\text {diss }}=\mathbf{z}(\mathbf{w})^{\top} \mathbf{w}=\sum_{m=1}^{M} z_{m}\left(w_{m}\right) w_{m} \geq 0$
(effort \times flow : force \times velocity, voltage \times current, etc)
(iii) External components
\rightarrow receive power

$$
P_{\mathrm{ext}}=\mathbf{u}^{\top} \mathbf{y}=\sum_{p=1}^{P} u_{p} y_{p}
$$

+ Conservative connections \rightarrow sum of received powers is zero

$$
\underbrace{\nabla H(\mathbf{x})^{\top} \dot{\mathbf{x}}}_{P_{\text {stored }}=\mathrm{d} E / \mathrm{d} t}+\underbrace{\mathrm{z}(\mathbf{w})^{\top} \mathbf{w}}_{\geq 0}+\mathbf{u}^{\top} \mathbf{y}=0
$$

PHS: Input-State-Output representation
(S: interconnection matrix)

$$
\underbrace{\left[\begin{array}{c}
\dot{\mathrm{x}} \tag{1}\\
\mathrm{w} \\
\mathrm{y}
\end{array}\right]}_{\mathbf{f}}=\underbrace{\left[\begin{array}{ccc}
\boldsymbol{S}_{\mathrm{xx}} & \boldsymbol{S}_{\mathrm{xw}} & \boldsymbol{S}_{\mathrm{xu}} \\
* & \boldsymbol{S}_{\mathrm{ww}} & \boldsymbol{S}_{\mathrm{wu}} \\
* & * & \boldsymbol{S}_{\mathrm{yu}}
\end{array}\right]}_{\text {with } \boldsymbol{S}=-\boldsymbol{S}^{\top}} \underbrace{\left[\begin{array}{cc}
\nabla H(\mathrm{x}) \\
\mathrm{z}(\mathrm{w}) \\
\mathbf{u}
\end{array}\right]}_{\mathbf{e}} \begin{aligned}
& \begin{array}{l}
\text { (i) }
\end{array} \\
& \begin{array}{l}
\text { storage } \rightarrow \text { differential eq. } \\
\text { (ii) } \\
\text { (iii) } \\
\text { memoryless } \rightarrow \text { algebraic eq. } \\
\text { ports } \rightarrow \text { physical signals }
\end{array}
\end{aligned}
$$

A physical system is made of. ..
receiver convention

(i) Energy-storing components
\rightarrow store energy
$E=H(\mathbf{x})=\sum_{n=1}^{N} H_{n}\left(x_{n}\right) \geq 0$
(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\text {diss }}=z(w)^{\top} w=\sum_{m=1}^{M} z_{m}\left(w_{m}\right) w_{m} \geq 0$
(effort \times flow : force \times velocity, voltage \times current, etc)
(iii) External components
\rightarrow receive power

$$
P_{\mathrm{ext}}=\mathbf{u}^{\top} \mathbf{y}=\sum_{p=1}^{P} u_{p} y_{p}
$$

+ Conservative connections \rightarrow sum of received powers is zero

$$
\underbrace{\nabla H(\mathbf{x})^{\top} \dot{\mathbf{x}}}_{P_{\text {stored }}=\mathrm{d} E / \mathrm{d} t}+\underbrace{\mathbf{z}(\mathbf{w})^{\top} \mathbf{w}}_{\geq 0}+\mathbf{u}^{\top} \mathbf{y}=0
$$

PHS: Input-State-Output representation
(S: interconnection matrix)

$$
\left.\underbrace{\left[\begin{array}{c}
\dot{\mathbf{x}} \tag{1}\\
\mathrm{w} \\
\mathrm{y}
\end{array}\right]}_{\mathbf{f}}=\underbrace{\left[\begin{array}{ccc}
\boldsymbol{S}_{\mathrm{xx}} & \boldsymbol{S}_{\mathrm{xw}} & \boldsymbol{S}_{\mathrm{xu}} \\
* & \boldsymbol{S}_{\mathrm{ww}} & \boldsymbol{S}_{\mathrm{wu}} \\
* & * & \boldsymbol{S}_{\mathrm{yu}}
\end{array}\right]}_{\text {with } \boldsymbol{S}=-\boldsymbol{S}^{\top}} \underbrace{\left[\begin{array}{c}
\nabla H(\mathrm{x}) \\
\mathrm{z}(\mathrm{w}) \\
\mathbf{u}
\end{array}\right]}_{\mathbf{e}} \begin{aligned}
& \text { (i) } \\
& \begin{array}{l}
\text { storage } \rightarrow \text { differential eq. } \\
\text { (ii) } \\
\text { (iii) }
\end{array} \\
& \text { memoryless } \rightarrow \text { algebraic eq. } \\
& \text { ports } \rightarrow \text { physical signals }
\end{aligned} \right\rvert\,
$$

Power balance: $\mathbf{e}^{\top} \mathbf{f} \stackrel{(1)}{=} \mathbf{e}^{\top} \boldsymbol{S} \mathbf{e}=0$ as $\boldsymbol{S}=-\boldsymbol{S}^{\top} \Rightarrow \mathbf{e}^{\top} \boldsymbol{S} \mathbf{e}=\left(\mathbf{e}^{\top} \boldsymbol{S} \mathbf{e}\right)^{\top}=-\left(\mathbf{e}^{\top} \boldsymbol{S} \mathbf{e}\right)$

A physical system is made of. . .

(i) Energy-storing components
\rightarrow store energy

$$
E=H(\mathbf{x})=\sum_{n=1}^{N} H_{n}\left(x_{n}\right) \geq 0
$$

(ii) Memoryless passive components $\quad \rightarrow$ receive power $P_{\text {diss }}=\mathbf{z}(\mathbf{w})^{\top} \mathbf{w}=\sum_{m=1}^{M} z_{m}\left(w_{m}\right) w_{m} \geq 0$
(effort \times flow : force \times velocity, voltage \times current, etc)
(iii) External components
\rightarrow receive power

$$
P_{\mathrm{ext}}=\mathbf{u}^{\top} \mathbf{y}=\sum_{p=1}^{P} u_{p} y_{p}
$$

+ Conservative connections \rightarrow sum of received powers is zero

$$
\underbrace{\nabla H(\mathbf{x})^{\top} \dot{\mathbf{x}}}_{P_{\text {stored }}=\mathrm{d} E / \mathrm{d} t}+\underbrace{\mathrm{z}(\mathbf{w})^{\top} \mathbf{w}}_{\geq 0}+\mathbf{u}^{\top} \mathbf{y}=0
$$

PHS: Input-State-Output representation
(S: interconnection matrix)

$$
\left.\underbrace{\left[\begin{array}{c}
\dot{\mathrm{x}} \tag{1}\\
\mathrm{w} \\
\mathrm{y}
\end{array}\right]}_{\mathbf{f}}=\underbrace{\left[\begin{array}{ccc}
\boldsymbol{S}_{\mathrm{xx}} & \boldsymbol{S}_{\mathrm{xw}} & \boldsymbol{S}_{\mathrm{xu}} \\
* & \boldsymbol{S}_{\mathrm{ww}} & \boldsymbol{S}_{\mathrm{wu}} \\
* & * & \boldsymbol{S}_{\mathrm{yu}}
\end{array}\right]}_{\text {with } \boldsymbol{S}=-\boldsymbol{S}^{\top}} \underbrace{\left[\begin{array}{cc}
\nabla H(\mathrm{x}) \\
\mathrm{z}(\mathrm{w}) \\
\mathbf{u}
\end{array}\right]}_{\mathbf{e}} \begin{aligned}
& \begin{array}{l}
\text { (i) }
\end{array} \\
& \begin{array}{l}
\text { storage } \rightarrow \text { differential eq. } \\
\text { (ii) } \\
\text { (iii) }
\end{array} \\
& \text { memoryless } \rightarrow \text { algebraic eq. } \\
& \text { ports } \rightarrow \text { physical signals }
\end{aligned} \right\rvert\,
$$

\rightarrow Differential-Algebraic Formulation

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$

- 4 separate components

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$
(no gravity)

- 4 separate components
(i_{1}) mass m of momentum $\pi=m v$ (energy: $\frac{1}{2} m v^{2}=\frac{\pi^{2}}{2 m}$),

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$
(no gravity)

- 4 separate components
(i_{1}) mass m of momentum $\pi=m v$ (energy: $\frac{1}{2} m v^{2}=\frac{\pi^{2}}{2 m}$),
(i_{2}) spring sp of elongation ξ

	state	energy H_{n}	flow f	effort \mathbf{e}
m	$x_{1}:=\pi$	$\pi^{2} /(2 m)$	$\dot{x}_{1}=\dot{\pi}$	$H_{1}^{\prime}\left(x_{1}\right)=x_{1} / m$
sp	$x_{2}:=\xi$	$k \xi^{2} / 2$	$\dot{x}_{2}=\dot{\xi}$	$H_{2}^{\prime}\left(x_{2}\right)=k x_{2}$
blue : force red : velocity				

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$
(no gravity)

- 4 separate components
(i_{1}) mass m of momentum $\pi=m v$ (energy: $\frac{1}{2} m v^{2}=\frac{\pi^{2}}{2 m}$),
(i_{2}) spring sp of elongation ξ
(ii) damper dp of velocity V_{dp}

	state	energy H_{n}	flow f	effort \mathbf{e}
m	$x_{1}:=\pi$	$\pi^{2} /(2 m)$	$\dot{x}_{1}=\dot{\pi}$	$H_{1}^{\prime}\left(x_{1}\right)=x_{1} / m$
sp	$x_{2}:=\xi$	$k \xi^{2} / 2$	$\dot{x}_{2}=\dot{\xi}$	$H_{2}^{\prime}\left(x_{2}\right)=k x_{2}$
dp	blue : force red : velocity		$w:=V_{\text {dp }}$	$z(w):=r w$

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$
(no gravity)

- 4 separate components
(i_{1}) mass m of momentum $\pi=m v$ (energy: $\frac{1}{2} m v^{2}=\frac{\pi^{2}}{2 m}$),
(i_{2}) spring sp of elongation ξ
(ii) damper dp of velocity V_{dp}
(iii) actuator ext applying a force $F_{\text {ext }}$

	state	energy H_{n}	flow \mathbf{f}	effort \mathbf{e}
m	$x_{1}:=\pi$	$\pi^{2} /(2 m)$	$\dot{x}_{1}=\dot{\pi}$	$H_{1}^{\prime}\left(x_{1}\right)=x_{1} / m$
sp	$x_{2}:=\xi$	$k \xi^{2} / 2$	$\dot{x}_{2}=\dot{\xi}$	$H_{2}^{\prime}\left(x_{2}\right)=k x_{2}$
dp	blue : force red : velocity		$w:=V_{\text {dp }}$	$z(w):=r w$
ext				

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$
(no gravity)

- 4 separate components
(i_{1}) mass m of momentum $\pi=m v$ (energy: $\frac{1}{2} m v^{2}=\frac{\pi^{2}}{2 m}$),
(i_{2}) spring sp of elongation ξ
(ii) damper dp of velocity V_{dp}
(iii) actuator ext applying a force $F_{\text {ext }}$ (\rightarrow your finger experiences $-F_{\text {ext }}$)

	state	energy H_{n}	flow f	effort \mathbf{e}
m	$x_{1}:=\pi$	$\pi^{2} /(2 m)$	$\dot{x}_{1}=\dot{\pi}$	$H_{1}^{\prime}\left(x_{1}\right)=x_{1} / m$
sp	$x_{2}:=\xi$	$k \xi^{2} / 2$	$\dot{x}_{2}=\dot{\xi}$	$H_{2}^{\prime}\left(x_{2}\right)=k x_{2}$
p	blue : force red : velocity		$w:=V_{\text {dp }}$	$z(w):=r w$
ext			$y:=V_{\text {ext }}$	$u \quad:=-F_{\text {ext }}$

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$

- 4 separate components

	state	energy H_{n}	flow f	effort \mathbf{e}
m	$x_{1}:=\pi$	$\pi^{2} /(2 m)$	$\dot{x}_{1}=\dot{\pi}$	$H_{1}^{\prime}\left(x_{1}\right)=x_{1} / m$
sp	$x_{2}:=\xi$	$k \xi^{2} / 2$	$\dot{\chi}_{2}=\dot{\xi}$	$H_{2}^{\prime}\left(x_{2}\right)=k x_{2}$
dp	blue : force red : velocity		$w:=V_{\text {dp }}$	$z(w):=r w$
ext			$y:=V_{\text {ext }}$	$u \quad:=-F_{\text {ext }}$

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$ (no gravity)

- 4 separate components

	state	energy H_{n}	flow f	effort \mathbf{e}
m	$x_{1}:=\pi$	$\pi^{2} /(2 m)$	$\dot{x}_{1}=\dot{\pi}$	$H_{1}^{\prime}\left(x_{1}\right)=x_{1} / m$
sp	$x_{2}:=\xi$	$k \xi^{2} / 2$	$\dot{x}_{2}=\dot{\xi}$	$H_{2}^{\prime}\left(x_{2}\right)=k x_{2}$
dp	blue : force red : velocity		$w:=V_{\text {dp }}$	$z(w):=r w$
ext			$y:=V_{\text {ext }}$	$u \quad:=-F_{\text {ext }}$

- assembled with rigid connections

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$

- 4 separate components

	state	energy H_{n}	flow \mathbf{f}	effort \mathbf{e}
m	$x_{1}:=\pi$	$\pi^{2} /(2 m)$	$\dot{x}_{1}=\dot{\pi}$	$H_{1}^{\prime}\left(x_{1}\right)=x_{1} / m$
sp	$x_{2}:=\xi$	$k \xi^{2} / 2$	$\dot{\chi}_{2}=\dot{\xi}$	$H_{2}^{\prime}\left(x_{2}\right)=k x_{2}$
dp	blue : force red : velocity		$w:=V_{\text {dp }}$	$z(w):=r w$
ext			$y:=V_{\text {ext }}$	$u \quad:=-F_{\text {ext }}$

- assembled with rigid connections
- internal forces are balanced $F_{\mathrm{m}}+F_{\mathrm{sp}}+F_{\mathrm{dp}}+\left(-F_{\text {ext }}\right)=0$

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$

- 4 separate components

	state	energy H_{n}	flow f	effort \mathbf{e}
m	$x_{1}:=\pi$	$\pi^{2} /(2 m)$	$\dot{x}_{1}=\dot{\pi}$	$H_{1}^{\prime}\left(x_{1}\right)=x_{1} / m$
sp	$x_{2}:=\xi$	$k \xi^{2} / 2$	$\dot{x}_{2}=\dot{\xi}$	$H_{2}^{\prime}\left(x_{2}\right)=k x_{2}$
dp	blue : force red : velocity		$w:=V_{\text {dp }}$	$z(w):=r w$
ext			$y:=V_{\text {ext }}$	$u \quad:=-F_{\text {ext }}$

- assembled with rigid connections
- internal forces are balanced $F_{\mathrm{m}}+F_{\mathrm{sp}}+F_{\mathrm{dp}}+\left(-F_{\text {ext }}\right)=0$
- all velocities are equal $V_{\mathrm{m}}=V_{\mathrm{sp}}=V_{\mathrm{dp}}=V_{\text {ext }}$

Example: damped mechanical oscillator excited by $F_{\text {ext }}\left(m \ddot{z}+r \dot{z}+k z=F_{\text {ext }}\right)$

- 4 separate components

	state	energy H_{n}	flow f	effort \mathbf{e}
m	$x_{1}:=\pi$	$\pi^{2} /(2 m)$	$\dot{x}_{1}=\dot{\pi}$	$H_{1}^{\prime}\left(x_{1}\right)=x_{1} / m$
sp	$x_{2}:=\xi$	$k \xi^{2} / 2$	$\dot{x}_{2}=\dot{\xi}$	$H_{2}^{\prime}\left(x_{2}\right)=k x_{2}$
dp	blue : force red : velocity		$w:=V_{\text {dp }}$	$z(w):=r w$
ext			$y:=V_{\text {ext }}$	$u \quad:=-F_{\text {ext }}$

- assembled with rigid connections
- internal forces are balanced $F_{\mathrm{m}}+F_{\mathrm{sp}}+F_{\mathrm{dp}}+\left(-F_{\text {ext }}\right)=0$
- all velocities are equal $V_{\mathrm{m}}=V_{\mathrm{sp}}=V_{\mathrm{dp}}=V_{\mathrm{ext}}$

\rightarrow Formulation (1) with $H(\mathbf{x})=H_{1}\left(x_{1}\right)+H_{2}\left(x_{2}\right)$
$\rightarrow \boldsymbol{S}=-\boldsymbol{S}^{\boldsymbol{\top}}$ is canonical (no mechanical coefficients)

Some variations: nonlinear components (modifying H or \mathbf{z}) and also...

$$
\left(\begin{array}{c}
F_{\mathrm{m}} \\
V_{\mathrm{sp}} \\
\hline V_{\mathrm{dp}} \\
\hline V_{\mathrm{ext}}
\end{array}\right)=\left(\begin{array}{rr|r|r}
0 & -1 & -1 & -1 \\
+1 & 0 & 0 & 0 \\
\hline+1 & 0 & 0 & 0 \\
\hline+1 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
V_{\mathrm{m}} \\
F_{\mathrm{sp}} \\
\hline F_{C} \\
\hline-F_{\mathrm{ext}}
\end{array}\right)
$$

Hamiltonian systems (conservative, autonomous)

$$
\left(\begin{array}{c}
F_{\mathrm{m}} \\
V_{\mathrm{sp}} \\
\hline \cdot
\end{array}\right)=\left(\begin{array}{rr|r|r}
0 & -1 & \cdot & \cdot \\
+1 & 0 & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot
\end{array}\right) \cdot\left(\begin{array}{c}
V_{\mathrm{M}} \\
\hline \cdot \\
\hline \cdot
\end{array}\right)
$$

"Mass+Damper+Excitation" (spring removed)

$$
\left(\begin{array}{c}
F_{\mathrm{m}} \\
\hline \cdot \\
\hline V_{\mathrm{dp}} \\
\hline V_{\mathrm{ext}}
\end{array}\right)=\left(\begin{array}{rr|r|r}
0 & \cdot & -1 & -1 \\
\hline \cdot & \cdot & \cdot & \cdot \\
\hline+1 & \cdot & 0 & 0 \\
\hline+1 & \cdot & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
V_{\mathrm{m}} \\
\hline F_{C} \\
\hline-F_{\mathrm{ext}}
\end{array}\right)
$$

"Mass+Excitation"

$$
\left(\begin{array}{c}
F_{\mathrm{m}} \\
\hline \cdot \\
\hline \cdot \\
\hline V_{\mathrm{ext}}
\end{array}\right)=\left(\begin{array}{cc|c|c}
0 & \cdot & \cdot & -1 \\
\hline \cdot & \cdot & \cdot & \cdot \\
\hline \cdot & \cdot & \cdot & \cdot \\
\hline+1 & \cdot & \cdot & 0
\end{array}\right) \cdot\left(\begin{array}{c}
V_{\mathrm{m}} \\
\cdot \\
\hline \cdot \\
\hline-F_{\mathrm{ext}}
\end{array}\right)
$$

PHS shifting

PHS shifting

(1) (PHS) $\underbrace{\left[\begin{array}{c}\dot{x} \\ w \\ \mathbf{y}\end{array}\right]}_{\mathbf{f}(t)}=\boldsymbol{S} \underbrace{\left[\begin{array}{c}\nabla H(x) \\ z(w) \\ \mathbf{u}\end{array}\right]}_{\mathbf{e}(t)}$

PHS shifting
(1) (PHS) $\underbrace{\left[\begin{array}{c}\dot{x} \\ w \\ \mathbf{y}\end{array}\right]}_{\mathbf{f}(t)}=\boldsymbol{S} \underbrace{\left[\begin{array}{c}\nabla H(x) \\ z(w) \\ \mathbf{u}\end{array}\right]}_{\mathbf{e}(t)}$

Energy

Effort

Dissipated power

PHS shifting
(1) (PHS) $\underbrace{\left[\begin{array}{c}\dot{x} \\ w \\ y\end{array}\right]}_{\mathbf{f}(t)}=\boldsymbol{S} \underbrace{\left[\begin{array}{c}\nabla H(x) \\ z(w) \\ \mathbf{u}\end{array}\right]}_{\mathbf{e}(t)}$
(2) Equilibrium var ${ }^{\star}=\left\{\mathbf{u}^{\star}, \boldsymbol{x}^{\star}, \boldsymbol{w}^{\star}, \boldsymbol{y}^{\star}\right\}$
$(P H S)^{\star} \underbrace{\left[\begin{array}{c}\dot{x}^{\star}=0 \\ \mathbf{w}^{\star} \\ \mathrm{y}^{\star}\end{array}\right]}_{\mathrm{f}^{\star}}=\boldsymbol{S} \underbrace{\left[\begin{array}{c}\nabla H\left(\mathrm{x}^{\star}\right) \\ \mathbf{z}\left(\mathbf{w}^{\star}\right) \\ \mathbf{u}^{\star}\end{array}\right]}_{\mathrm{e}^{\star}}$

PHS shifting
(1) (PHS) $\underbrace{\left[\begin{array}{c}\dot{x} \\ w \\ y\end{array}\right]}_{\mathbf{f}(t)}=\boldsymbol{S} \underbrace{\left[\begin{array}{c}\nabla H(x) \\ z(w) \\ \mathbf{u}\end{array}\right]}_{\mathrm{e}(t)}$
(2) Equilibrium var $=\left\{\mathbf{u}^{\star}, \mathbf{x}^{\star}, \mathbf{w}^{\star}, \mathbf{y}^{\star}\right\}$
(PHS) $\underbrace{\left[\begin{array}{c}\dot{x}^{\star}=0 \\ \mathbf{w}^{\star} \\ \mathrm{y}^{\star}\end{array}\right]}_{\mathrm{f}^{\star}}=\boldsymbol{S} \underbrace{\left[\begin{array}{c}\nabla H\left(\mathrm{x}^{\star}\right) \\ \mathbf{z}\left(\mathbf{w}^{\star}\right) \\ \mathbf{u}^{\star}\end{array}\right]}_{\mathrm{e}^{\star}}$
(3) Fluctuations $\widetilde{\operatorname{var}}(t)=\operatorname{var}(t)-\operatorname{var}{ }^{\star}$

PHS shifting
(1) (PHS) $\underbrace{\left[\begin{array}{c}\dot{x} \\ w \\ y\end{array}\right]}_{\mathbf{f}(t)}=\boldsymbol{S} \underbrace{\left[\begin{array}{c}\nabla H(x) \\ z(w) \\ \mathbf{u}\end{array}\right]}_{\mathrm{e}(t)}$
(2) Equilibrium var $^{\star}=\left\{\mathbf{u}^{\star}, \mathbf{x}^{\star}, \mathbf{w}^{\star}, \mathbf{y}^{\star}\right\}$
$(\text { PHS })^{\star} \underbrace{\left[\begin{array}{l}\dot{x}^{\star}=0 \\ w^{\star} \\ \mathrm{y}^{\star}\end{array}\right]}_{\mathrm{f}^{\star}}=\boldsymbol{S} \underbrace{\left[\begin{array}{c}\nabla H\left(\mathrm{x}^{\star}\right) \\ \mathbf{z (w ^ { \star })} \\ \mathbf{u}^{\star}\end{array}\right]}_{\mathrm{e}^{\star}}$
(3) Fluctuations $\widetilde{\operatorname{var}}(t)=\operatorname{var}(t)-\operatorname{var}{ }^{\star}$

$$
\begin{aligned}
\widetilde{(\mathrm{PHS})} & \equiv(\mathrm{PHS})-(\mathrm{PHS})^{\star} \\
\mathbf{f}(t)-\mathbf{f}^{\star} & =\boldsymbol{S}\left(\mathbf{e}(t)-\mathbf{e}^{\star}\right)
\end{aligned}
$$

PHS shifting
(1) (PHS) $\underbrace{\left[\begin{array}{c}\dot{x} \\ w \\ y\end{array}\right]}_{\mathbf{f}(t)}=\boldsymbol{s} \underbrace{\left[\begin{array}{c}\nabla H(x) \\ \mathbf{z}(w) \\ \mathbf{u}\end{array}\right]}_{\mathbf{e}(t)}$
(2) Equilibrium var $^{\star}=\left\{\mathbf{u}^{\star}, \mathbf{x}^{\star}, \mathbf{w}^{\star}, \mathbf{y}^{\star}\right\}$

$$
(P H S)^{\star} \underbrace{\left[\begin{array}{c}
\dot{x}^{\star}=0 \\
\mathbf{w}^{\star} \\
\mathrm{y}^{\star}
\end{array}\right]}_{\mathrm{f}^{\star}}=\boldsymbol{S} \underbrace{\left[\begin{array}{c}
\nabla H\left(\mathrm{x}^{\star}\right) \\
\mathbf{z}\left(\mathbf{w}^{\star}\right) \\
\mathrm{u}^{\star}
\end{array}\right]}_{\mathrm{e}^{\star}}
$$

(3) Fluctuations $\widetilde{\operatorname{var}}(t)=\operatorname{var}(t)-\operatorname{var}{ }^{\star}$

$$
\begin{aligned}
\widetilde{(\mathrm{PHS})} & \equiv(\mathrm{PHS})-(\mathrm{PHS})^{\star} \\
\mathbf{f}(t)-\mathbf{f}^{\star} & =\boldsymbol{S}\left(\mathbf{e}(t)-\mathrm{e}^{\star}\right)
\end{aligned}
$$

PHS shifting
(1) (PHS) $\underbrace{\left[\begin{array}{c}\dot{x} \\ w \\ \mathbf{y}\end{array}\right]}_{\mathbf{f}(t)}=\boldsymbol{s} \underbrace{\left[\begin{array}{c}\nabla H(x) \\ \mathrm{z}(\mathrm{w}) \\ \mathbf{u}\end{array}\right]}_{\mathrm{e}(t)}$
(2) Equilibrium var ${ }^{\star}=\left\{\mathbf{u}^{\star}, \mathbf{x}^{\star}, \mathbf{w}^{\star}, \mathbf{y}^{\star}\right\}$
$(P H S)^{\star} \underbrace{\left[\begin{array}{c}\dot{x}^{\star}=0 \\ \mathbf{w}^{\star} \\ \mathrm{y}^{\star}\end{array}\right]}_{\mathrm{f}^{\star}}=\boldsymbol{S} \underbrace{\left[\begin{array}{c}\nabla H\left(\mathrm{x}^{\star}\right) \\ \mathbf{z}\left(\mathrm{w}^{\star}\right) \\ \mathbf{u}^{\star}\end{array}\right]}_{\mathrm{e}^{\star}}$
(3) Fluctuations $\widetilde{\operatorname{var}}(t)=\operatorname{var}(t)-\operatorname{var}{ }^{\star}$

$$
\begin{aligned}
& \widetilde{(P H S)} \equiv(\mathrm{PHS})-(\mathrm{PHS})^{\star} \\
& \mathbf{f}(t)-\mathbf{f}^{\star}=\boldsymbol{S}\left(\mathbf{e}(t)-\mathrm{e}^{\star}\right) \\
& \underbrace{\left[\begin{array}{c}
\widetilde{\tilde{x}} \\
\tilde{\tilde{w}} \\
\widetilde{y}
\end{array}\right]}_{\underset{\mathfrak{f}}{ }(t)}=S \underbrace{\left[\begin{array}{c}
\widetilde{\tilde{H}_{x^{*}}+(x)} \\
\widetilde{z}^{*}(\widetilde{\mathrm{w}}) \\
\widetilde{\mathrm{u}}
\end{array}\right]}_{\widetilde{\mathrm{e}}(t)}
\end{aligned}
$$

PHS shifting
(1) (PHS) $\underbrace{\left[\begin{array}{l}\dot{x} \\ w \\ \mathbf{y}\end{array}\right]}_{\mathbf{f}(t)}=\boldsymbol{s} \underbrace{\left[\begin{array}{c}\nabla H(x) \\ \mathbf{z}(\mathbf{w}) \\ \mathbf{u}\end{array}\right]}_{\mathbf{e}(t)}$
(2) Equilibrium var ${ }^{\star}=\left\{\mathbf{u}^{\star}, \mathbf{x}^{\star}, \mathbf{w}^{\star}, \mathbf{y}^{\star}\right\}$
$(P H S)^{\star} \underbrace{\left[\begin{array}{c}\dot{x}^{\star}=0 \\ \mathbf{w}^{\star} \\ \mathrm{y}^{\star}\end{array}\right]}_{\mathrm{f}^{\star}}=\boldsymbol{S} \underbrace{\left[\begin{array}{c}\nabla H\left(\mathrm{x}^{\star}\right) \\ \mathbf{z}\left(\mathrm{w}^{\star}\right) \\ \mathbf{u}^{\star}\end{array}\right]}_{\mathrm{e}^{\star}}$
(3) Fluctuations $\widetilde{\operatorname{var}}(t)=\operatorname{var}(t)-\operatorname{var}{ }^{\star}$

$$
\begin{aligned}
& \widetilde{(P H S)} \equiv(\mathrm{PHS})-(\mathrm{PHS})^{\star} \\
& \mathbf{f}(t)-\mathbf{f}^{\star}=\boldsymbol{S}\left(\mathbf{e}(t)-\mathrm{e}^{\star}\right)
\end{aligned}
$$

Shifted pHs with

$$
\begin{aligned}
& \widetilde{H_{x^{\star}}}(\widetilde{\mathrm{x}}):=H\left(\widetilde{\mathrm{x}}+\mathrm{x}^{\star}\right)-\nabla H\left(\mathrm{x}^{\star}\right)^{\top} \widetilde{\mathrm{x}}-H\left(\mathrm{x}^{\star}\right) \\
& \widetilde{\mathrm{z}^{\star}}(\widetilde{\mathbf{w}}):=\mathbf{z}\left(\widetilde{\mathbf{w}}+\mathbf{w}^{\star}\right)-\mathbf{z}\left(\mathbf{w}^{\star}\right)
\end{aligned}
$$

Examples: gravity $\left(F_{\text {ext }}=\widetilde{F_{\text {ext }}}-g\right)$, battery, etc.

Differential formulation

Differential formulation

$$
\underbrace{\left[\begin{array}{c}
\dot{\mathbf{x}} \\
\mathrm{y}
\end{array}\right]}_{\mathbf{f}}=(\underbrace{\left(\begin{array}{cc}
\boldsymbol{J}_{\mathrm{xx}} & \boldsymbol{J}_{\mathrm{xu}} \\
* & J_{\mathrm{yu}}
\end{array}\right]}_{=: \boldsymbol{J}=-\boldsymbol{J}^{\top}}-\underbrace{\left[\begin{array}{cc}
R_{\mathrm{xx}} & R_{\mathrm{xu}} \\
* & R_{\mathrm{yu}}
\end{array}\right]}_{=: R=\boldsymbol{R}^{\top} \succeq 0}) \underbrace{\left[\begin{array}{c}
\nabla H(\mathbf{x}) \\
\mathbf{u}
\end{array}\right]}_{\mathbf{e}} \rightarrow \begin{aligned}
& \text { power balance with } \\
& P_{\text {diss }}=\mathrm{e}^{\top} R \mathrm{e} \geq 0
\end{aligned}
$$

Link with Differential-Algebraic Formulation (1) ?

$$
\left[\begin{array}{c}
\dot{x} \\
w \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{ccc}
S_{\mathrm{xx}} & S_{\mathrm{xw}} & S_{\mathrm{xu}} \\
* & S_{\mathrm{ww}} & S_{\mathrm{wu}} \\
* & * & S_{\mathrm{yu}}
\end{array}\right]\left[\begin{array}{c}
\nabla H(\mathrm{x}) \\
\mathrm{z}(\mathrm{w}) \\
\mathrm{u}
\end{array}\right]
$$

Differential formulation

$$
\underbrace{\left[\begin{array}{c}
\dot{\mathbf{x}} \\
\mathrm{y}
\end{array}\right]}_{\mathbf{f}}=(\underbrace{\left(\begin{array}{cc}
\boldsymbol{J}_{\mathrm{xx}} & \boldsymbol{J}_{\mathrm{xu}} \\
* & J_{\mathrm{yu}}
\end{array}\right]}_{=: \boldsymbol{J}=-\boldsymbol{J}^{\top}}-\underbrace{\left[\begin{array}{cc}
R_{\mathrm{xx}} & R_{\mathrm{xu}} \\
* & R_{\mathrm{yu}}
\end{array}\right]}_{=: R=\boldsymbol{R}^{\top} \succeq 0}) \underbrace{\left[\begin{array}{c}
\nabla H(\mathbf{x}) \\
\mathbf{u}
\end{array}\right]}_{\mathbf{e}} \rightarrow \begin{aligned}
& \text { power balance with } \\
& P_{\text {diss }}=\mathrm{e}^{\top} R \mathrm{e} \geq 0
\end{aligned}
$$

Link with Differential-Algebraic Formulation (1) ?

$$
\left[\begin{array}{c}
\dot{x} \\
\mathrm{w} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{ccc}
S_{\mathrm{xx}} & S_{\mathrm{xw}} & S_{\mathrm{xu}} \\
* & S_{\mathrm{ww}} & S_{\mathrm{wu}} \\
* & * & S_{\mathrm{yu}}
\end{array}\right]\left[\begin{array}{c}
\nabla H(\mathrm{x}) \\
\mathrm{z}(\mathrm{w}) \\
\mathrm{u}
\end{array}\right]
$$

Assume that $S_{w w}=\mathbf{0}$

$$
\begin{aligned}
\boldsymbol{P} & :=\left[-\boldsymbol{S}_{\mathrm{xw}}^{\top}, \boldsymbol{S}_{\mathbf{w u}}\right] \text { is independent of } \mathbf{w} \\
\& \quad \mathbf{z}(\mathbf{w}) & =\boldsymbol{\Gamma}(\mathbf{w}) \mathbf{w} \text { with } \boldsymbol{\Gamma}+\boldsymbol{\Gamma}^{\top} \succeq 0, \quad \text { (passivity) }
\end{aligned}
$$

Differential formulation

$$
\underbrace{\left[\begin{array}{c}
\dot{\mathbf{x}} \\
\mathbf{y}
\end{array}\right]}_{\mathbf{f}}=(\underbrace{\left[\begin{array}{cc}
\boldsymbol{J}_{\mathrm{xx}} & \boldsymbol{J}_{\mathrm{xu}} \\
* & \boldsymbol{J}_{\mathrm{yu}}
\end{array}\right]}_{=: \boldsymbol{J}=-\boldsymbol{J}^{\top}}-\underbrace{\left[\begin{array}{cc}
\boldsymbol{R}_{\mathrm{xx}} & \boldsymbol{R}_{\mathrm{xu}} \\
* & \boldsymbol{R}_{\mathrm{yu}}
\end{array}\right]}_{=: R=\boldsymbol{R}^{\top} \succeq 0}) \underbrace{\left[\begin{array}{c}
\nabla H(\mathbf{x}) \\
\mathbf{u}
\end{array}\right]}_{\mathbf{e}} \rightarrow \begin{aligned}
& \text { power balance with } \\
& P_{\text {diss }}=\mathbf{e}^{\top} \boldsymbol{R e} \geq 0
\end{aligned}
$$

Link with Differential-Algebraic Formulation (1) ?

$$
\left[\begin{array}{c}
\dot{x} \\
\mathrm{w} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{ccc}
S_{\mathrm{xx}} & S_{\mathrm{xw}} & S_{\mathrm{xu}} \\
-S_{\mathrm{xw}}^{\top} & 0 & S_{\mathrm{wu}} \\
* & * & S_{\mathrm{yu}}
\end{array}\right]\left[\begin{array}{c}
\nabla H(\mathrm{x}) \\
\mathrm{z}(\mathrm{w}) \\
\mathrm{u}
\end{array}\right]
$$

Assume that $S_{w w}=\mathbf{0}$

$$
\begin{aligned}
\boldsymbol{P} & :=\left[-\boldsymbol{S}_{\mathbf{x w}}^{\top}, \boldsymbol{S}_{\mathbf{w u}}\right] \text { is independent of } \mathbf{w} \\
\& \quad \mathbf{z}(\mathbf{w}) & =\boldsymbol{\Gamma}(\mathbf{w}) \mathbf{w} \text { with } \boldsymbol{\Gamma}+\boldsymbol{\Gamma}^{\top} \succeq 0, \quad \text { (passivity) }
\end{aligned}
$$

Differential formulation

$$
\underbrace{\left[\begin{array}{c}
\dot{\mathbf{x}} \\
\mathbf{y}
\end{array}\right]}_{\mathbf{f}}=(\underbrace{\left[\begin{array}{cc}
\boldsymbol{J}_{\mathrm{xx}} & \boldsymbol{J}_{\mathrm{xu}} \\
* & \boldsymbol{J}_{\mathrm{yu}}
\end{array}\right]}_{=: \boldsymbol{J}=-\boldsymbol{J}^{\top}}-\underbrace{\left[\begin{array}{cc}
\boldsymbol{R}_{\mathrm{xx}} & \boldsymbol{R}_{\mathrm{xu}} \\
* & \boldsymbol{R}_{\mathrm{yu}}
\end{array}\right]}_{=: R=\boldsymbol{R}^{\top} \succeq 0}) \underbrace{\left[\begin{array}{c}
\nabla H(\mathbf{x}) \\
\mathbf{u}
\end{array}\right]}_{\mathbf{e}} \rightarrow \begin{aligned}
& \text { power balance with } \\
& P_{\text {diss }}=\mathbf{e}^{\top} \boldsymbol{R e} \geq 0
\end{aligned}
$$

Link with Differential-Algebraic Formulation (1) ?

$$
\left[\begin{array}{c}
\dot{\mathrm{x}} \\
\mathrm{w} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{ccc}
S_{\mathrm{xx}} & S_{\mathrm{xw}} & S_{\mathrm{xu}} \\
-S_{\mathrm{xw}}^{\top} & 0 & S_{\mathrm{wu}} \\
* & * & S_{\mathrm{yu}}
\end{array}\right]\left[\begin{array}{c}
\nabla H(\mathrm{x}) \\
\mathrm{z}(\mathrm{w}) \\
\mathrm{u}
\end{array}\right]
$$

Assume that $S_{w w}=\mathbf{0}$

$$
\begin{aligned}
\boldsymbol{P} & :=\left[-\boldsymbol{S}_{\mathrm{xw}}^{\top}, \boldsymbol{S}_{\mathbf{w u}}\right] \text { is independent of } \mathbf{w} \\
\& \quad \mathrm{z}(\mathbf{w}) & =\boldsymbol{\Gamma}(\mathbf{w}) \mathbf{w} \text { with } \boldsymbol{\Gamma}+\boldsymbol{\Gamma}^{\top} \succeq 0, \quad \text { (passivity) }
\end{aligned}
$$

Then, w $=\boldsymbol{P} \underbrace{\left[\begin{array}{c}\nabla H(\mathbf{x}) \\ \mathbf{u}\end{array}\right]}_{\mathbf{e}}$

Differential formulation

$$
\underbrace{\left[\begin{array}{c}
\dot{\mathbf{x}} \\
\mathbf{y}
\end{array}\right]}_{\mathbf{f}}=(\underbrace{\left[\begin{array}{cc}
\boldsymbol{J}_{\mathrm{xx}} & \boldsymbol{J}_{\mathrm{xu}} \\
* & \boldsymbol{J}_{\mathrm{yu}}
\end{array}\right]}_{=: \boldsymbol{J}=-\boldsymbol{J}^{\top}}-\underbrace{\left[\begin{array}{cc}
\boldsymbol{R}_{\mathrm{xx}} & \boldsymbol{R}_{\mathrm{xu}} \\
* & \boldsymbol{R}_{\mathrm{yu}}
\end{array}\right]}_{=: R=\boldsymbol{R}^{\top} \succeq 0}) \underbrace{\left[\begin{array}{c}
\nabla H(\mathbf{x}) \\
\mathbf{u}
\end{array}\right]}_{\mathbf{e}} \rightarrow \begin{aligned}
& \text { power balance with } \\
& P_{\text {diss }}=\mathbf{e}^{\top} \boldsymbol{R e} \geq 0
\end{aligned}
$$

Link with Differential-Algebraic Formulation (1) ?

$$
\left[\begin{array}{c}
\dot{\mathrm{x}} \\
\mathrm{w} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{ccc}
S_{\mathrm{xx}} & S_{\mathrm{xw}} & S_{\mathrm{xu}} \\
-S_{\mathrm{xw}}^{\top} & 0 & S_{\mathrm{wu}} \\
* & * & S_{\mathrm{yu}}
\end{array}\right]\left[\begin{array}{c}
\nabla H(\mathrm{x}) \\
\mathrm{z}(\mathrm{w}) \\
\mathrm{u}
\end{array}\right]
$$

Assume that $S_{w w}=\mathbf{0}$

$$
\begin{aligned}
\boldsymbol{P} & :=\left[-\boldsymbol{S}_{\mathrm{xw}}^{\top}, \boldsymbol{S}_{\mathbf{w u}}\right] \text { is independent of } \mathbf{w} \\
\& \quad \mathrm{z}(\mathbf{w}) & =\boldsymbol{\Gamma}(\mathbf{w}) \mathbf{w} \text { with } \boldsymbol{\Gamma}+\boldsymbol{\Gamma}^{\top} \succeq 0, \quad \text { (passivity) }
\end{aligned}
$$

$\begin{aligned} \text { Then, } \mathbf{w}=\boldsymbol{P} \underbrace{\left[\begin{array}{c}\nabla H(\mathrm{x}) \\ \mathrm{u}\end{array}\right]}_{\mathrm{e}} \Longrightarrow \boldsymbol{J} & =\left[\begin{array}{cc}\boldsymbol{S}_{\mathrm{xx}} & \boldsymbol{S}_{\mathrm{xu}} \\ * & \boldsymbol{S}_{\mathrm{yu}}\end{array}\right]-\boldsymbol{P}^{\top} \boldsymbol{J}_{\Gamma} \boldsymbol{P} \text { with } \boldsymbol{J}_{\Gamma}:=\frac{1}{2}\left(\boldsymbol{\Gamma}-\boldsymbol{\Gamma}^{\top}\right) \\ \boldsymbol{R} & =\boldsymbol{P}^{\top} \boldsymbol{R}_{\Gamma} \boldsymbol{P} \succeq 0 \quad \text { with } \boldsymbol{R}_{\Gamma}:=\frac{1}{2}\left(\boldsymbol{\Gamma}+\boldsymbol{\Gamma}^{\top}\right)\end{aligned}$

Example: damped mechanical oscillator excited by $F_{\text {ext }}$

$$
\begin{gathered}
F_{\mathrm{m}} \\
V_{\mathrm{sp}} \\
V_{\mathrm{dp}} \\
V_{\mathrm{ext}}
\end{gathered}\left(\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\hline w \\
\hline y
\end{array}\right)=\left(\begin{array}{rr|r|r}
0 & -1 & -1 & -1 \\
+1 & 0 & 0 & 0 \\
\hline+1 & 0 & 0 & 0 \\
\hline+1 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
\partial_{x_{1}} H(\mathbf{x}) \\
\partial_{x_{2}} H(\mathbf{x}) \\
\hline \frac{z(w)=r w}{u}
\end{array}\right) \begin{gathered}
V_{\mathrm{m}} \\
F_{\mathrm{sp}} \\
F_{C} \\
-F_{\mathrm{ext}}
\end{gathered}
$$

Example: damped mechanical oscillator excited by $F_{\text {ext }}$

$$
\begin{gathered}
F_{\mathrm{m}} \\
V_{\mathrm{sp}} \\
V_{\mathrm{dp}} \\
V_{\mathrm{ext}}
\end{gathered}\left(\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\hline w \\
\hline y
\end{array}\right)=\left(\begin{array}{rr|r|r}
0 & -1 & -1 & -1 \\
+1 & 0 & 0 & 0 \\
\hline+1 & 0 & 0 & 0 \\
\hline+1 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
\partial_{x_{1}} H(\mathbf{x}) \\
\frac{\partial_{x_{2}} H(\mathbf{x})}{2(w)=r w} \\
\hline \frac{z}{u(w)}
\end{array}\right) \begin{gathered}
V_{\mathrm{m}} \\
F_{\mathrm{sp}} \\
F_{C} \\
-F_{\mathrm{ext}}
\end{gathered}
$$

We have $\quad S_{\mathrm{ww}}=0$

$$
\begin{aligned}
\boldsymbol{P} & :=\left[\begin{array}{lll}
+1 & 0 \mid 0
\end{array}\right] \text { independent of } \mathbf{w} \\
\& \quad z(w) & =\Gamma(w) w \text { with } \Gamma(w)=r>0, \quad \text { (passivity) }
\end{aligned}
$$

Example: damped mechanical oscillator excited by $F_{\text {ext }}$

$$
\begin{gathered}
F_{\mathrm{m}} \\
V_{\mathrm{sp}} \\
V_{\mathrm{dp}} \\
V_{\mathrm{ext}}
\end{gathered}\left(\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\hline w \\
\hline y
\end{array}\right)=\left(\begin{array}{rr|r|r}
0 & -1 & -1 & -1 \\
+1 & 0 & 0 & 0 \\
\hline+1 & 0 & 0 & 0 \\
\hline+1 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
\partial_{x_{1}} H(\mathbf{x}) \\
\frac{\partial_{x_{2}} H(\mathbf{x})}{z(w)=r w} \\
\hline u
\end{array}\right) \begin{gathered}
V_{\mathrm{m}} \\
F_{\mathrm{sp}} \\
F_{C} \\
-F_{\mathrm{ext}}
\end{gathered}
$$

We have $S_{\mathbf{w w}}=0$

$$
\begin{aligned}
\boldsymbol{P} & :=\left[\begin{array}{lll}
+1 & 0 \mid 0
\end{array}\right] \text { independent of } \mathbf{w} \\
\& \quad z(w) & =\Gamma(w) w \text { with } \Gamma(w)=r>0, \quad \text { (passivity) }
\end{aligned}
$$

$$
\begin{array}{lll}
\text { Recall: } & \boldsymbol{J}=\left[\begin{array}{cc}
\boldsymbol{S}_{\mathrm{xx}} & \boldsymbol{S}_{\mathrm{xu}} \\
* & \boldsymbol{S}_{\mathrm{yu}}
\end{array}\right]-\boldsymbol{P}^{\top} \boldsymbol{J}_{\Gamma} \boldsymbol{P} & \text { with } \boldsymbol{J}_{\Gamma}:=\frac{1}{2}\left(\boldsymbol{\Gamma}-\boldsymbol{\Gamma}^{\top}\right) \\
& \boldsymbol{R}=\boldsymbol{P}^{\top} \boldsymbol{R}_{\Gamma} \boldsymbol{P} \succeq 0 & \text { with } \boldsymbol{R}_{\boldsymbol{\Gamma}}:=\frac{1}{2}\left(\boldsymbol{\Gamma}+\boldsymbol{\Gamma}^{\top}\right)
\end{array}
$$

Example: damped mechanical oscillator excited by $F_{\text {ext }}$

$$
\begin{gathered}
F_{\mathrm{m}} \\
V_{\mathrm{sp}} \\
V_{\mathrm{dp}} \\
V_{\mathrm{ext}}
\end{gathered}\left(\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\hline w \\
\hline y
\end{array}\right)=\left(\begin{array}{rr|r|r}
0 & -1 & -1 & -1 \\
+1 & 0 & 0 & 0 \\
\hline+1 & 0 & 0 & 0 \\
\hline+1 & 0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{c}
\partial_{x_{1}} H(\mathbf{x}) \\
\frac{\partial_{x_{2}} H(\mathbf{x})}{z(w)=r w} \\
\hline u
\end{array}\right) \begin{gathered}
V_{\mathrm{m}} \\
F_{\mathrm{sp}} \\
F_{C} \\
-F_{\mathrm{ext}}
\end{gathered}
$$

We have $S_{w w}=0$

$$
\begin{aligned}
\boldsymbol{P} & :=\left[\begin{array}{lll}
+1 & 0 \mid 0
\end{array}\right] \text { independent of } \mathbf{w} \\
\& \quad z(w) & =\Gamma(w) w \text { with } \Gamma(w)=r>0, \quad \text { (passivity) }
\end{aligned}
$$

$$
\begin{array}{lll}
\text { Recall: } & \boldsymbol{J}=\left[\begin{array}{cc}
S_{\mathrm{xx}} & \boldsymbol{S}_{\mathrm{xu}} \\
* & S_{\mathrm{yu}}
\end{array}\right]-\boldsymbol{P}^{\top} \boldsymbol{J}_{\Gamma} \boldsymbol{P} & \text { with } \boldsymbol{J}_{\Gamma}:=\frac{1}{2}\left(\boldsymbol{\Gamma}-\boldsymbol{\Gamma}^{\boldsymbol{\top}}\right) \\
& \boldsymbol{R}=\boldsymbol{P}^{\top} \boldsymbol{R}_{\Gamma} \boldsymbol{P} \succeq 0 & \text { with } \boldsymbol{R}_{\boldsymbol{\Gamma}}:=\frac{1}{2}\left(\boldsymbol{\Gamma}+\boldsymbol{\Gamma}^{\top}\right)
\end{array}
$$

$$
\rightarrow J_{\Gamma}=0, \quad R_{\Gamma}=r
$$

$$
\left.\underset{F_{\mathrm{mp}}}{F_{\mathrm{spt}}}\left(\begin{array}{c}
\dot{x}_{1} \\
V_{\mathrm{ex}} \\
\dot{x}_{2} \\
y
\end{array}\right)=\left(\begin{array}{rr|r}
0 & -1 & -1 \\
+1 & 0 & 0 \\
\hline+1 & 0 & 0
\end{array}\right)-\left(\begin{array}{ll|l}
r & 0 & 0 \\
0 & 0 & 0 \\
\hline 0 & 0 & 0
\end{array}\right)\right) \cdot\binom{\partial_{x_{1}} H(\mathrm{x})}{\partial_{x_{2}} H(\mathrm{x})} \begin{gathered}
\begin{array}{c}
V_{\mathrm{m}} \\
F_{\mathrm{sp}} \\
-F_{\mathrm{ext}}
\end{array}, .
\end{gathered}
$$

\rightarrow matrix R combines interconnection routing and mechanical coefficients (r)

Outline

(1) Motivation
(2) PREAMBLE: reminders on dynamical systems and Lyapunov analysis
(3) MODELLING: Input-State-Output representations of PHS
(4) NUMERICS with sound applications

- Methods
- Sound applications
(5) STATISTICAL PHYSICS and Boltzmann principle for PHS
(6) CONTROL: digital passive controller for hardware
(7) Conclusion

Outline

(1) Motivation
(2) PREAMBLE: reminders on dynamical systems and Lyapunov analysis
(3) MODELLING: Input-State-Output representations of PHS
(4) NUMERICS with sound applications

- Methods
- Sound applications
(5) STATISTICAL PHYSICS and Boltzmann principle for PHS
(6) CONTROL: digital passive controller for hardware
(7) Conclusion

NUMERICS with sound applications

Power-balanced numerical method and
non-iterative solver

Power-balanced numerical method : discrete gradient
Classical numerical schemes for $\frac{\mathrm{d} x}{\mathrm{~d} t}=f(x)$:

- efficiently approximate $\frac{\mathrm{d} \text {. }}{\mathrm{d} t}$ and exploit f
- a posteriori analysis of stability

Power-balanced numerical method : discrete gradient
Classical numerical schemes for $\frac{\mathrm{d} x}{\mathrm{~d} t}=f(x)$:

- efficiently approximate $\frac{\mathrm{d} \text {. }}{\mathrm{dt}}$ and exploit f
- a posteriori analysis of stability

A discrete power-balanced method (PHS)

Exploit differentiation chain rule

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\sum_{n} \frac{\partial H}{\partial x_{n}} \frac{\mathrm{~d} x_{n}}{\mathrm{~d} t} \simeq \sum_{n} \underbrace{\frac{H_{n}\left(x_{n}[k+1]\right)-H_{n}\left(x_{n}[k]\right)}{x_{n}[k+1]-x_{n}[k]}}_{\left[\nabla_{D} H(x[k], \delta x[k])\right]_{n}} \underbrace{\frac{x_{n}[k+1]-x_{n}[k]}{\delta t}}_{[\delta x[k] / \delta t]_{n}}=\frac{E[k+1]-E[k]}{\delta t}
$$

Jointly substitute $\dot{\mathbf{x}} \rightarrow \delta \mathbf{x} / \delta t$ and $\nabla H(\mathbf{x}) \rightarrow \nabla_{D} H(\mathbf{x}, \delta \mathbf{x})$:

$$
\underbrace{\left(\begin{array}{c}
\frac{\delta \mathbf{x}}{\delta t} \\
\mathbf{w} \\
-\mathbf{y}
\end{array}\right)}_{\mathbf{f}[k]}=\boldsymbol{S} \underbrace{\left(\begin{array}{c}
\nabla_{D} H(\mathbf{x}, \delta \mathbf{x}) \\
\mathrm{z}(\mathbf{w}) \\
\mathbf{u}
\end{array}\right)}_{\mathrm{e}[k]}
$$

Simulation : solve ($\delta \mathbf{x}, w$) at each time step k (e.g. Newton-Raphson algo.)

Power-balanced numerical method : discrete gradient
Classical numerical schemes for $\frac{\mathrm{dx}}{\mathrm{d} t}=f(x)$:

- efficiently approximate $\frac{\mathrm{d} \text {. }}{\mathrm{dt}}$ and exploit f
- a posteriori analysis of stability

A discrete power-balanced method (PHS)

Exploit differentiation chain rule

$$
\frac{\mathrm{d} E}{\mathrm{~d} t}=\sum_{n} \frac{\partial H}{\partial x_{n}} \frac{\mathrm{~d} x_{n}}{\mathrm{~d} t} \simeq \sum_{n} \underbrace{\frac{H_{n}\left(x_{n}[k+1]\right)-H_{n}\left(x_{n}[k]\right)}{x_{n}[k+1]-x_{n}[k]}}_{\left[\nabla_{D} H(x[k], \delta x[k])\right]_{n}} \underbrace{\frac{x_{n}[k+1]-x_{n}[k]}{\delta t}}_{[\delta x[k] / \delta t]_{n}}=\frac{E[k+1]-E[k]}{\delta t}
$$

Jointly substitute $\dot{\mathbf{x}} \rightarrow \delta \mathbf{x} / \delta t$ and $\nabla H(\mathbf{x}) \rightarrow \nabla_{D} H(\mathbf{x}, \delta \mathbf{x})$:

$$
\underbrace{\left(\begin{array}{c}
\frac{\delta \mathbf{x}}{\delta t} \\
\mathbf{w} \\
-\mathbf{y}
\end{array}\right)}_{\mathbf{f}[k]}=\boldsymbol{S} \underbrace{\left(\begin{array}{c}
\nabla_{D} H(\mathbf{x}, \delta \mathbf{x}) \\
\mathbf{z (w)} \\
\mathbf{u}
\end{array}\right)}_{\mathbf{e}[k]}
$$

Simulation : solve ($\delta \mathbf{x}, w$) at each time step k (e.g. Newton-Raphson algo.)

- Skew-symmetry of S preserved $\Rightarrow 0=\mathbf{e}^{T} \mathbf{S e}=\mathbf{e}^{\top} \mathbf{f}=\delta E / \delta t+\mathbf{z}(\mathbf{w})^{T} \mathbf{w}+\mathbf{u}^{T} \mathbf{y}$
- For linear systems, $\nabla_{D} H(\mathbf{x}, \delta \mathbf{x})=\nabla H(\mathbf{x}+\delta \mathbf{x} / 2)$ restores the mid-point scheme.
- Method also applies to nonlinear components and non separate Hamiltonian
- Power-balanced Runge-Kutta scheme (non iterative) [Lopes et al.. LHMNC'2015]

Simulation 1: mass-spring-damper

- Parameters: $M=100 \mathrm{~g}, K=5 \mathrm{~N} / \mathrm{m}, \quad C=0.1 \mathrm{~N} . \mathrm{s} / \mathrm{m}$ et $\delta t=5 \mathrm{~ms}$
- Initial conditions: $x_{0}=\left[m v_{0}=0, \ell_{0}=10 \mathrm{~cm}\right]^{T}$
- Excitation: $F_{\text {ext }}(t)=F_{\max } \mathbf{1}_{[5 \mathrm{~s}, 10 \mathrm{~s}]}(t)$ with $F_{\max }=K \ell_{0} / 2=0.25 \mathrm{~N}$

Simulation 2: idem with a hardening spring

- Potential energy: $H_{2}^{\mathrm{NL}}\left(x_{2}\right)=K L^{2}\left[\cosh \left(x_{2} / L\right)-1\right] \quad\left(\sim k x_{2}^{2} / 2\right)$
- Physical law: $F_{2}=\left(H_{2}^{N L}\right)^{\prime}\left(x_{2}\right)=K L \sinh \left(x_{2} / L\right) \quad\left(\sim K x_{2}\right)$
- Reference elongation: $L=\ell_{0} / 4=25 \mathrm{~mm}$

Quadratisation method (goal: non-iterative solver)
Numerical method: solve $\boldsymbol{\delta} \boldsymbol{x}$ at each step $k \quad \rightarrow$ implicit scheme

$$
\left[\begin{array}{c}
\delta x / \delta t \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{M}_{\mathrm{xx}} & \boldsymbol{M}_{\mathrm{xu}} \\
\boldsymbol{M}_{\mathrm{yx}} & \boldsymbol{M}_{\mathrm{yu}}
\end{array}\right]\left[\begin{array}{c}
\nabla_{D} H(\mathbf{x}, \delta \mathrm{x}) \\
\mathbf{u}
\end{array}\right] \text { with } \boldsymbol{M}=\boldsymbol{J}-\boldsymbol{R} .
$$

Quadratisation method (goal: non-iterative solver)
Numerical method: solve $\boldsymbol{\delta} \boldsymbol{x}$ at each step k
\rightarrow implicit scheme

$$
\left[\begin{array}{c}
\delta \boldsymbol{x} / \delta t \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{M}_{\mathrm{xx}} & \boldsymbol{M}_{\mathrm{xu}} \\
\boldsymbol{M}_{\mathbf{y x}} & \boldsymbol{M}_{\mathrm{yu}}
\end{array}\right]\left[\begin{array}{c}
\nabla_{D} H(\mathbf{x}, \delta \boldsymbol{x}) \\
\mathbf{u}
\end{array}\right] \text { with } \boldsymbol{M}=\boldsymbol{J}-\boldsymbol{R}
$$

Quadratic Hamiltonian $H(\mathbf{x})=\frac{1}{2} \mathbf{x} \boldsymbol{L x}{ }^{\top} \Rightarrow \nabla_{D} H(\mathbf{x}, \boldsymbol{\delta} \mathbf{x})=\boldsymbol{L}\left(\mathbf{x}+\frac{1}{2} \boldsymbol{\delta} \mathbf{x}\right)$
Linear solver: $\quad \delta \boldsymbol{x} / \delta t=\boldsymbol{\Delta}^{-1}(\boldsymbol{A} \mathbf{x}+\boldsymbol{B u})$,
with $\boldsymbol{A}:=\boldsymbol{M}_{\mathbf{x x}} \boldsymbol{L}, \quad \boldsymbol{B}:=\boldsymbol{M}_{\mathbf{x u}}$, and $\boldsymbol{\Delta}:=\boldsymbol{I}-\frac{\delta t}{2} \boldsymbol{A}$ (invertible)

Quadratisation method (goal: non-iterative solver)
Numerical method: solve $\boldsymbol{\delta} \boldsymbol{x}$ at each step $k \quad \rightarrow$ implicit scheme

$$
\left[\begin{array}{c}
\delta \mathbf{x} / \delta t \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{M}_{\mathrm{xx}} & \boldsymbol{M}_{\mathrm{xu}} \\
\boldsymbol{M}_{\mathrm{yx}} & \boldsymbol{M}_{\mathrm{yu}}
\end{array}\right]\left[\begin{array}{c}
\nabla_{D} H(\mathbf{x}, \delta \boldsymbol{x}) \\
\mathbf{u}
\end{array}\right] \text { with } \boldsymbol{M}=\boldsymbol{J}-\boldsymbol{R}
$$

Quadratic Hamiltonian $H(\mathbf{x})=\frac{1}{2} \mathbf{x} \boldsymbol{L} \mathbf{x}^{\top} \Rightarrow \nabla_{D} H(\mathbf{x}, \boldsymbol{\delta} \mathbf{x})=\boldsymbol{L}\left(\mathbf{x}+\frac{1}{2} \boldsymbol{\delta} \mathbf{x}\right)$
Linear solver: $\quad \delta \boldsymbol{x} / \delta t=\boldsymbol{\Delta}^{-1}(\boldsymbol{A x}+\boldsymbol{B u})$, with $\boldsymbol{A}:=\boldsymbol{M}_{\mathbf{x x}} \boldsymbol{L}, \quad \boldsymbol{B}:=\boldsymbol{M}_{\mathbf{x u}}$, and $\boldsymbol{\Delta}:=\boldsymbol{I}-\frac{\delta t}{2} \boldsymbol{A}$ (invertible)
(1) Principle: if H is non quadratic, make it quadratic!

+ benefit from the passive interconnection matrices $\boldsymbol{J}=-\boldsymbol{J}^{\top}, \boldsymbol{R}=\boldsymbol{R}^{\top} \succ 0$

Quadratisation method (goal: non-iterative solver)
Numerical method: solve $\boldsymbol{\delta} \boldsymbol{x}$ at each step $k \quad \rightarrow$ implicit scheme

$$
\left[\begin{array}{c}
\delta x / \delta t \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{ll}
M_{\mathrm{xx}} & M_{\mathrm{xu}} \\
\boldsymbol{M}_{\mathrm{yx}} & M_{\mathrm{yu}}
\end{array}\right]\left[\begin{array}{c}
\nabla_{D} H(\mathbf{x}, \delta \mathbf{x}) \\
\mathbf{u}
\end{array}\right] \text { with } \boldsymbol{M}=\boldsymbol{J}-\boldsymbol{R} .
$$

Quadratic Hamiltonian $H(\mathbf{x})=\frac{1}{2} \mathbf{x} \boldsymbol{L} \mathbf{x}^{\top} \Rightarrow \nabla_{D} H(\mathbf{x}, \boldsymbol{\delta} \mathbf{x})=\boldsymbol{L}\left(\mathbf{x}+\frac{1}{2} \boldsymbol{\delta} \mathbf{x}\right)$
Linear solver: $\quad \delta \boldsymbol{x} / \delta t=\boldsymbol{\Delta}^{-1}(\boldsymbol{A} \mathbf{x}+\boldsymbol{B u})$, with $\boldsymbol{A}:=\boldsymbol{M}_{\mathbf{x x}} \boldsymbol{L}, \quad \boldsymbol{B}:=\boldsymbol{M}_{\mathbf{x u}}$, and $\boldsymbol{\Delta}:=\boldsymbol{I}-\frac{\delta t}{2} \boldsymbol{A}$ (invertible)
(1) Principle: if H is non quadratic, make it quadratic !

+ benefit from the passive interconnection matrices $\boldsymbol{J}=-\boldsymbol{J}^{\top}, \boldsymbol{R}=\boldsymbol{R}^{\top} \succ 0$
(2) Change of state: $\mathbf{x} \stackrel{Q}{\longmapsto} \boldsymbol{q} \xrightarrow{\boldsymbol{X}=\boldsymbol{Q}^{-1}} \mathrm{x}$ s. t. $\widehat{H}(\boldsymbol{q}):=H \circ \boldsymbol{X}(\boldsymbol{q})=\frac{1}{2} \boldsymbol{q} \boldsymbol{q}^{\top}$

Transform the PHS on \mathbf{x} into the $\widehat{\mathrm{PHS}}$ on $\boldsymbol{q} \quad$ (use \boldsymbol{X} \& Jacobian of \boldsymbol{Q})

$$
J(\mathrm{x})=-J(\mathrm{x})^{\top}, \boldsymbol{R}(\mathrm{x})=\boldsymbol{R}(\mathrm{x})^{\top} \succeq 0 \xrightarrow{\mathcal{Q}} \widehat{J}(\boldsymbol{q})=-\widehat{J}(\boldsymbol{q})^{\top}, \widehat{R}(\boldsymbol{q})=\widehat{R}(\boldsymbol{q})^{\top} \succeq 0
$$

Quadratisation method (goal: non-iterative solver)
Numerical method: solve $\boldsymbol{\delta} \boldsymbol{x}$ at each step $k \quad \rightarrow$ implicit scheme

$$
\left[\begin{array}{c}
\delta \mathrm{x} / \delta t \\
\mathbf{y}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{M}_{\mathrm{xx}} & \boldsymbol{M}_{\mathrm{xu}} \\
\boldsymbol{M}_{\mathrm{yx}} & \boldsymbol{M}_{\mathrm{yu}}
\end{array}\right]\left[\begin{array}{c}
\nabla_{D} H(\mathbf{x}, \delta \boldsymbol{x}) \\
\mathbf{u}
\end{array}\right] \text { with } \boldsymbol{M}=\boldsymbol{J}-\boldsymbol{R} .
$$

Quadratic Hamiltonian $H(\mathbf{x})=\frac{1}{2} \mathbf{x} \boldsymbol{L} \mathbf{x}^{\top} \Rightarrow \nabla_{D} H(\mathbf{x}, \boldsymbol{\delta x})=\boldsymbol{L}\left(\mathbf{x}+\frac{1}{2} \boldsymbol{\delta} \mathbf{x}\right)$
Linear solver: $\quad \delta \boldsymbol{x} / \delta t=\boldsymbol{\Delta}^{-1}(\boldsymbol{A} \mathbf{x}+\boldsymbol{B u})$,
with $\boldsymbol{A}:=\boldsymbol{M}_{\mathbf{x x}} \boldsymbol{L}, \quad \boldsymbol{B}:=\boldsymbol{M}_{\mathbf{x u}}$, and $\boldsymbol{\Delta}:=\boldsymbol{I}-\frac{\delta t}{2} \boldsymbol{A}$ (invertible)
(1) Principle: if H is non quadratic, make it quadratic!

+ benefit from the passive interconnection matrices $\boldsymbol{J}=-\boldsymbol{J}^{\top}, \boldsymbol{R}=\boldsymbol{R}^{\top} \succ 0$
(2) Change of state: $\mathbf{x} \stackrel{Q}{\longmapsto} \boldsymbol{q} \xrightarrow{\boldsymbol{X}=\boldsymbol{Q}^{-1}} \mathrm{x}$ s. t. $\widehat{H}(\boldsymbol{q}):=H \circ \boldsymbol{X}(\boldsymbol{q})=\frac{1}{2} \boldsymbol{q} \boldsymbol{q}^{\top}$ Transform the PHS on \mathbf{x} into the $\widehat{\mathrm{PHS}}$ on $\boldsymbol{q} \quad$ (use \boldsymbol{X} \& Jacobian of \boldsymbol{Q})

$$
J(\mathrm{x})=-J(\mathrm{x})^{\top}, \boldsymbol{R}(\mathrm{x})=\boldsymbol{R}(\mathrm{x})^{\top} \succeq 0 \xrightarrow{\mathcal{Q}} \widehat{J}(\boldsymbol{q})=-\widehat{J}(\boldsymbol{q})^{\top}, \widehat{R}(\boldsymbol{q})=\widehat{R}(\boldsymbol{q})^{\top} \succeq 0
$$

(3) If $H(\mathbf{x})=\sum_{n=1}^{N} H_{n}\left(x_{n}\right) \quad\left(\mathcal{C}^{1}\right.$, strictly quasi-convex, $H_{n}\left(x_{n}\right) \geq 0$ and $\left.\underset{\sim}{\sim} \frac{k_{n}}{2} x_{n}^{2}\right)$

Then $Q_{n}\left(x_{n}\right)=\operatorname{sign}\left(x_{n}\right) \sqrt{2 H_{n}\left(x_{n}\right)}$

Outline

(1) Motivation
(2) PREAMBLE: reminders on dynamical systems and Lyapunov analysis
(3) MODELLING: Input-State-Output representations of PHS
(4) NUMERICS with sound applications

- Methods
- Sound applications
(5) STATISTICAL PHYSICS and Boltzmann principle for PHS
(6) CONTROL: digital passive controller for hardware
(7) Conclusion

Automatic generation of code: the PyPHS Python library

https://pyphs.github.io/pyphs/
2012-16 : First version
[Falaize, PhD]
2016-- : Opensource library with periodic releases [Falaize \& contributors]

\rightarrow exercice 4 (tutorial: see links in the references)

PhD, 2016: Antoine Falaize

Passive modelling, simulation, code generation and correction of audio multi-physical systems

Two examples
Wah pedal (CryBaby): netlist \rightarrow PyPHS \rightarrow LateX eq. \& C code

Audio Plugln:
Sound 1a: dry
Sound 1b: wah

A simplified Fender-Rhodes Piano

Sound 2

Ondes Martenot
 （created by Maurice Martenot in 1928）

\rightarrow Video 3 ［Thomas Bloch，improvisation，2010］

Ondes Martenot
 (created by Maurice Martenot in 1928)

\rightarrow Video 3 [Thomas Bloch, improvisation, 2010]

Context/Problem
 (Musée de la Musique, Philharmonie de Paris)

Technological obsolescence of a musical instrument:
70/281 remaining instruments (handmade), $\mathbf{1 2 0 0}$ pieces (Varèse, Maessian, etc)
Objective
(Collegium Musicae-Sorbonne Université)
Real-time simulation of the circuit based on physics \rightarrow PHS approach

Ondes Martenot: 5 stages circuit

var. osc. fixed osc. demodulator preamp. power amp.
Specificities: heterodyne oscillators (1930's)

- 2 High frequencies $(\approx 80 \mathrm{kHz} \pm \delta f) \rightarrow$ demodulator \rightarrow audio range $(\delta f, 2 \delta f, \ldots)$

- Vacuum tubes: $w=[\text { grid and plate currents }]^{T}, z(w)=$ associated voltages (passive parametric model [Cohen'12])
- Pb : ribbon-controlled oscillator involving time-varying capacitors in parallel

Ondes Martenot: capacitors in parallel

Problem:

$$
\begin{aligned}
& v_{C}=v_{A}=v_{B} \& \\
& {\left[\begin{array}{c}
i_{A} \\
i_{B} \\
v_{C}
\end{array}\right]=\left[\begin{array}{c}
\text { not } \\
\text { realisable }
\end{array}\right]\left[\begin{array}{c}
v_{A}=H_{A}^{\prime}\left(q_{A}\right) \\
v_{B}=H_{B}^{\prime}\left(q_{B}\right) \\
i_{C}
\end{array}\right]} \\
& \rightarrow \text { Build the equivalent component } C=A / / B
\end{aligned}
$$

Ondes Martenot: capacitors in parallel

Problem:

$$
\begin{aligned}
& v_{C}=v_{A}=v_{B} \& \\
& {\left[\begin{array}{c}
i_{A} \\
i_{B} \\
v_{C}
\end{array}\right]=\left[\begin{array}{c}
\text { not } \\
\text { realisable }
\end{array}\right]\left[\begin{array}{l}
v_{A}=H_{A}^{\prime}\left(q_{A}\right) \\
v_{B}=H_{B}^{\prime}\left(q_{B}\right) \\
i_{C}
\end{array}\right]}
\end{aligned}
$$

Capacitors	$(n=A, B)$
State (charge):	q_{n}
Energy	$H_{n}\left(q_{n}\right)$
Flux (current):	$i_{n}=\mathrm{d} q_{n} / \mathrm{d} t$
Effort (voltage):	$v_{n}=H_{n}^{\prime}\left(q_{n}\right)$

\rightarrow Build the equivalent component $C=A / / B$

Hyp: $q_{n} \mapsto v_{n}=H_{n}^{\prime}\left(q_{n}\right)$ bijective (increasing law)

Find the total energy $H_{C}\left(q_{C}\right)$ for the total charge $q_{C}=q_{A}+q_{B}$
(1) Charge as a function of the voltage $v_{n}=v_{C}: \quad q_{n}=\left[H_{n}^{\prime}\right]^{-1}(v):=Q_{n}\left(v_{C}\right)$
(2) Total charge (idem):

$$
q_{C}=\left[Q_{A}+Q_{B}\right]\left(v_{C}\right)=: Q_{C}\left(v_{C}\right)
$$

(3) Total energy function:

$$
H_{C}\left(q_{C}\right)=\sum_{n=A, B} H_{n} \circ Q_{n} \circ Q_{C}^{-1}\left(q_{C}\right)
$$

Also available if H_{n} depends on additional states (ribbon position ℓ)

$$
\text { Power-balanced simulation } \quad \text { with } H(q, \ell)=q^{2} /\left(2 C_{\text {Martenot }}(\ell)\right)
$$

\rightarrow video 4 (sound=circuit output voltage, without the diffuseurs)

Idealised component

- 5 ports

- Algebraic conservative law

- Modulation factor

Idealised component

- 5 ports

- Algebraic conservative law

- Modulation factor

Typical analog filters

(Sallen-Key)

- Circuit:

$$
\left[\begin{array}{c}
\dot{x} \\
w \\
w_{O P A} \\
y
\end{array}\right]=\boldsymbol{S}\left[\begin{array}{c}
\nabla H(x) \\
z(w) \\
z_{O P A}\left(w_{O P A}\right) \\
u
\end{array}\right]
$$

- Sounds 5 (simulations: linear / nonlinear)

Motivation

1. Theoretical issues

Given a linear conservative mechanical system,

- find damping models that preserve the eigen modes (with eigen structure)
- design nonlinear damping in such a class
- provide a power balanced formulation that is preserved in simulations

2. Application in musical acoustics

Build physical models to produce:

- a variety of beam sounds (glokenspiel, xylophone, marimba, etc)
- morphed sounds through some extrapolations based on physical grounds (e.g. meta-materials with damping depending on the magnitude)

Damping models for $M \ddot{q}+C \dot{q}+K q=f$ (finite-dimensional case)

Conservative problem ($\mathrm{C}=0$)

- $\ddot{q}+\left(M^{-1} K\right) q=M^{-1} f$
- Eigen-modes $e_{i}:\left(M^{-1} K\right) e_{i}=\omega_{i}^{2} e_{i} \quad\left(\omega_{i}\right.$: angular freq.)

Damping that preserves eigen-modes ?

- Choose $M^{-1} C$ as a non-negative polynomial of matrix $M^{-1} K$
\rightarrow Caughey class (1960): $C=c_{0} M+c_{1} K+c_{2} K M^{-1} K+\ldots$

Damping models for $M \ddot{q}+C \dot{q}+K q=f$ (finite-dimensional case)
Conservative problem ($\mathrm{C}=0$)

- $\ddot{q}+\left(M^{-1} K\right) q=M^{-1} f$
- Eigen-modes $e_{i}:\left(M^{-1} K\right) e_{i}=\omega_{i}^{2} e_{i} \quad\left(\omega_{i}\right.$: angular freq.)

Damping that preserves eigen-modes ?

- Choose $M^{-1} C$ as a non-negative polynomial of matrix $M^{-1} K$
\rightarrow Caughey class (1960): $C=c_{0} M+c_{1} K+c_{2} K M^{-1} K+\ldots$
Eigen-modes with nonlinearly-damped dynamics ?
- Make c_{n} depend on the dynamics

Ex.: damping as a function of energy $H(x)$
$c_{n}(x)=\kappa_{n}(H(x)) \in\left[c_{n}^{-}, c_{n}^{+}\right]$with $c_{n}^{-} \geq 0$

- Increasing: $\kappa_{n}(h)=c_{n}^{-}+\left(c_{n}^{+}-c_{n}^{-}\right) f\left(\frac{h}{h_{0}}\right)$
- Decreasing: $\kappa_{l}(h)=c_{n}^{+}-\left(c_{n}^{+}-c_{n}^{-}\right) f\left(\frac{h}{h_{0}}\right)$
$\left(\right.$ state $\left.x=[q, p=M \dot{q}]^{\top}\right)$

Application case: the Euler-Bernoulli beam

1. Pinned beam excited by a distributed force

(H1) Euler-Bernoulli kinematics: straight cross-section after deformation
(H2) linear approximation for the conservative problem
$(\mathrm{H} 3)$ viscous and structural dampings: only $c_{0}, c_{1} \geq 0$
2. Dimensionless model (w : deflection, $t \geq 0,0 \leq \ell \leq 1$)

- PDE: $\underbrace{\partial_{t}^{2} w}_{\mathcal{M} \equiv I d}+\underbrace{\left(c_{0}+c_{1} \partial_{\ell}^{4}\right)}_{\mathcal{C}} \partial_{t} w+\underbrace{\partial_{\ell}^{4}}_{\mathcal{K}} w=f_{\text {ext }} \quad(-u)$
- Boundaries $\ell \in\{0,1\}$: fixed extremities $(w=0)$, no momentum ($\partial_{\ell}^{2} w=0$)
- Energy: $E=\int_{0}^{1}\left(\frac{\left(\partial_{\ell}^{2} w\right)^{2}}{2}+\frac{\left(\partial_{t} w\right)^{2}}{2}\right) \mathrm{d} \ell$

3. Modal decomposition: $e_{m}(\ell)=\sqrt{2} \sin (m \pi \ell)$
$(1 \leq m \leq n)$
PHS: $\quad \partial_{t} x=(J-R) \nabla H(x)+G u$ with $J=\left[\begin{array}{cc}0_{n \times n} & I_{n} \\ -I_{n} & 0_{n \times n}\end{array}\right], R=\left[\begin{array}{cc}0_{n \times n} & 0_{n \times n} \\ 0_{n \times n} & C\end{array}\right]$

$$
y=-G^{\top} \nabla H(X) \quad G^{\top}=\left[0_{n \times n}, I_{n}\right]
$$

with $H(x=[q ; p=M \dot{q}])=\frac{1}{2} p^{\top} M^{-1} p+\frac{1}{2} q^{\top} K q$
and $q=\left[q_{1}, \ldots, q_{n}\right]^{T}, u=\left[u_{1}, \ldots, u_{n}\right]^{T}, y=\left[y_{1}, \ldots, y_{n}\right]^{T}$
(projections of $w, f_{\text {ext }}, v_{\text {ext }}$)
where $M=I_{n}, \quad K=\pi^{4} \operatorname{diag}(1, \ldots, n)^{4}$ and $C=c_{0} I_{n}+c_{1} K$.

Damping and simulation parameters

Examples of spectrograms for standard linear dampings: $\quad c_{0} \sim 10^{-2}$

Nonlinear damping (from metal to wood):
$C(x)=c_{0}(x) I+c_{1}(x) K$ with $c_{n}(x)=\beta_{n}(H(x)) \in\left[c_{n}^{-}, c_{n}^{+}\right]$

metal	$c_{0}^{-}=0.02$	$c_{1}^{-}=10^{-6}$
wood	$c_{0}^{+}=0.04$	$c_{1}^{+}=10^{-4}$

Numerical method preserving the power balance (discrete gradient)

- force distributed close to $z=0: u=[1, \ldots, 1]^{T} f$
- listened signal: acceleration $[1, \ldots, 1] \dot{y}$
- $n=9$ modes and time step s.t. $f_{1}=220 \mathrm{~Hz}$ to $f_{9} \approx n^{2} f_{1}=17820 \mathrm{~Hz}$

Results: $H(x) \ll 1 \longrightarrow$ wood, $\quad H(x) \gg 1 \longrightarrow$ metal
force: 5 piecewise constant pulses (0.1 ms) with increasing magnitude

Outline

(2) PREAMBLE: reminders on dynamical systems and Lyapunov analysis
(3) MODELLING: Input-State-Output representations of PHS
(4) NUMERICS with sound applications
(5) STATISTICAL PHYSICS and Boltzmann principle for PHS

6 CONTROL: digital passive controller for hardware
(7) Conclusion

STATISTICAL PHYSICS and Boltzmann principle for PHS

From Statistical Physics to

Macroscopic PHS

STATISTICAL PHYSICS and Boltzmann principle for PHS

From Statistical Physics
to
Macroscopic PHS

METHOD 1: From Statistical Physics to Macroscopic PHS

Motivations

1. Macro modeling of systems with billions of interacting particles

- Ferromagnets
- Gases

2. Formulate as macroscopic PHS

- state $=$?
- ports $=$?

METHOD 1: From Statistical Physics to Macroscopic PHS

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
B. Experimental conditions

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
B. Experimental conditions
C. Stochastic setting and averaging of fluctuations

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description

D. Boltzmann principle at equilibrium
microstates are all explored

Make information sufficient
B. Experimental conditions
C. Stochastic setting and averaging of fluctuations

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description

D. Boltzmann principle at equilibrium
microstates are all explored

Make information sufficient
B. Experimental conditions
C. Stochastic setting and averaging of fluctuations
E. PH formulation

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description

1. Particle representation

spin	gas
$\{-1,1\}$	$(\boldsymbol{r}, \boldsymbol{p})$

D. Boltzmann principle at equilibrium
$\begin{array}{cc}\text { spin } & \text { gas } \\ \{-1,1\} & (\boldsymbol{r}, \boldsymbol{p})\end{array}$
microstates are all explored

Make information sufficient
B. Experimental conditions
C. Stochastic setting and averaging of fluctuations

E. PH formulation

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description

1. Particle representation

spin	gas
$\{-1,1\}$	$(\boldsymbol{r}, \boldsymbol{p})$

D. Boltzmann principle at equilibrium
2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)

Make information sufficient
B. Experimental conditions
C. Stochastic setting and averaging of fluctuations
E. PH formulation

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description

1. Particle representation

spin	gas
$\{-1,1\}$	$(\boldsymbol{r}, \boldsymbol{p})$

D. Boltzmann principle at equilibrium
$\{-1,1\} \quad(\boldsymbol{r}, \boldsymbol{p})$
2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)

Make information sufficient
3. Characterizing functions

$$
\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}
$$

B. Experimental conditions
C. Stochastic setting and averaging of fluctuations
E. PH formulation

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description

1. Particle representation

spin	gas
$\{-1,1\}$	$(\boldsymbol{r}, \boldsymbol{p})$

D. Boltzmann principle at equilibrium

1. Particle representation
microstates are all explored
2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)

Make information sufficient
3. Characterizing functions

$$
\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}
$$

B. Experimental conditions
4. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$

C. Stochastic setting and averaging of fluctuations
E. PH formulation

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description

1. Particle representation

spin	gas
$\{-1,1\}$	$(\boldsymbol{r}, \boldsymbol{p})$

D. Boltzmann principle at equilibrium
2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)
3. Characterizing functions

$$
\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}
$$

B. Experimental conditions
4. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$

5. Fixed functions take values $\theta \quad \mathcal{N}(\boldsymbol{m})=N$
C. Stochastic setting and averaging of fluctuations

E. PH formulation

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
D. Boltzmann principle at equilibrium

1. Particle representation

$$
\begin{array}{cc}
\text { spin } & \text { gas } \\
\{-1,1\} & (\boldsymbol{r}, \boldsymbol{p})
\end{array}
$$

2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)
3. Characterizing functions

$$
\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}
$$

B. Experimental conditions
4. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$

5. Fixed functions take values $\theta \quad \mathcal{N}(\boldsymbol{m})=N$
6. Accessible microstates $\mathbb{M}_{a}(\theta) \quad\{-1,1\}^{N}$
C. Stochastic setting and averaging of fluctuations
E. PH formulation

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
D. Boltzmann principle at equilibrium

1. Particle representation

$$
\begin{array}{cc}
\text { spin } & \text { gas } \\
\{-1,1\} & (\boldsymbol{r}, \boldsymbol{p})
\end{array}
$$

2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)
3. Characterizing functions
$\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}$
B. Experimental conditions
4. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$

5. Fixed functions take values $\theta \quad \mathcal{N}(\boldsymbol{m})=N$
6. Accessible microstates $\mathbb{M}_{a}(\theta) \quad\{-1,1\}^{N}$
C. Stochastic setting and averaging of fluctuations
7. Probability distribution p
E. PH formulation

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
D. Boltzmann principle at equilibrium

1. Particle representation

$$
\begin{array}{cc}
\text { spin } & \text { gas } \\
\{-1,1\} & (\boldsymbol{r}, \boldsymbol{p})
\end{array}
$$

2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)
3. Characterizing functions $\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}$
B. Experimental conditions
4. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$

5. Fixed functions take values $\theta \quad \mathcal{N}(\boldsymbol{m})=N$
6. Accessible microstates $\mathbb{M}_{a}(\theta) \quad\{-1,1\}^{N}$
C. Stochastic setting and averaging of fluctuations
7. Probability distribution p
8. Surprisal $\mathcal{S}_{p}^{b}(\boldsymbol{m})$: amount of information
E. PH formulation given by \boldsymbol{m}

$$
0
$$

Make information sufficient

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
D. Boltzmann principle at equilibrium

1. Particle representation

$$
\begin{array}{cc}
\operatorname{spin}^{2} & \text { gas } \\
\{-1,1\} & (\boldsymbol{r}, \boldsymbol{p})
\end{array}
$$

2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)
3. Characterizing functions $\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}$
B. Experimental conditions
4. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$

5. Fixed functions take values $\theta \quad \mathcal{N}(\boldsymbol{m})=N$
6. Accessible microstates $\mathbb{M}_{a}(\theta) \quad\{-1,1\}^{N}$
C. Stochastic setting and averaging of fluctuations
7. Probability distribution p
8. Surprisal $\mathcal{S}_{p}^{b}(\boldsymbol{m})$: amount of information
E. PH formulation given by \boldsymbol{m}
9. Stat. entropy $S^{b}(p)=\mathbb{E}_{p}\left[\mathcal{S}_{p}^{b}\right]$:
average amount of information needed to know current \boldsymbol{m}

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
D. Boltzmann principle at equilibrium

1. Particle representation

spin	gas
$\{-1,1\}$	$(\boldsymbol{r}, \boldsymbol{p})$

10. Ergodicity: accessible microstates are all explored in time
Make information sufficient
11. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)
12. Characterizing functions $\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}$
B. Experimental conditions
13. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$

14. Fixed functions take values $\theta \quad \mathcal{N}(\boldsymbol{m})=N$
15. Accessible microstates $\mathbb{M}_{a}(\theta) \quad\{-1,1\}^{N}$
C. Stochastic setting and averaging of fluctuations
16. Probability distribution p
17. Surprisal $\mathcal{S}_{p}^{b}(\boldsymbol{m})$: amount of information
E. PH formulation given by \boldsymbol{m}
18. Stat. entropy $S^{b}(p)=\mathbb{E}_{p}\left[\mathcal{S}_{p}^{b}\right]$:
average amount of information needed to know current \boldsymbol{m}

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
D. Boltzmann principle at equilibrium

1. Particle representation

$$
\begin{array}{cc}
\operatorname{spin}^{2} & \text { gas } \\
\{-1,1\} & (\boldsymbol{r}, \boldsymbol{p})
\end{array}
$$

2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)
3. Characterizing functions $\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}$
4. Ergodicity: accessible microstates are all explored in time
5. Make information sufficient
\Rightarrow maximum entropy given exp. conditions
B. Experimental conditions
6. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$

7. Fixed functions take values $\theta \quad \mathcal{N}(\boldsymbol{m})=N$
8. Accessible microstates $\mathbb{M}_{a}(\theta) \quad\{-1,1\}^{N}$
C. Stochastic setting and averaging of fluctuations
9. Probability distribution p
10. Surprisal $\mathcal{S}_{p}^{b}(\boldsymbol{m})$: amount of information
E. PH formulation given by \boldsymbol{m}
11. Stat. entropy $S^{b}(p)=\mathbb{E}_{p}\left[\mathcal{S}_{p}^{b}\right]$:
average amount of information needed to know current \boldsymbol{m}

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
D. Boltzmann principle at equilibrium

1. Particle representation

$$
\begin{array}{cc}
\operatorname{spin}^{2} & \text { gas } \\
\{-1,1\} & (\boldsymbol{r}, \boldsymbol{p})
\end{array}
$$

2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)
3. Characterizing functions $\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}$
B. Experimental conditions
4. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$ \qquad
exchanges with env.
5. Ergodicity: accessible microstates are all explored in time
6. Make information sufficient
\Rightarrow maximum entropy given exp. conditions

$$
p^{\star}=\underset{p}{\arg \max } \mathrm{~S}^{b}(p)
$$

p
subject to

5. Fixed functions take values $\theta \quad \mathcal{N}(\boldsymbol{m})=N$
6. Accessible microstates $\mathbb{M}_{a}(\theta) \quad\{-1,1\}^{N}$
C. Stochastic setting and averaging of fluctuations
7. Probability distribution p
8. Surprisal $\mathcal{S}_{p}^{b}(\boldsymbol{m})$: amount of information
E. PH formulation given by \boldsymbol{m}
9. Stat. entropy $S^{b}(p)=\mathbb{E}_{p}\left[\mathcal{S}_{p}^{b}\right]$:
average amount of information needed to know current \boldsymbol{m}

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
D. Boltzmann principle at equilibrium

1. Particle representation

$$
\begin{array}{cc}
\operatorname{spin}^{2} & \text { gas } \\
\{-1,1\} & (\boldsymbol{r}, \boldsymbol{p})
\end{array}
$$

2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)
3. Characterizing functions $\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}$
B. Experimental conditions
4. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$

exchanges with env.
5. Ergodicity: accessible microstates are all explored in time
6. Make information sufficient
\Rightarrow maximum entropy given exp. conditions

$$
p^{\star}=\underset{p}{\arg \max } \mathrm{~S}^{b}(p)
$$

subject to

5. Fixed functions take values $\theta \quad \mathcal{N}(\boldsymbol{m})=N$
6. Accessible microstates $\mathbb{M}_{a}(\theta) \quad\{-1,1\}^{N}$
C. Stochastic setting and averaging of fluctuations
7. Probability distribution p
8. Surprisal $\mathcal{S}_{p}^{b}(\boldsymbol{m})$: amount of information
E. PH formulation given by \boldsymbol{m}
9. Stat. entropy $S^{b}(p)=\mathbb{E}_{p}\left[\mathcal{S}_{p}^{b}\right]$:
average amount of information needed to know current \boldsymbol{m}
with $\mathcal{F}_{i} \in \mathbb{F}_{\text {free }}$
$\Rightarrow \begin{cases}\overline{\mathcal{S}}:=S^{b}\left(p^{\star}\right)=S\left(\overline{\mathcal{F}}_{i}\right) & \text { extensive } \\ \lambda_{i}=-\frac{\partial S}{\partial \overline{\mathcal{F}}_{i}} & \text { intensive }\end{cases}$

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
D. Boltzmann principle at equilibrium

1. Particle representation

$$
\begin{array}{cc}
\operatorname{spin}^{\{-1,1\}} & \text { gas } \\
(\boldsymbol{r}, \boldsymbol{p})
\end{array}
$$

2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)
3. Characterizing functions $\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}$
B. Experimental conditions
4. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$

exchanges with env.
5. Ergodicity: accessible microstates are all explored in time
6. Make information sufficient
\Rightarrow maximum entropy given exp. conditions

$$
p^{\star}=\underset{p}{\arg \max } \mathrm{~S}^{b}(p)
$$

subject to

5. Fixed functions take values $\theta \quad \mathcal{N}(\boldsymbol{m})=N$
6. Accessible microstates $\mathbb{M}_{a}(\theta) \quad\{-1,1\}^{N}$
C. Stochastic setting and averaging of fluctuations
7. Probability distribution p
8. Surprisal $\mathcal{S}_{p}^{b}(\boldsymbol{m})$: amount of information given by \boldsymbol{m}
9. Stat. entropy $S^{b}(p)=\mathbb{E}_{p}\left[\mathcal{S}_{p}^{b}\right]$: average amount of information needed to know current \boldsymbol{m}

E. PH formulation

12. Entropy $S\left(\overline{\mathcal{E}}, \overline{\mathcal{F}}_{k}\right) \leftrightarrow$ Macro energy $E(\underbrace{\overline{\mathcal{S}}, \overline{\mathcal{F}}_{k}}_{\text {state } x})$

METHOD 1: From Statistical Physics to Macroscopic PHS

A. Microscopic description
D. Boltzmann principle at equilibrium

1. Particle representation

$$
\begin{array}{cc}
\operatorname{spin}^{\{-1,1\}} & \text { gas } \\
(\boldsymbol{r}, \boldsymbol{p})
\end{array}
$$

2. Configuration of particles $\boldsymbol{m} \in \mathbb{M}$ (microstate)
3. Characterizing functions

$$
\left\{\mathcal{E}: \mathbb{M} \mapsto \mathbb{R}, \mathcal{N}: \mathbb{M} \mapsto \mathbb{R}^{+}, \ldots\right\}=\mathbb{F}
$$

B. Experimental conditions
4. $\mathbb{F}=\mathbb{F}_{\text {fixed }} \cup$

exchanges with env.
10. Ergodicity: accessible microstates are all explored in time
11. Make information sufficient
\Rightarrow maximum entropy given exp. conditions

$$
p^{\star}=\underset{p}{\arg \max } \mathrm{~S}^{b}(p)
$$

subject to

5. Fixed functions take values $\theta \quad \mathcal{N}(\boldsymbol{m})=N$
6. Accessible microstates $\mathbb{M}_{a}(\theta) \quad\{-1,1\}^{N}$
C. Stochastic setting and averaging of fluctuations
7. Probability distribution p
8. Surprisal $\mathcal{S}_{p}^{b}(\boldsymbol{m})$: amount of information given by \boldsymbol{m}
9. Stat. entropy $S^{b}(p)=\mathbb{E}_{p}\left[\mathcal{S}_{p}^{b}\right]$: average amount of information needed to know current \boldsymbol{m}

E. PH formulation

12. Entropy $S\left(\overline{\mathcal{E}}, \overline{\mathcal{F}}_{k}\right) \leftrightarrow$ Macro energy $E(\underbrace{\overline{\mathcal{S}}, \overline{\mathcal{F}}_{k}}_{\text {state } x})$
13.

Ferromagnetic Coils 4/7 - Core Macroscopic Model

$E_{\text {meanfield }}(T, m) \xrightarrow{\text { change of variable }} E\left(S, B_{V}\right), \quad B_{V}=m B_{V_{s}}$ total magnetic flux

1. State $\boldsymbol{x}=\left[S, B_{V}\right]^{\top}$
2. Energy $E(x)=$

3. Effort $\nabla E(x)=[\underbrace{T}_{\text {internal temperature internal magnetic field }}]^{H}$

Ferromagnetic Coils 1/7-Approach

Ferromagnetic Coils 6/7-Complete PHS Model

Ferromagnetic Coils 7/7-Application

Identification of a Fasel inductor

Outline

Motivation2 PREAMBLE: reminders on dynamical systems and Lyapunov analysis
(3) MODELLING: Input-State-Output representations of PHS

4 NUMERICS with sound applications
(5) STATISTICAL PHYSICS and Boltzmann principle for PHS

6 CONTROL: digital passive controller for hardware
(7) Conclusion

CONTROL: digital passive controller

Passive Control for
digital hardware devices

CONTROL: digital passive controller

Problem statment

- Derive a "discrete-time passive controller" C,

CONTROL: digital passive controller

Problem statment

- Derive a "discrete-time passive controller" C,
- Implement it in a hardware,

CONTROL: digital passive controller

Problem statment

- Derive a "discrete-time passive controller" C,
- Implement it in a hardware,
\rightarrow The computational latency breaks passivity !

CONTROL: digital passive controller

Principle:

- Replace the non-passive delay by a conservative virtual wire

Physics (analog) Digital

Principle:

- Replace the non-passive delay by a conservative virtual wire
\rightarrow Telegraphists equation (r : characteristic impedance)
+ travelling wave decomposition
+ commute the converters (ADC, DAC)
Physics (analog)

Digital

CONTROL: digital passive controller

Final result
Half-physical ($R_{\text {phy }}$) half-digital (modified controller C) process

CONTROL: digital passive controller

Final result

Half-physical ($R_{\text {phy }}$) half-digital (modified controller C) process

\rightarrow Restores passivity without increasing latency

Outline

(1) Motivation
(2) PREAMBLE: reminders on dynamical systems and Lyapunov analysis
(3) MODELLING: Input-State-Output representations of PHS
(4) NUMERICS with sound applications
(5) STATISTICAL PHYSICS and Boltzmann principle for PHS

6 CONTROL: digital passive controller for hardware
(7) Conclusion

Conclusion

Recent or ongoing work at STMS lab-IRCAM

[Collaborators]
© MODELLING:

- Vocal apparatus
[Silva, PhD-Wetzel]
- Statistical physics (magnets, nonlinear coil)+identification [PhD-Najnudel]
- Boundary-controlled nonlinear mechanical resonators [PhD-Voisembert]
- Nonlinear dissipation class (PDE in in mechanics)
- Bowed instruments (friction model)

Conclusion

Recent or ongoing work at STMS lab-IRCAM

[Collaborators]
© MODELLING:

- Vocal apparatus [Silva, PhD-Wetzel]
- Statistical physics (magnets, nonlinear coil)+identification [PhD-Najnudel]
- Boundary-controlled nonlinear mechanical resonators [PhD-Voisembert]
- Nonlinear dissipation class (PDE in in mechanics)
- Bowed instruments (friction model)
[Matignon]
[Falaize,Roze]
(2) NUMERICS: method RPM (Regular Power-balanced Method) [PhD-Muller] \rightarrow Smooth Time Finite-Elements, oblique projectors
\rightarrow accuracy order p, \mathcal{C}^{k}-regularity, aliasing rejection, time-reversal sym.

Conclusion

Recent or ongoing work at STMS lab-IRCAM

[Collaborators]
(1) MODELLING:

- Vocal apparatus [Silva, PhD-Wetzel]
- Statistical physics (magnets, nonlinear coil)+identification
[PhD-Najnudel]
- Boundary-controlled nonlinear mechanical resonators [PhD-Voisembert]
- Nonlinear dissipation class (PDE in in mechanics)
[Matignon]
- Bowed instruments (friction model)
[Falaize,Roze]
(2) NUMERICS: method RPM (Regular Power-balanced Method) [PhD-Muller] \rightarrow Smooth Time Finite-Elements, oblique projectors
\rightarrow accuracy order p, \mathcal{C}^{k}-regularity, aliasing rejection, time-reversal sym.
(3) CONTROL:
- Loudspeaker
- Finite-time passive control (tom drum)
- Hybrid trombone
[Boutin, d'Andréa-Novel]
[PhD-Lebrun]
[PhD-Wijnand]
[PhD-Martos]
- The end -

Thank you for your attention

Acknowledgements(by alphabetical order): I. Cohen, J-B. Dakeyo, B. d'Andréa-Novel, A. Deschamps, A. Falaize, T. Geoffroy, T. Guennoc, M. Jossic, T. Lebrun, N. Lopes,
B. Maschke, D. Matignon, R. Müller, J. Najnudel, N. Papazoglou, M. Raibaud,
D. Roze, F. Silva, T. Usciati, C. Voisembert, V. Wetzel and M. Wijnand.

