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Motivation (PHS=Port Hamiltonian System)

Why PHS for musical audio/acoustic applications ?
Instruments involve & PHS support:
© Multi-physics: mechanics, acoustics, electronics, thermodynamics, etc.
@ Power balance: conservative/dissipative/external parts = passivity
(+ time causality, irreversibility, natural symmetries)

© Nonlinearities: amplitude-dependent timbre, self-oscillations, regime
bifurcation, chaos, etc.

© Non-ideal dissipation: crucial for realism

© Modularity: “choose, build, refine your components and assemble them"
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Why PHS for musical audio/acoustic applications ?
Instruments involve & PHS support:
© Multi-physics: mechanics, acoustics, electronics, thermodynamics, etc.
@ Power balance: conservative/dissipative/external parts = passivity
(+ time causality, irreversibility, natural symmetries)

© Nonlinearities: amplitude-dependent timbre, self-oscillations, regime
bifurcation, chaos, etc.

© Non-ideal dissipation: crucial for realism

© Modularity: “choose, build, refine your components and assemble them"

Objectives
© Modelling: Component-based approach

@ Numerics: power-balanced/passive schemes
(accuracy, reject aliasing due to nonlinearities+sampling, etc.)

© Computational cost: solvers in view of real-time sound synthesis
@ Code generator: component netlists — equations — C++ code

© Control: power-balanced reprogrammed physics to reach behaviours
(transducer correction, acoustic absorbers, hybrid instruments, etc.)



Outline (PHS=Port Hamiltonian System)

© Motivation

© PREAMBLE: reminders on dynamical systems and Lyapunov analysis
© MODELLING: Input-State-Output representations of PHS

@ NUMERICS with sound applications

© STATISTICAL PHYSICS and Boltzmann principle for PHS

© CONTROL: digital passive controller for hardware

@ Conclusion



Outline

© PREAMBLE: reminders on dynamical systems and Lyapunov analysis
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Stability and passivity in nonlinear dynamical systems

- Stability of an equilibrium point (autonomous system)

- Passivity of an input/output system (input/output system)

— Lyapunov analysis
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Preamble (1/4): autonomous systems

x(t) = f(x(t)), fort>0, with f:R" 5 R" (neN)
X(O) = xR’
Cauchy-Lipschitz theorem: f locally Lipschitz = 3t — x(t)

x can be defined on J,;, € R, an open maximal interval that contains 0,
or on interval J := J, N Ry, for its restriction to positive times.

Equilibrium point: x*eR"st. f(x*)=0
Rk: S =R, Jh =R*

Stabilities of x* (L: local, A: asymptotic, G: global)

(LS) if: VR > 0, dr(R) > 0 such that Vxo € R",
[Ixo — x*|| < r(R) = ||x(t) — x*|| < R, Vt € J

‘ Lemma: if [[xo — x*|| < r(R), then J§ = R" ‘

(LAS) if: (LS) and 3r > 0 s.t. ||[xo — x*|| < r = lim¢s 400 x(t) = x*
(GAS) if: (LAS) for all r >0



Preamble (2/4): the Duffing oscillator

x(t) = f(x(t)), with x
and f(x)

y4+ay+(1+8y?)y =0
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(LS) if: VR > 0, 3r(R) > 0 such that Vxo € R",
X — x*|| < r(R) = |Ix(t) = x*|| < R, Vt € J}
(LAS) if: (LS) and 3r > 0 s.t. ||xo — x*|| < r = lime 100 x(t) = x*

(GAS) if: (LAS) for all r >0



Preamble (3/4): Lyapunov analysis (of a system S : x = f(x))

Definition (Hyp.: x* =0 and Q C R” open set)
V :Q — R is a Lyapunov function of S if:
(i) V is C'-regular on Q
(i) V(0) =0 and V(x) > 0 for all x # 0
(iii) £V ox(t) <0 for all trajectories of S in Q
(& VV(x)T f(x) <0, forall x in Q)
If VV(x)7 f(x) <0, forall x in Q\ {0}, V is called a strict Lyapunov fct.
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Preamble (3/4): Lyapunov analysis (of a system S : x = f(x))

Definition (Hyp.: x* =0 and Q C R" open set)
V :Q — R is a Lyapunov function of S if:

(i) V is C'-regular on Q

(i) V(0) =0 and V(x) > 0 for all x # 0

(iii) £V ox(t) <0 for all trajectories of S in Q

(& VV(x)T f(x) <0, forall x in Q)

If VV(x)T f(x) <0, forall x in Q\ {0}, V is called a strict Lyapunov fct.

Lyapunov theorem

If V is a Lyapunov fct. of S, then x* =0 is LS.
If V is strict, then x* = 0 is LAS.
(GAS? For Q =", add the condition V/(x) — 400 as ||x|| = +0o0)

Lasalle principle (a useful theorem!)

Let 7 be the largest subset of {x € Q s.t. VV/(x)” f(x) = 0} (points leaving
V invariant) that is invariant under the flow in positive time.
Then, all the trajectories of S converge towards 7.

Remark: if V is Lyapunov (possibly not strict), then Z = {0} = (LAS)
Usual difficulty: find a Lyapunov function for a given nenlinear f
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Preamble (4/4): Passivity (input/output systems)
Input/output system (u: input, y: output, dimu = dimy > 1)
S: x= f(x, u), y=h(x,u) and x(0)=xo

Recall (autonomous systems X = f(x)): V is a Lyapunov fct. if
(i) V is C'-regular on Q
(i) V(0) =0 and V(x) > 0 for all x # 0
(i) EVox(t)<0 (& VV(x)" f(x) <0, for all x)

Passivity: S is passive if V satisfies (i-ii) and if (iii) is replaced by
Passivity: £V o x(t) < y(t)" u(t) (& VV(X)T f(x,u) < h(x7 u) Tu)
Strict passivity: <V o x(t) < y(t) u(t) —¢ (x(t))

(& VV(X)T f(x,u) < h(x, u) Ty —1(x) for all x, u)
with ¢ : Q — R s.t. 9(0) =0 and ¢(x) > 0 for all x # 0

— Stability for u=0
— Stabilization for dissipative feedback-loop laws: (1= —Ry =y u=—R|y|* <0)

— In physics, a natural Lyapunov function is the energy
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© MODELLING: Input-State-Output representations of PHS



MODELLING: Input-State-Output representations

Port-Hamiltonian Systems
with

a component-based approach

(finite-dimensional case = ODEs)
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° ° (i) Energy-storing components

N
@ E=) _,e>0
o (ii) Memoryless passive components

[P = szl dm > 0 (dissipative) or = 0 (conservative)

e @ (iii) External components
Con Pext = Z:::l °p

+ Conservative connections
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N
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(if) Memoryless passive components
[P = 2’1:;1 dm > 0 (dissipative) or = O (conservative)

(iii) External components
P
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+ Conservative connections — sum of received powers is zero
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A physical system is made of. .. # receiver convention

(i) Energy-storing components — store energy
N
E=Hx) =>"" Hnlx)>0
(if) Memoryless passive components — receive power

M
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P
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A physical system is made of. .. # receiver convention

(i) Energy-storing components — store energy
N
E=Hx) =>"" Hnlx)>0
(if) Memoryless passive components — receive power
M
Paiss = 2(w) w = " Zin(Win) Win > 0
(effort X flow : force X velocity, voltage X current, etc)
(iii) External components — receive power
—uTyv = P
Pext =u'y = szl UpYp
+ Conservative connections — sum of received powers is zero
VH(x)T%x +z(w)'w+uTy=0 (power balance)
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Pstorea=dE/dt >0
PHS: Input-State-Output representation (S: interconnection matrix)
& S Saw  Saw|[VH(X) (i)  storage — differential eq.
w|=| % Sww Swu|| z(w) | (i) memoryless — algebraic eq. (1)
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A physical system is made of. .. # receiver convention

(i) Energy-storing components — store energy
N
G £ H0) = 1, e 2
(ii) Memoryless passive components — receive power

M
Paiss = z(w) w = Zm:l Zm(Wim) Wim > 0
(effort x flow : force X velocity, voltage X current, etc)

(i) External components — receive power
—uTyv = S0P
Pex =u'y = szl UpYp

+ Conservative connections — sum of received powers is zero

VH(x)Tx +z(w)'w+uTy=0 (power balance)
——— ——
Pstorea=dE/dt >0
PHS: Input-State-Output representation (S: interconnection matrix)
% S S Sa|[VHX) (i)  storage — differential eq.
w|=|* Sww Swu|| z(w) | (i) memoryless — algebraic eq. (1)
y * * Syu L (iii) ports — physical signals
f with § = —ST e

Power balance: e'f W e'Se=0as S=-ST =e'Se=(e'Se)’ = —(e'Se)



A physical system is made of. .. # receiver convention

(i) Energy-storing components — store energy
N
E=Hx) =>"" Hnlx)>0
(if) Memoryless passive components — receive power
M
Paiss = 2(w) w = " zin(wim) Wi > 0
(effort X flow : force X velocity, voltage X current, etc)
(iii) External components — receive power
—uTyv = P
Pext =u'y = szl Upyp
+ Conservative connections — sum of received powers is zero
VH(x)T%x +z(w)'w+uTy=0 (power balance)
—— ~——
Pstorea=dE/dt >0
PHS: Input-State-Output representation (S: interconnection matrix)
& S Saw  Saw|[VH(X) (i)  storage — differential eq.
w|=| % Sww Swu|| z(w) | (i) memoryless — algebraic eq. (1)
y * * Sw u (iii) ports — physical signals

f with § = —ST e

— Differential-Algebraic Formulation  (with no constraint: PH-DAE [Maschke,Schaft ])
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Example: damped mechanical oscillator excited by Fext (mz+ rz 4 kz = Fext)

e 4 separate components

(i1) mass of momentum m = mv (energy: 3mv? = Z-),
state energy H, || flow f effort e
x1 =7 | ©2/(2m) X =7 H{(x1)= x1/m
blue : force
red : velocity

(no gravity)
=

s

Edr




Example: damped mechanical oscillator excited by Fext (mz+ rz 4 kz = Fext)

(no gravity)

e 4 separate components A
2
(i1) mass of momentum 7 = mv (energy: $mv? = Z), |
(i2) spring of elongation &
!y
state energy H, || flow f effort e
x1 =7 | ©2/(2m) X =7 H{(x1)= x1/m
x2 =€ | k€2)2 % =€ H;(x2)= k x2

blue : force

red : velocity




Example: damped mechanical oscillator excited by Fext (mz+ rz 4 kz = Fext)

e 4 separate components

(i1) mass of momentum 7 = mv (energy: $mv? = Z),

(i2) spring of elongation &

(if) damper of velocity Vg,

state energy H, || flow f effort e
x1 =7 | ©2/(2m) X =7 H{(x1)= x1/m
xp =€ | k€22 o =£ H(x2)= k x2
blue : force w o= Vg | 2(w) =rw
red : velocity

(no gravity)

(|



Example: damped mechanical oscillator excited by Fext (mz+ rz 4 kz = Fext)

e 4 separate components

(i1
(i2
(ii
(iii

)
)
)
)

mass of momentum m = mv (energy: %mv2 =72-)
spring of elongation &
damper of velocity Vyp,
actuator applying a force Fext
state energy H, || flow f effort e
x1 =7 | ©2/(2m) X =7 H{(x1)= x1/m
xp =€ | k€22 o =& Hj(x2)= k x2
blue : force w o= Vg | 2(w) =rw
red : velocity

(no gravity)

(|



Example: damped mechanical oscillator excited by Fext (mz+ rz 4 kz = Fext)

e 4 separate components
(i1)
(i2) spring of elongation &

mass of momentum 7 = mv (energy:

(if) damper of velocity Vg,
(i) actuator applying a force Fexr (—>your finger experiences — Fext)
state energy H, || flow f effort e
x1 =7 | ©2/(2m) X =7 H{(x1)= x1/m
xp =€ | k€22 o =£ Hj(x2)= k x2
blue : force w o= Vg | 2(w) =rw
ext red : velocity y = Vext| U = —Fext

(no gravity)

(|



Example: damped mechanical oscillator excited by Fext (mz+ rz 4 kz = Fext)
(no gravity)

e 4 separate components

ext

state energy H, || flow f effort e

x1 =7 | ©2/(2m) x| =7 H{(x1)= x1/m

=& | k&2 X = Hj(x2)= k x>
blue : force w o= Ve | 2(w) =rw
red : velocity y = Vext| lu = — Foxt




Example: damped mechanical oscillator excited by Fext (mz+ rz 4 kz = Fext)

e 4 separate components

state energy H, [| flow f

effort e

x1 =7 | ©2/(2m) X, =7

H{(x1)= x1/m

xp =€ | kg2)2 o =&

Hi(x0) = k x;

(no gravity)
(PN
\f F\
kw’,\&t

m

blue : force w o= Va | 2(w) =rw
ext red : velocity y = Vext| u i= —Fext
()
e assembled with rigid connections
i Fn [ HiGa) | V= w/m
€=V | 50 | _ HyGo) | Foo= ke
7‘/@ v z(w) Fap = rVap
Vext | Y u " -
f S e



Example: damped mechanical oscillator excited by Fext (mz+ rz 4 kz = Fext)

e 4 separate components

state energy H, [ flow f effort e
x1 =7 | ©2/(2m) x| =7 H{(x1)= x1/m
2 =€ | k€2 o=¢ | |Hjbe)=kx
blue : force w o= Va | 2(w) =rw
ext red : velocity y = Vext| u := —Fext

e assembled with rigid connections

@ internal |forces are balanced| Fin + Fsp+ Fap+(—Fext) =0

7:":Fm

X1
§=Vep X2
Vdp w
Vext y
N————
f

Hi(x1)
Hj(x2)

z(w)

u

(no gravity)

P

zIi .-k;:_é‘.f-\
:&t

Vim= 7/m
Fsp = k&
Fap = rVap
—Fext




Example: damped mechanical oscillator excited by Fext (mz+ rz 4 kz = Fext)
(no gravity)

e 4 separate components z _'")4:\\
1 Qw"-\ t
state energy H, [ flow f effort e [ \3
x1 =7 | ©2/(2m) x| =7 H{(x1)= x1/m 1 =
xo =€ | k€22 So =¢ Hj(x2)= k x2
blue : force w o= Ve | 2(w) =rw
ext red : velocity y = Vext| u 1= — Foxt

(|

e assembled with rigid connections

@ internal |forces are balanced| Fin + Fsp+ Fap+(—Fext) =0

@ all | velocities are equal | Vi, = Vsp = Vigp = Vext

i=r ] [ o HiGa) | Vo= w/m
E=Vep | % | | /1l 0]0]0O Hj(x) | Fsp= K&
Vap [ w | | 1 o]o0]oO 2w) | Fap= rVap
Vexe | ¥ 1. 0|00 . “Fom
N—————

f §—=_§T e



Example: damped mechanical oscillator excited by Fext (mz+ rz 4 kz = Fext)
(no gravity)

e 4 separate components 2 \f/b_:\\
state energy H, || flow f effort e =‘\g‘
x=m | 72/(2m) x| =7 H{(x1)= x1/m 1 =
xp =& | k€2/2 X =& Hj(x2)= k x2
blue : force w o= Ve | 2(w) =rw
ext red : velocity y = Vext| u 1= — Foxt

(|

e assembled with rigid connections

@ internal |forces are balanced| Fin + Fsp+ Fap+(—Fext) =0

@ all | velocities are equal | Vi, = Vsp = Vigp = Vext

T=Fn ||x 0 Hi(x) | Vm= =/m
§=Vep | 5o [_| 1 0]0]oO Hia) | Foo= K¢
Vap w 1 0 0|0 2(w) “Fap = rVap
Vext y 1 0 0 0 u _Fext
f S=—_sT .
— Formulation (1) with H(x) = Hi(x1) + Ha(x2) (ODE: with z =€)

— § = —S8T is canonical (no mechanical coefficients)



Some variations: nonlinear components (modifying H or z) and also...

8 FA
b S
Nl Fun 0 —1] 1] -1 Vi
! m ] Ve | [ +1 0] o] o Fup
Vap ! 0O o[ © Fc
K r Voxt +1 o[ o] © —Fext

Hamiltonian systems (conservative, autonomous)

VM
Vo | _ [ +1 0 Fep
"Mass-+Damper-+Excitation" (spring removed)
Fm 0 . 71 71 Vm
Voo | | T o] o |- Fc
Vext +1 . 0 0 —Fext
"Mass-+Excitation"
B 0o .|.| -1 Vin

Vext Sin S 0

T lext



PHS shifting



PHS shifting

X VH(x)
(D) (PHS) |w| =5 z(w)

y u

f(z) e(t)



PHS shifting Effort Energy

X VH(x) — VH@) — H)
(D) (PHS) |w| =5 z(w)
y u 0
f(t) e(t)
0
z=0 z=0
Effort Dissipated power

z(w) / \_ Fiss

w =0 w =0




PHS shifting

X VH(x)
(D) (PHS) |w| =5 z(w)
Yy u
f(t) e(t)
@ Equilibrium var*={u*, x*, w*, y*}
=0 VH(x*)
(PHS)* w” =S| z(w")
y* u*

f* e*

0 w*

Dissipated power

diss




PHS shifting

X VH(x)
(D) (PHS) |w| =5 z(w)
Yy u
f(t) e(t)
@ Equilibrium var*={u*, x*, w*, y*}
=0 VH(x*)
(PHS)* w” =S| z(w")
y* u*
f* e*

@ Fluctuations var(t) = var(t) - var*

0 w*

Dissipated power

— PFliss




PHS shifting

X VH(x)
(D) (PHS) |w| =5 z(w)
Yy u
f(t) e(t)
@ Equilibrium var*={u*, x*, w*, y*}
=0 VH(x*)
(PHS)* w” =S| z(w")
y* u*
f* e*

@ Fluctuations var(t) = var(t) - var*

(PHS) = (PHS)- (PHS)*
f(£)—f = S (e(t)—e")

0 w*

Dissipated power

— PFliss




PHS shifting

X VH(x)
(D) (PHS) |w| =5 z(w)
Yy u
f(t) e(t)
@ Equilibrium var*={u*, x*, w*, y*}
=0 VH(x*)
(PHS)* w* =S| z(w")
y* u*
f* e*

@ Fluctuations var(t) = var(t) - var*

(PHS) = (PHS)- (PHS)*
f(t)—F" = S (e(t)—e")
VH(x* +%) — VH(x")
=S| z(w" + WN) —z(w")

{‘<2 2 X

(1) o)

0 w*

Dissipated power

— PFliss




PHS shifting

X VH(x)
(D) (PHS) |w| =5 z(w)
y u
-~
f(t) e(t)
@ Equilibrium var*={u*, x*, w*, y*}
=0 VH(x")
(PHS)* w* =S| z(w")
y‘k u*
f* e*

@ Fluctuations var(t) = var(t) - var*

(PHS) = (PHS)- (PHS)*
f(£)—f" = S (e(t)—e")

x VH, (%)
W| =S|z (w)
y u

() o(t)

Effort

Dissipated power
T

diss

! 0
(U w=0
(PHS is passive if z,+ (x)T w > 0)

Shifted pHs with
He- (%) := H(X + x*) = VH(x")" % — H(x")

Zu (W)= z(w +w") — z(w")




PHS shifting

X VH(x)
(D) (PHS) |w| =5 z(w)

y u

-~

f(1) e(t)

@ Equilibrium var*={u*, x*, w*, y*}

x*=0 VH(x*)
(PHS)* w* =S| z(w")
y* u*
f* e*

@ Fluctuations var(t) = var(t) - var*

(PHS) = (PHS)- (PHS)*
f(£)—f" = S (e(t)—e")

x VH, (%)
w| =5z (w)
y u
—~ =
f(0) o(1)

Effort

Dissipated power
T

diss

! 0
(U =0
(PHS is passive if z,+ (x)T w > 0)

Shifted pHs with
He- (%) := H(X + x*) = VH(x")" % — H(x")

Zu (W)= z(w +w") — z(w")

Examples: gravity (Fext= ;::,:— g), battery, etc.




Differential formulation



Differential formulation

X| _f[|dx du| [Rx R VH(x) _, | power balance with

y B & Jyu & RY'-' u Pdiss = eT Re 2 O
= —_——— —

f = J=—JT = R=RT >0 e

Link with Differential-Algebraic Formulation (1) ?

X Sex Sw  Sw| |VH(x)
w|=|* Sww Swu z(w)
y E * syu u



Differential formulation
x| _(|dx d|  [Rx Ru VH(x) _, | power balance with
y B & Jyu & RY'—' u Pdiss = eT Re 2 O
~~ —_——— —
f = J=-JT = R=RT >0 e

Link with Differential-Algebraic Formulation (1) ?

X Sex Sw  Sw| |VH(x)
w|=|* Sww Swu z(w)
y E * Syu u

Assume that S, = 0
P := [-S},, Swd] is independent of w

& z(w)= T(w)w with T +T" =0, (passivity)



Differential formulation
| _[|$x da|  [Rx R VH(x) _, | power balance with
vyl "\ % % Ry u Pyiss =e" Re > 0
——— S——
= J=-JT = R=RT>0 e
Link with Differential-Algebraic Formulation (1) ?

Sxx wa qu VH ( x)

X
wW| = —S;I—W 0 Swu Z(W)
y * * S L
Assume that Syw = 0
P := [-S],, Sw] is independent of w

& z(w)= T(w)w with T +T" =0, (passivity)



Differential formulation
| _[|$x da|  [Rx R VH(x) _, | power balance with
vyl "\ % % Ry u Pyiss =e" Re > 0
——— S——
= J=-JT = R=RT>0 e
Link with Differential-Algebraic Formulation (1) ?

Sxx wa qu \V/ H(x)

X
Wil = —S;I—W 0 swu Z(W)
y * * Syu L
Assume that S,w = 0
P := [-S],, Sw] is independent of w

& z(w)= T(w)w with T +T" =0, (passivity)

u

——
e

Then,w= P [VH(X)]



Differential formulation
| _[|$x da|  [Rx R VH(x) _, | power balance with
vyl "\ % % Ry u Pyiss =e" Re > 0
——— S——
= J=-JT = R=RT>0 e
Link with Differential-Algebraic Formulation (1) ?

Sxx wa qu \V/ H(x)

X
Wil = —S;(rw 0 Swu Z(W)
y * * Syu L
Assume that S,w = 0
P := [-S],, Sw] is independent of w

& z(w)= T(w)w with T +T" =0, (passivity)

— PTJrP with Jr = %(r —TT)

yu

Then, w= P [VH(X)] = J= { S
u * S

H 1
€ R= P'RiP>~0 with Ry := (T +T7)



Example: damped mechanical oscillator excited by Fext

I ol Fu [ % 0 —1] 1] -1 By H(x)
m Vo | % | _ [ 41 0] o] o | 9y, H(x)
Vap w - +1 0 0 0 z(w) =rw
Vst \ y +1 0 0 0 u




Example: damped mechanical oscillator excited by Fext

5 R
I Fu [ % 0 1] -1]-1 9.4 H(x) Vo
i Vip [ | _ t1 0] 0 0 [ 9,HK) | Fe
Vap w B +1 0 0 0 z(w) =rw Fc
Vext y 1 0 0 0 u —Fext

[psaz)

We have S,w = 0
P:= [+1 0 | 0] independent of w
& z(w)= T(w)w with [(w)=r >0, (passivity)



Example: damped mechanical oscillator excited by Fext

3 FE

[ e F [ % 0 -1 -1]-1 By H(x)

1 Vep S B +1 0 0 0 ) B, H(x)
Vap w - +1 0 0 0 z(w) =rw
Vext y +1 0 0 0 u

We have S,w = 0
P:= [+1 0 | 0] independent of w
& z(w)= T(w)w with [(w)=r >0, (passivity)

. _ sxx qu T . L 1 T
Recall: J _[ - syJ — P )P with Jr := Z(F' —I7)
R=PRP>0 with Ry := %(r+rT)



Example: damped mechanical oscillator excited by Fext

Fin X1 0 —-1]-1]-1 Dy, H(x) Vi
* Vep o | +1 0 0 o1 D5, H(x) Fep
Vap w B +1 0 0 0 z(w) =rw Fc
Vext y 1 0 0 0 u —Fext
Sow= 0

P:= [+1 0 | 0] independent of w
& z(w)= T(w)w with [(w)=r >0, (passivity)

. _ sxx qu T . L 1 T
Recall: J _[ - syJ — P )P with Jr := Z(F' —I7)
R=PRP>0 with Ry := %(r+rT)

— JrZO, Rr=r
|

Fn X1 0 -1 -1 r O H(x) Vin
Vip X = +1 0 0 — 0 . Oy, H(x) [P
Vext y Tl 0o 0 0 ‘ u —Fext

— matrix R combines interconnection routing and mechanical coefficients (r)

oo o
oo O
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NUMERICS with sound applications

Power-balanced numerical method
and

non-iterative solver



Power-balanced numerical method : discrete gradient

Classical numerical schemes for & = f(x):
o efficiently approximate % and exploit f

@ a posteriori analysis of stability



Power-balanced numerical method : discrete gradient

Classical numerical schemes for & = f(x):
o efficiently approximate % and exploit f

@ a posteriori analysis of stability

A discrete power-balanced method (PHS)

Exploit differentiation chain rule

dE OH dx, _ Z Ha(xalk + 1]) — Ha(xalK]) xalk + 1] — xa[k] _ E[k + 1] — E[K]
dt Ax, dt xnlk + 1] — xa[K] 5t N 5t
[0x[k]/6t]n

[¥ H (xIK], 8x1K]) ]

Jointly substitute x — dx/dt and VH (x) — Vp H (x, 0x):

% Vb H (x, 0x)
w =S z(w)
fl] e[

Simulation : solve (0x, w) at each time step k (e.g. Newton-Raphson algo.)



Power-balanced numerical method : discrete gradient

Classical numerical schemes for & = f(x):
o efficiently approximate % and exploit f

@ a posteriori analysis of stability

A discrete power-balanced method (PHS)

Exploit differentiation chain rule

dE OH dx, _ Z Ha(xalk + 1]) — Ha(xalK]) xalk + 1] — xa[k] _ E[k + 1] — E[K]
dt Ax, dt xnlk + 1] — xa[K] 5t N 5t
[0x[k]/6t]n

[¥ H (xIK], 8x1K]) ]

Jointly substitute x — dx/dt and VH (x) — Vp H (x, 0x):

% Vb H (x, 0x)
w =S z(w)
fl] e[

Simulation : solve (0x, w) at each time step k (e.g. Newton-Raphson algo.)

@ Skew-symmetry of S preserved = 0 =e’Se=e'f = 6E/5t +z(w) w+u'y

@ For linear systems, \Vp H (x, 6x) = VH(x + 6x/2) restores the mid-point scheme.
@ Method also applies to nonlinear components and non separate Hamiltonian

°

Power-balanced Runge-Kutta scheme (non iterative) [Lopes et al., LHMNC'2015]



Simulation 1: mass-spring-damper

@ Parameters: M=100g, K=5N/m, C=0.1N.s/m et dt=5ms
T
@ |Initial conditions: xg = [mvo:O, lo=10 cm]
@ Excitation: Fex((t) = Fmax 1[55,1051(1') with Fax =K¥0/2=0.25N

0.8

o+

.
0.5

01
i)
005 -

o
T

J—\[ \,'7\\ e s e
EN -qta mvt (Kg.m/is)

I xz-alonuaﬁon(ml .:

0.05

ti(s)

tis)

u}
o)
I
i
it



Simulation 2: idem with a hardening spring

® Potential energy: H)(xo) =K L* [cosh(xo/L) — 1] ((~ kx2/2)

© Physical law:  F, = (H;VL)’(XQ) = K Lsinh(e/L) (~Kx)

@ Reference elongation: L=/y/4=25mm

oslit o _
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R ~ -
L T — e e
MATRY 7
0.5 i “I, B Fexl(N)
-1 ,l_r' el S v (mis)
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0.1 . * =elongation (m)
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Quadratisation method (goal: non-iterative solver)

Numerical method: solve dx at each step k — implicit scheme

ox /6t | _ [Mo Ma| [WoH(x,6x)] .
|: y :|_|:Myx Myu:||: u with M =J — R.



Quadratisation method (goal: non-iterative solver)

Numerical method: solve dx at each step k — implicit scheme
ox /6t | _ [Mo Ma| [WoH(x,6x)] .
|: y ] = |:Myx Myu:| [ u with M =J — R.

Quadratic Hamiltonian H(x) = ixLx" = Vp H(x, 8x) = L(x + 16x)
Linear solver:  dx/6t =A™ '(Ax + Bu),
with A =ML, B:= M, and A :=1—2A (invertible)



Quadratisation method (goal: non-iterative solver)

Numerical method: solve dx at each step k — implicit scheme
ox /ot | _ [Ma M| [WH(x, éx)| g
|: y ] = |:Myx Myu:| [ u with M =J — R.

Quadratic Hamiltonian H(x) = ixLx" = Vp H(x, 8x) = L(x + 16x)
Linear solver:  dx/6t =A™ '(Ax + Bu),
with A =ML, B:= M, and A :=1—2A (invertible)

@ Principle: if H is non quadratic, make it quadratic !

+ benefit from the passive interconnection matrices J = —J7, R=R" = 0



Quadratisation method (goal: non-iterative solver)

Numerical method: solve dx at each step k — implicit scheme
ox /ot | _ [Ma M| [WH(x, éx)| g
|: . ] = |:Myx Myu:| [ u with M =J — R.

Quadratic Hamiltonian H(x) = ixLx" = Vp H(x, 8x) = L(x + 16x)
Linear solver:  dx/6t =A™ '(Ax + Bu),
with A =ML, B:= M, and A :=1—2A (invertible)

@ Principle: if H is non quadratic, make it quadratic !

+ benefit from the passive interconnection matrices J = —J', R=R" >~ 0

—1
(2) Change of state: x -2 g% =% 5 x s t. H(g) := Ho X(q) = ;949"

Transform the PHS on x into the PHS on g (use X & Jacobian of Q)

J(x)=—J(x)", Rx)=R(x)" =0 = J(q)=—-J(q)", R(q)=R(q)" =0



Quadratisation method (goal: non-iterative solver)

Numerical method: solve dx at each step k — implicit scheme
ox /ot | _ [Ma M| [WH(x, éx)| g
|: . ] = |:Myx Myu:| [ u with M =J — R.

Quadratic Hamiltonian H(x) = ixLx" = Vp H(x, 8x) = L(x + 16x)
Linear solver:  dx/6t =A™ '(Ax + Bu),
with A =ML, B:= M, and A :=1—2A (invertible)
@ Principle: if H is non quadratic, make it quadratic !
+ benefit from the passive interconnection matrices J = —J', R=R" >~ 0

—1
(2) Change of state: x -2 g% =% 5 x s t. H(g) := Ho X(q) = ;949"

Transform the PHS on x into the PHS on g (use X & Jacobian of Q)
J)=—J()". RE)=R()" =0 = J(a)=—J(a)", R(a)=R(a)" = 0
@ If H(X):Zn,\l:1 H,(x,) (CY, strictly quasi-convex, Hn(xs)>0 and ~ %"xs)
Then Qn(xn) = sign(xn)+/2Hn(xn) — exercise 2
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Automatic generation of code: the PyPHS Python library

https://pyphs.github.io/pyphs/
2012-16 : First version

[Antoine Falaize]

[Falaize, PhD]

2016—— : Opensource library with periodic releases [Falaize & contributors]
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— exercice 4 (tutorial: see links in the references)



PhD, 2016: Antoine Falaize

Passive modelling, simulation, code generation
and correction of audio multi-physical systems

Two examples

Wah pedal (CryBaby): netlist — PyPHS — LateX eq. & C code

| Components | Number

Storage 7 linear
Dissipative 18 (5 NL, 2 modulated)
Ports 3 (IN, OUT, battery)

Components

1 beam

i [
Pickup/RC-circuit

Hammer
Storage 2 NL 2M lin. 2 lin. (4 NL connection)
Dissipative 1 NL M lin. 1 lin.
Ports 2 1 1

(1]

Audio Plugln:
Sound 1la: dry
Sound 1b: wah

Sound 2

B | |
— Total

B R VT R T

time 1 (s} <1072



Real-time simulation of Ondes Martenot [Najnudel et al., AES2018]

Ondes Martenot (created by Maurice Martenot in 1928)

Controls Circuit Diffuseurs

— Video 3 [Thomas Bloch, improvisation, 2010]



Real-time simulation of Ondes Martenot [Najnudel et al., AES2018]

Ondes Martenot (created by Maurice Martenot in 1928)

Controls Circuit Diffuseurs

— Video 3 [Thomas Bloch, improvisation, 2010]

Context/Problem (Musée de la Musique, Philharmonie de Paris)

Technological obsolescence of a musical instrument:
70/281 remaining instruments (handmade), 1200 pieces (Varése, Maessian, etc)

Objective (Collegium Musicae-Sorbonne Université)

Real-time simulation of the circuit based on physics — PHS approach



Ondes Martenot: 5 stages circuit

alais ! Rl -
var. osc. fixed osc. demodulator preamp. power amp.

T

Specificities: heterodyne oscillators (1930's)
e 2 High frequencies (= 80kHz+df) — demodulator — audio range (df, 24f,...)

V1 (f1 = 80 kHz + 5 Hz)
ribbon/keyboard m m V3
v2(2=sokHz) I 1NL—> harmonics
va il M V4 (fm = 5f Hz)

e Vacuum tubes: w = [grid and plate currents]’, z(w) = associated voltages
(passive parametric model [Cohen’12])

e Pb: ribbon-controlled oscillator involving time-varying capacitors in parallel



Ondes Martenot: capacitors in parallel — |

= = - -
Problem:
ve =va=vg &

Capacitors (n=A,B)
State (charge): qn ia va = Hp(qa)

. not Y
Energy : Hn(an) Bl = {realisable} B = HB(qB)
Flux (current): i, =dq,/dt vc ic
Effort (voltage): v, = H;(qs)

— Build the equivalent component C = A//B



Ondes Martenot: capacitors in parallel — |

Problem:
Ve =va=vg &

Capacitors (n=A,B)
State (charge): qn ia not va = Hp(qa)

. /
Energy : Hn(an) Bl = {realisable} B = HB(qB)
Flux (current): i, =dq,/dt vc ic
Effort (voltage): v, = H;(qs)

— Build the equivalent component C = A//B

Hyp: g, — v, = H/(q,) bijective (increasing law)

Find the total energy Hc(qc) for the total charge gc = qa + gs
@ Charge as a function of the voltage v, = v¢: o = [HA] (V) i= Qn(vc)
@ Total charge (idem): gc = [Qa + QB](vc) =: Qc(ve)
© Total energy function: Hc(qc) = Zn:A,B Hn o Qno Qz'(qc)

Also available if H, depends on additional states (ribbon position £)

Power-balanced simulation with H(qg,?) = q2/(2C1\,1m.tenot(€))

— video 4 (sound=circuit output voltage, without the diffuseurs)



Operational Amplifier

Idealised component
e 5 ports

iy

e Algebraic conservative law

iy . et
i g e_
st | = —p(+e) | | es+
is— . —p(—e€) es—
€out ple) p(=€) fout
20pa(w) J(wopa)=—J(wora)™ WopA

e Modulation factor

[Muller et al., DAFx'19]



Operational Amplifier

Idealised component

e 5 ports

iy

e Algebraic conservative law

it R . . er
i g e_
sy | = —p(+e) | | es+
is— —p(—€) | |es—
€out ple) p(=€) fout
20pa(w) J(wopa)=—J(wora)™ WopA

e Modulation factor

[Muller et al., DAFx'19]

Typical analog filters

(Sallen-Key)

e Circuit:
YsK ¢V+
is
1 R 2 R L IG\‘ o 4
in iRy irs N
Is—
Vin G < is
Ticl iz Vo
X VH(x)
e Nonlinear PHS: v A1)
WOPA ZOPA ( WOoPA )
y u

e Sounds 5 (simulations: linear / nonlinear)

N I\[\AI\A
AN

0.000 0.005 0.010 0.015
time (s)

0.020 0.025 0.030



Nonlinear damping in a beam [Hélie,Matignon,2015]

Motivation

1. Theoretical issues

Given a linear conservative mechanical system,
o find damping models that preserve the eigen modes (with eigen structure)
@ design nonlinear damping in such a class

@ provide a power balanced formulation that is preserved in simulations

2. Application in musical acoustics
Build physical models to produce:
@ a variety of beam sounds (glokenspiel, xylophone, marimba, etc)

o morphed sounds through some extrapolations based on physical grounds
(e.g. meta-materials with damping depending on the magnitude)



Damping models for Mg + Cg + Kq = f (finite-dimensional case)

Conservative problem (C=0)

o g+ (M 1K)g= M1f

o Eigen-modes e;: (M 1K)e; = w?e; (w;: angular freq.)
Damping that preserves eigen-modes ?

e Choose M~1C as a non-negative polynomial of matrix M~1K
— Caughey class (1960): C = coM + K + oKM~1K + . ..



Damping models for Mg + Cg + Kq = f (finite-dimensional case)

Conservative problem (C=0)

o g+ (M 1K)g=M-1f

o Eigen-modes e;: (M 1K)e; = w?e; (w;: angular freq.)
Damping that preserves eigen-modes ?

e Choose M~1C as a non-negative polynomial of matrix M~1K
— Caughey class (1960): C = coM + K + oKM~1K + . ..

Eigen-modes with nonlinearly-damped dynamics ?

e Make ¢, depend on the dynamics

Ex.: damping as a function of energy H(x) (state x = [q, p = Mg]T)

cn(x) = nn(H(x)) € [cn,ci] with ¢; >0

()"

Bl

e Increasing: kn(h)=c,+(ci — c,,’)f(%) Fh) =2

h

@ Decreasing: xi(h)=ci—(c — C;)f(h—o)




Application case: the Euler-Bernoulli beam
1. Pinned beam excited by a distributed force
(H1) Euler-Bernoulli kinematics: straight cross-section after deformation
(H2) linear approximation for the conservative problem
(H3) viscous and structural dampings: only ¢y, c; > 0

2. Dimensionless model (w: deflection, t >0, 0< ¢ <1)

o PDE: O'w +(co+cid})dew + 8} w=fuxe (—u)
~—  N— —~—

M=1d c K
e Boundaries ¢ € {0, 1}: fixed extremities (w=0), no momentum (92w =0)

1 2. \2 2
o Energy: E:/ (MJrM) ds
. 2 2

3. Modal decomposition: e,,(¢)=+/2sin(mn¥) (1<m<n)

PHS: | dex= (J — R)VH(x) + Gu with J= {07”7" o J R = {0 Onx

y=—G"VH(X) G" = [Onxn, In]

with H(x:[q;p = Mq]) = %pTM_lp—l— %qTKq

and q=[q1,.--,qn]", u=[u1,...,us]", ¥y =[yi,. -, yn]"
(projections of w, fext, Vext)

where M = I,, K = r*diag(1,...,n)* and C = coly+cK.



Damping and simulation parameters

Examples of spectrograms for standard linear dampings: co~ 1072

metal (c; ~ 1079) glass (c; ~ 107°) wood (c; ~ 107%)

8000f

Frequency (in Hz)

Frequency

000

4000}

i

2000

0z o4 iz e %

06 08
“Time (in's)

Nonlinear damping (from metal to wood):

C(x) = co(x)! + a1 (x)K with | metal [ ¢ =0.02 [ ¢ =10° |
cn(x) = Ba(H(x)) € [cn s cr] | wood | ¢g=0.04 | ¢ =10" |

Numerical method preserving the power balance (discrete gradient)
o force distributed close to z =0: u=[1,...,1]"f
o listened signal: acceleration [1,...,1]y
@ n =9 modes and time step s.t. i = 220Hz to fo ~ n*f = 17820 Hz



Results: H(x) <1 — wood, H(x) > 1 — metal

force: 5 piecewise constant pulses (0.1ms) with increasing magnitude —Sound 6
overview ZOOMS total (black), kinetic (red) and potential (blue)
2: o 15 o 4
N L 0
o ’\N 5 05 £
° c c
o [N [T wo
oo s s e 1.246 1248 1.25 1252 1.254 1746 1748 175 1752 1.754

Magnitude (dB scale) t t

1.246 1.248 1.25 1.252 1.254 1.746 1.748 1.75 1752 1.754
t(ins) t(ins)
4

oo S

oo

f(in Hz)

4
x10 x10

1.246 1.248 1.25 1.252 1.254 1.746 1.748 1.75 1752 1.754
t(ins) t(ins) t(ins)

dy/dt
o

dy/dt
o
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to
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STATISTICAL PHYSICS and Boltzmann principle for PHS

PhD, 2022: Judy Najnudel
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METHOD From Statistical Physics to Macroscopic PHS

Motivations

1. Macro modeling of systems with billions of interacting particles

e Ferromagnets
e Gases

2. Formulate as macroscopic PHS

e state = 7
e ports =7
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3. Characterizing functions
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B. Experimental conditions
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D. Boltzmann principle at equilibrium

A. Microscopic description

1. Particle representation spin gas microstates are all explored
{-1,1}  (r,p)
2. Configuration of particles m € M (microstate) Make information sufficient

3. Characterizing functions
{X:MHR7N:M>—>R‘. ..,}:JF

B. Experimental conditions

4. F = Ffixea U Feree
exchanges with env

5. Fixed functions take values & N'(m) =N
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fluctuations
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A. Microscopic description D. Boltzmann principle at equilibrium
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A. Microscopic description D. Boltzmann principle at equilibrium
Ebarticlelrepresentation spin gas 10. Ergodicity: accessible microstates are all explored
{-1,1} (r,p) in time
2. Configuration of particles m € M (microstate) 11, Make information sufficient

SRCharacterizingifunctions = maximum entropy given exp. conditions

{X:MHRﬁN:MHR‘...,}:F . ,
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B. Experimental conditions subject to Z E,[F] = F;
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{X:MHRﬁN:MHR‘...,}:F N Y
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B. Experimental conditions subject to Z E,[F] = F;
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A. Microscopic description D. Boltzmann principle at equilibrium

Ebarticlelrepresentation spin gas 10. Ergodicity: accessible microstates are all explored
{-1,1} (r,p) in time

2. Configuration of particles m € M (microstate) 11, Make information sufficient

SRCharacterizingifunctions = maximum entropy given exp. conditions

{X:MHRﬁN:MHR‘...,}:F . ,
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P
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exchanges with env. Ergodicity const. —Lagrange mult. X;

5. Fixed functions take values & A/ (m) :NN with Fi € Freeo
6. Accessible microstates M, (0)  {—1,1}

S:=5"(p*) = S(F)) extensive
C. Stochastic setting and averaging of = oS . .
. Ai=— — intensive
fluctuations OF;

7. Probability distribution p
8. Surprisal Sﬁ(m): amount of information ~ E. PH formulation
given by m = = = =
12. Entropy S(&€, F«) <> Macro energy E(S, F,
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Ebarticlelrepresentation spin gas 10. Ergodicity: accessible microstates are all explored
{-1,1} (r,p) in time

2. Configuration of particles m € M (microstate) 11, Make information sufficient

SRCharacterizingifunctions = maximum entropy given exp. conditions

{X:MHRﬁN:MHR‘...,}:F . ,
p" =argmax S°(p)
P

B. Experimental conditions subject to Z E,[F] = F;
4. F = Ffixea U Firee meM,
=7

exchanges with env. Ergodicity const. —Lagrange mult. X;

5. Fixed functions take values & A/ (m) :NN with Fi € Freeo
6. Accessible microstates M, (0)  {—1,1}

S:=5"(p*) = S(F)) extensive
C. Stochastic setting and averaging of = oS . .
. Ai=— — intensive
fluctuations OF;

7. Probability distribution p
8. Surprisal Sﬁ(m): amount of information ~ E. PH formulation
given by m = = = =
12. Entropy S(&€, F«) <> Macro energy E(S, F,
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state x

Ports
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Ferromagnetic C

Emeansield(T, m)

s 4/7 -

change of variable
— E(S,Bv),

Core Macroscopic Model

By = m By, total magnetic flux

1. State x =[S, By]T

2. Energy E (x) =

g
0-59-0.255?0,;,‘,25 e

e 50 0,75 3 o0

T

3. Effort VE(x) =

T s H

internal temperature internal magnetic field
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Ferromagnetic Coils 1/7 - Approach

>

ferromagnetic coil = ferromagnetic core + winding

\

[ve]

Core modeling

Microscopic description

Ising model:
R spin € {—1,1}
u Heisenberg Hamiltonian £ Method

—  Ports +— . .
Linear inductor
Experimental conditions

- Free energy €
Fixed volume V

Fixed number of particles N

Power-Balanced Modeling of Nonlinear Electronic Components and Circuits for Audio Effects 10



Ferromagnetic Coils 6/7 - Complete PHS Model
Coil Core

T|o
A A Teoil reqi) ol e WB%M ST Beore
M Veoil ‘\_{L, I
o Vrcoil Hreore T S
-~ Heore
T
B = B
VE(x) z(w) u
Teore  Heore coil 07 By, Vi o Oext
S r . . . —1 . . —17
X Bvege : : : 1 .
Veoil —n/e =il
Teore 1 . . .
w  Heo. . -1 n/e
Ireoil N . 1

y Text L 1
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Ferromagnetic Coils 7/7 - Application

Identification of a Fasel inductor .

VinT L Vout
lout
010+
\ r
005+
B
= 0007
s
-0.05
— sbmuhled
0107 —eo measured

Tima [m

Power balance (W)

0 so 100 1% erJ >:rJ 00 250

1e-13

-4} |

0 50 100 150 200 250 300 350
Tima (ms)
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Problem statment
o Derive a "discrete-time passive controller" C,
e Implement it in a hardware,

— The computational latency breaks passivity !

Physics (analog) Digital (hardware)
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o Replace the non-passive delay by a conservative virtual wire
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CONTROL: digital passive controller (Patent 2019 with T. Lebrun)

Principle:
o Replace the non-passive delay by a conservative virtual wire
— Telegraphists equation (r: characteristic impedance)

+ travelling wave decomposition
+ commute the converters (ADC, DAC)

Physics (analog) Digital

T/2+T/2=nTe
[buffer)
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CONTROL: digital passive controller
Final result

(Patent 2019 with T. Lebrun)

Physics (analog)

input

Half-physical (R, ) half-digital (modified controller C) process

Digital

output

— Restores passivity without increasing latency
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Conclusion

Recent or ongoing work at STMS lab-IRCAM [Collaborators]
© MODELLING:

o Vocal apparatus [Silva, PhD-Wetzel]

e Statistical physics (magnets, nonlinear coil)+identification [PhD-Najnudel]

o Boundary-controlled nonlinear mechanical resonators [PhD-Voisembert]

o Nonlinear dissipation class (PDE in in mechanics) [Matignon]

o Bowed instruments (friction model) [Falaize,Roze]

@ NUMERICS: method RPM (Regular Power-balanced Method) [PhD-Muller]
— Smooth Time Finite-Elements, oblique projectors
—» accuracy order p, C*-regularity, aliasing rejection, time-reversal sym.

© CONTROL: [Boutin, d’Andréa-Novel]
o Loudspeaker [PhD-Lebrun]
o Finite-time passive control (tom drum) [PhD-Wijnand]
o Hybrid trombone [PhD-Martos]
— The end -

Thank you for your attention
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