

DE LA RECHERCHE À L'INDUSTRIE

Werner Verdier¹ Alain Cartalade¹ Mathis Plapp²

¹Université Paris-Saclay, CEA, Service de Thermo-hydraulique et de Mécanique des Fluides

²Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris

April 5, 2023

Phase-field modelling and simulations of phase separation in the two-phase nuclear glass Na₂O-SiO₂-MoO₃ LBM Workshop, Institut Henri Poincaré

1 Introduction

- 2 Model construction: ternary two-phase flow
- 3 Numerical implementation

4 Simulations

5 Conclusion

1 - Introduction

Cea Context - nuclear glasses 1/2

Nuclear glasses

- Recyling of used nuclear fuel ⇒ nuclear waste.
- Containment of highly radioactive and long-lived nuclear waste with nuclear glasses.
- Best combinaison of thermal, chemical and radioactive isolation⁹.
- Research on vitrification at CEA Marcoule and CEA project SIVIT.

Cold crucible at CEA Marcoule

Phase field simulations of phase separation in Na20-SiO2-MoO3

⁹É. Vernaz and J. Bruezière. "History of Nuclear Waste Glass in France." In: Procedia Materials Science (2014)

Cea Context – nuclear glasses 2/2

Nucleation-growth phenomenology

- Processed to $\geq 1000^{\circ}$ C \Rightarrow melting, crystallisation, phase coexistence
- Molybdenum-enriched waste incurs separation \rightarrow model ternary glass Na₂O-SiO₂-MoO₃.

Background (0) 98% Na₂0-SiO₂ 2% Mo02 Droplets (1) 50% Na₂O-SiO₂ 50% MoO2

Ternary glass after liquid-liquid phase separation

Phase diagram of the Na₂O-SiO₂-MoO₃

Phase field simulations of phase separation in Na20-SiO2-MoO3

Werner Verdier - LBM Workshop - April 5, 2023

C22 Scope and novelties

Scope

 Study kinematics of Na₂O-SiO₂-MoO₃ liquid-liquid interface in the growth regime (no spinodal decomposition)

Model requirements

- fully resolve the interface
- thermodynamic fidelity
- flow coupling
- high numerical efficiency

Novelties

- Simulations of binary growth usually done via Cahn-Hilliard formalism.
- We propose an alternate phase-field (Allen-Cahn) approach. Notably, consistent extension and thermodynamic data coupling in the ternary case.
- Includes hydrodynamics and all model eqs. are discretized using the Lattice Boltzmann method.
- High performance, portable simulation code LBM_saclay: simulations of many-droplets 3D growth.

2 - Model construction: ternary two-phase flow

Cea Standard approach

Diffuse interface

- Usual formalism: Cahn-Hilliard equation
- Composition c used as order parameter
- Free energy functional F[c] with intrinsic coupling of bulk and interface
- Under-determined in the ternary case!

Alternative: phase-field

- New order parameter φ to define the interface
- Therm. potential to define the bulk properties, interpolated in the interface using φ.
- Free energy functional F[φ, c] with separate interface/bulk contributions.
- Consistent in the ternary case.

Diffuse interface between "phase $\,0"\,{\rm and}$ "phase $1"\,$

Cea Phase-field basics 1/3

Free energy functional

$$F[\boldsymbol{\varphi}, \mathbf{c}] = \int_{V} \mathrm{d}V \left(Hf_{\mathsf{dw}}(\boldsymbol{\varphi}) + \frac{\zeta}{2} |\nabla \boldsymbol{\varphi}|^{2} + f_{\mathsf{bulk}}(\boldsymbol{\varphi}, \mathbf{c}) \right)$$

•
$$Hf_{dw}(\varphi) + \frac{\zeta}{2} |\nabla \varphi|^2$$

Holds the diffuse interface's equilibrium profile and properties with double-well function

• $f_{\text{bulk}}(\boldsymbol{\varphi}, \mathbf{c})$

Thermodynamic energy contribution of the bulk phases w.r.t. thermodynamic field

$$\mathbf{c} = \begin{pmatrix} c^{\mathrm{SiO}_2} & c^{\mathrm{Na}_2 \mathrm{O}} \end{pmatrix}^T = \begin{pmatrix} c^A & c^B \end{pmatrix}^T$$

With $f_{\text{bulk}} = 0$,

equilibrium profile, interface width and surface tension by minimization of $F[\varphi(x)]$

$$\varphi^{eq}(x) = \frac{1}{2} \left(1 + \tanh(2x/W)\right), \qquad W = \sqrt{\zeta/H}, \qquad \sigma^{eq} = \frac{2}{3}HW$$

Time evolution PDE (Allen-Cahn equation)

$$\partial_t \varphi = -\frac{M_{\varphi}}{\zeta} \frac{\delta F[\varphi]}{\delta \varphi} \quad \Rightarrow \quad \partial_t \varphi = M_{\varphi} \nabla^2 \varphi - \frac{M_{\varphi}}{W^2} f'_{\mathsf{dw}}(\varphi)$$

Only 2nd order space derivative (Cahn-Hilliard: 4th).

Thermodynamic coupling via f_{bulk}

Interpolate bulk phases's contribution

 $f_{\mathsf{bulk}}(\varphi, \mathbf{c}) = p(\varphi)f_0(\mathbf{c}) + p(1-\varphi)f_1(\mathbf{c}) \qquad p(\varphi) = 3\varphi^2 - 2\varphi^3$

 \Rightarrow tune $f_0(\mathbf{c}), f_1(\mathbf{c})$ (not f_{dw} !) to match real thermodynamic data (eg. Calphad)

However, free energy not adequate for a chemical equilibrium.

C22 Grand potential reformulation

Chemical eq. = common tangent plane construction.

$$\frac{\partial f_0}{\partial \mathbf{c}}\Big|_{\mathbf{c}_0} = \frac{\partial f_1}{\partial \mathbf{c}}\Big|_{\mathbf{c}_1} = \mathbf{\mu}$$

$$\frac{f_0(\mathbf{c}_0) - \mathbf{\mu} \cdot \mathbf{c}_0}{\omega_0(\mathbf{\mu})} = \underbrace{f_1(\mathbf{c}_1) - \mathbf{\mu} \cdot \mathbf{c}_1}{\omega_1(\mathbf{\mu})}$$

Grand potential formalism²: use the Legendre transforms

$$\Omega[\varphi, \mu] = \int dV \left(\dots + p(1-\varphi)\omega_0(\mu) + p(\varphi)\omega_1(\mu) \right)$$

Binary common tangent construction

$$\omega_{\pi}(\mathbf{\mu}) = f_{\pi}(\mathbf{c}) - \mathbf{\mu} \cdot \mathbf{c} \qquad \mathbf{c} = -\frac{\delta\Omega}{\delta\mathbf{\mu}}$$

• The source term $p'(\varphi)(\omega_0(\mu) - \omega_1(\mu))$ is 0 at therm. eq.

² M. Plapp. "Unified derivation of phase-field models for alloy solidification from a grand-potential functional." In: Phys. Rev. E (3 2011)

Werner Verdier - LBM Workshop - April 5, 2023

12/47

Phase field simulations of phase separation in Na20-SiO2-MoO3

Conservation of c by Onsager's variational principle

$$\partial_t c^{\alpha} = \nabla \cdot \mathbf{j}^{\alpha}, \qquad \mathbf{j}^{\alpha} = -M^{\alpha}(\varphi) \nabla \mu^{\alpha}$$

mixed formulation³ extended here to ternary⁵

- Summary: two-phase ternary model composed of
 - **1** φ interface tracking PDE,
 - 2 c diffusion PDE,
 - 3 closure relation $c \leftrightarrow \mu$ by Legendre transform.
- Missing ingredient: $f_{\pi}(\mathbf{c})$. How to define it?

⁵W. Verdier. Modèle à champ de phase pour verres ternaires diphasiques. Note technique DES STMF/LMSF/NT/2021-67858 (CEA internal technical report). 2021

13/47

³ R. Bayle. "Simulation des mécanismes de changement de phase dans des mémoires PCM avec la méthode multi-champ de phase." 2020IPPAX035. PhD thesis. 2020

Cea Na₂O-SiO₂-MoO₃ Calphad database

- Fit with Calphad data
- Numerical function $(T, c^{\text{sio}_2}, c^{\text{Na}_20}) \rightarrow \{f_{\pi}, \mu, c_{\pi}^{\text{sio}_2, \text{eq}}, c_{\pi}^{\text{Na}_20, \text{eq}}\}_{\pi=0,1}$

Calphad database

Na₂O-SiO₂-MoO₃ ionic-liquid database⁸

$$\left(\mathsf{Mo}^{4+},\,\mathsf{Na}^{+}
ight)_{P}$$

$$\left(\mathrm{MoO_{4}}^{2-}, \mathrm{O}^{2-}, \mathrm{SiO_{4}}^{4-}, \mathrm{MoO_{3}}, \mathrm{O}, \mathrm{SiO_{2}}\right)_{Q}$$

Querying with OpenCalphad

- elements-to-oxides composition transform
- Local equilibrium hypothesis ⇒ turn off grid minimizer
- non-converging local equilibria are interpolated

⁸S. Bordier. "Modélisation thermodynamique des phases insolubles dans les verres nucléaires : application à la vitrification du molybdène et des produits de fission platinoïdes." 2015AIXM4339. PhD thesis. 2015

Cea Choice of bulk free energies

Simplest choice: convex elliptic wells

$$f_{\pi}(\mathbf{c}) = \frac{1}{2} \mathbf{K}_{\pi} : (\mathbf{c} - \mathbf{c}_{\pi}^{\mathsf{eq}}) (\mathbf{c} - \mathbf{c}_{\pi}^{\mathsf{eq}})^{T}, \qquad \pi = 0, 1$$

with symmetric positive definite matrices

$$\mathbf{K}_{\pi} = \begin{pmatrix} K_{\pi}^{\text{SiO}_2,\text{SiO}_2} & K_{\pi}^{\text{SiO}_2,\text{Na}_2\text{O}} \\ K_{\pi}^{\text{Na}_2\text{O},\text{SiO}_2} & K_{\pi}^{\text{Na}_2\text{O},\text{Na}_2\text{O}} \end{pmatrix} \qquad K_{\pi}^{\text{SiO}_2,\text{Na}_2\text{O}} = K_{\pi}^{\text{Na}_2\text{O},\text{SiO}_2}$$

- Fit to thermodynamic data = setting the reference tie-line (c₀^{eq}, c₁^{eq}) and fitting the 2 × 3 matrix components.
- Extract characteristic energy scale k and define

$$\bar{\mu} = \mu/k$$
 $\bar{\omega}_{\pi} = \omega_{\pi}/k$ $\bar{\mathbf{K}}_{\pi} = \mathbf{K}_{\pi}/k$ $\bar{M}^{\alpha} = kM^{\alpha}$ $\lambda = H/k$

Cea Calphad fit example⁷

	1. set global	thermodynamic	parameters
--	---------------	---------------	------------

Temperature	1152 °C
SiO ₂ %	78.79%
Na ₂ 0%	19.21%
Mo0 ₃ %	2%

2. free energy landscape via Calphad

Fitted quadratics along tie-line

Concave part not fitted (grand potential) but not necessary (no spinodal decomposition)

⁷W. Verdier, R. Le Tellier, et al. "Coupling a grand potential ternary phase field model to the thermodynamic landscape of the Na2O-SiO2-MoO3 nuclear glass." In: CALPHAD XLIX (Skogshem & Wijk, Lidingö, May 22–27, 2022). 2022

Cea Equivalent sharp-interface conditions

- Convenient implicit representation of the interface, but implicit interface conditions!
- Asymptotic analysis w.r.t. "thinness" of W can reconstruct equivalent sharp-interface model

Gibbs-Thomson condition⁶

 \blacksquare local th. eq. perturbed by curvature κ and normal velocity V

$$\bar{\omega}_0 - \bar{\omega}_1 = -\delta\kappa - \beta V$$

with

$$\delta = \frac{2}{3} \frac{W}{\lambda} \qquad \beta = \frac{W}{M_{\varphi}} \left(\frac{2}{3} \frac{1}{\lambda} - \sum_{\alpha} \operatorname{cte} \frac{M_{\varphi}}{M^{\alpha}} \left(\frac{\partial \omega_0}{\partial \mu^{\alpha}} \right)^2 \right).$$

- Capillary length δ related to the surface tension,
- kinetic coefficient β typically made 0 by tuning λ .

⁶T. Boutin, W. Verdier, and A. Cartalade. "Grand-potential-based phase-field model of dissolution/precipitation: Lattice Boltzmann simulations of counter term effect on porous medium." In: Computational Materials Science (2022)

Incompressible Boussinesq two-phase flow:

- advective terms $\mathbf{u} \cdot
 abla arphi$ and $\mathbf{u} \cdot
 abla c^{lpha}$, incompressible Navier-Stokes equations
- harmonic interpolation of phase viscosities, $v^{-1}(\varphi) = (1 \varphi)v_0^{-1} + \varphi v_1^{-1}$
- buoyancy force under Boussinesq approximation and linear densities interpolation
- \blacksquare capillary force $\propto \sigma\kappa$ normal to the interface

Cea Phase field model PDEs with flow

Legendre transforms

$$f_{\pi}(\mathbf{c}) \to \bar{\omega}_{\pi}(\bar{\mathbf{\mu}}) = -\frac{1}{2}\bar{\mathbf{K}}_{\pi}^{-1} : \bar{\mathbf{\mu}}\bar{\mathbf{\mu}}^{T} - \mathbf{c}_{\pi}^{\mathsf{eq}} \cdot \bar{\mathbf{\mu}}, \qquad \bar{\mathbf{\mu}} = \bar{\mathbf{K}}(\varphi)(\mathbf{c} - \mathbf{c}^{\mathsf{eq}}(\varphi))$$

PDE system (discretized by lattice Boltzmann method)

Interface-tracking

$$\partial_t \varphi + \mathbf{u} \cdot \nabla \varphi = M_{\varphi} \nabla^2 \varphi - \frac{M_{\varphi}}{4W^2} \varphi (1 - \varphi) (\frac{1}{2} - \varphi) - \frac{\lambda M_{\varphi}}{W^2} 6\varphi (1 - \varphi) (\bar{\omega}_0(\bar{\boldsymbol{\mu}}) - \bar{\omega}_1(\bar{\boldsymbol{\mu}}))$$

Component diffusion

$$\partial_t c^{\alpha} + \mathbf{u} \cdot \nabla c^{\alpha} = \nabla \cdot \bar{M}^{\alpha} \nabla \bar{\mu}^{\alpha}$$
 for $\alpha = \text{SiO}_2, \text{Na}_2\text{O}$

Averaged two-phase flow

$$\nabla \cdot \mathbf{u} = 0 \qquad \rho \partial_t \mathbf{u} + \rho \nabla \cdot (\mathbf{u} \mathbf{u}^T) = \rho \nabla \cdot \left[\nu(\varphi) (\nabla \mathbf{u} + \nabla \mathbf{u}^T) \right] - \nabla p + \varphi \Delta \rho \mathbf{g} - \frac{\sigma}{W} \kappa(\varphi)$$

19/47

3 - Numerical implementation

C22 Lattice Boltzmann method

- Solves a Boltzmann equation in a discrete velocity space.
- Timestep algorithm: collision and transport of discrete distribution functions on a lattice.
- Reconstruct diffusion or hydrodynamics equations ⇒ all-LBM scheme for our model.
- GPU friendly: collision is memory-local, transport along regular memory stencil

D2Q9 and D3Q19 discretization lattice.

Phase field simulations of phase separation in Na20-Si02-Mo03

C22 Lattice Boltzmann equations of the model

- The continuum equations already handle all the complexities of the two-phase system (interface geometry, interface conditions, interpolations...)
- The discretisation is kept at its simplest: 4 separate LBM-BGK equations (flow, phase-field, A and B diffusion).

C22 Lattice Boltzmann equations – hydrodynamics

$$v_k(t+\delta t,\mathbf{x}+\delta x\mathbf{e}_k) = \left(1-\frac{1}{\bar{\tau}_v}\right)v_k(t,\mathbf{x}) - \frac{1}{\bar{\tau}_v}v_k^{\mathsf{eq}}(t,\mathbf{x}) + \delta t S_{v,k}(t,\mathbf{x}),$$

with

$$\begin{split} \bar{\tau}_{v}(\varphi) &= \frac{\nu(\varphi)}{\delta t c_{s}^{2}} + \frac{1}{2}, \\ v_{k}^{\mathsf{eq}} &= w_{k} p + (\gamma_{k} - w_{k}) \rho c_{s}^{2} - \frac{\delta t}{2} S_{v,k}, \\ S_{v,k} &= \gamma_{k} \left(\mathbf{c}_{k} - \mathbf{u} \right) \cdot \left(\varphi \Delta \rho \mathbf{g} - \frac{\sigma}{W} \kappa(\varphi) \right). \end{split}$$

Reconstructed moments:

$$p = \sum_{k} v_{k},$$
$$\mathbf{u} = \frac{1}{\rho c_{s}^{2}} \left(\sum_{k} \mathbf{c}_{k} v_{k} + \frac{\delta t}{2} c_{s}^{2} \left(\varphi \Delta \rho \mathbf{g} - \frac{\sigma}{W} \kappa(\phi) \right) \right).$$

Phase field simulations of phase separation in Na20-SiO2-MoO3

C22 Lattice Boltzmann equations – phase field

$$h_k(t + \delta t, \mathbf{x} + \delta x \mathbf{e}_k) = \left(1 - \frac{1}{\bar{\tau}_h}\right) h_k(t, \mathbf{x}) + \frac{1}{\bar{\tau}^h} h_k^{\mathsf{eq}}(t, \mathbf{x}) + \delta t S_{h,k},$$

where

$$\begin{split} \bar{\tau}_{h} &= \frac{M_{\varphi}}{\delta t c_{s}^{2}} + \frac{1}{2}, \\ h_{k}^{\mathsf{eq}} &= w_{k} \varphi \left(1 + \frac{\mathbf{c}_{k} \cdot \mathbf{u}}{c_{s}^{2}} \right) - \frac{\delta t}{2} S_{h,k}, \\ S_{h,k} &= w_{k} \frac{M_{\varphi}}{W^{2}} \left(-f_{\mathsf{dw}}(\varphi) + \lambda p'(\varphi) \Delta \bar{\omega}(\bar{\mu}^{A}, \bar{\mu}^{B}) \right). \end{split}$$

Moment:

$$\varphi = \sum_k h_k + \frac{\delta t}{2} \frac{M_\varphi}{W^2} \left(-f_{\mathsf{dw}}(\varphi) + \lambda p'(\varphi) \Delta \bar{\omega}(\bar{\mu}^A, \bar{\mu}^B) \right).$$

C22 Lattice Boltzmann equations – chemical diffusion

$$\begin{split} a_k(t+\delta t,\mathbf{x}+\delta x\mathbf{e}_k) &= \left(1-\frac{1}{\bar{\tau}^a}\right)a_k(t,\mathbf{x}) + \frac{1}{\bar{\tau}^a}a_k^{\mathsf{eq}}(t,\mathbf{x}),\\ b_k(t+\delta t,\mathbf{x}+\delta x\mathbf{e}_k) &= \left(1-\frac{1}{\bar{\tau}^b}\right)b_k(t,\mathbf{x}) + \frac{1}{\bar{\tau}^b}b_k^{\mathsf{eq}}(t,\mathbf{x}), \end{split}$$

with

$$\bar{\tau}^{a} = \frac{\bar{M}^{AA}(\varphi)}{\delta t c_{s}^{2}} + \frac{1}{2}, \qquad a_{k}^{\mathsf{eq}} = \begin{cases} w_{k} \left(3\Gamma \bar{\mu}^{A} + c^{A} \frac{\mathbf{c}_{k} \cdot \mathbf{u}}{c_{s}^{2}} \right), & k \neq 0, \\ c^{A} - 3\Gamma (1 - w_{0})\bar{\mu}^{A}, & k = 0, \end{cases}$$
$$\bar{\tau}^{b} = \frac{\bar{M}^{BB}(\varphi)}{\delta t c_{s}^{2}} + \frac{1}{2}, \qquad b_{k}^{\mathsf{eq}} = \begin{cases} w_{k} \left(3\Gamma \bar{\mu}^{B} + c^{B} \frac{\mathbf{c}_{k} \cdot \mathbf{u}}{c_{s}^{2}} \right), & k \neq 0, \\ c^{B} - 3\Gamma (1 - w_{0})\bar{\mu}^{B}, & k = 0, \end{cases}$$

Moments:

$$c^A = \sum_k a_k, \qquad c^B = \sum_k b_k.$$

Werner Verdier - LBM Workshop - April 5, 2023

Phase field simulations of phase separation in Na20-SiO2-MoO3

Cea LBM_saclay 1/3

- Development of a high-performance Lattice Boltzmann simulation code: LBM_saclay
- Portable on multi-CPU/GPU architectures of modern supercomputers
- Shared-memory parallelism with the Kokkos C++ library, distributed-memory with MPI.

Phase-field film boiling simulations simulated with LBM_saclay¹. 4096×3072, ~80 minutes with 8 K80 GPUs

¹W. Verdier, P. Kestener, and A. Cartalade. "Performance portability of lattice Boltzmann methods for two-phase flows with phase change." In: Computer Methods in Applied Mechanics and Engineering (2020)

Performance portability

- LBM_saclay builds on desktop workstations, multi-CPU clusters or multi-GPUs supercomputers from the same unmodified source code.
- Enabled by the Kokkos¹¹ C++ library: shared-memory parellelism with pthreads/OpenMP/CUDA depending on build system switches.
- Performance portability: can still tweak finer details at compile-time for each arch.

Different array CPU/GPU array memory layout for better memory coalescence taken from Kokkos tutorial slides

¹¹ H. C. Edwards, C. R. Trott, and D. Sunderland. "Kokkos: Enabling manycore performance portability through polymorphic memory access patterns." In: Journal of Parallel and Distributed Computing 12 (2014). Domain-Specific Languages and High-Level Frameworks for High-Performance Computing

LBM saclay 3/3

Initial prototype

- advec.-diff. and simple two-phase flows,
- periodic and bounceback (Neumann) conditions,
- untested on large 3D simulations.

Developments during the thesis

- capillary force, boiling flow, two-phase ternary flow for glasses (with WIP Calphad coupling)
- fixes on the bounceback conditions ("half-way" bounceback), anti-bounceback (Dirichlet)
- reworked the MPI communications (communicate macro. var.)
- first version of HDF5 outputs
- stress tested on the Jean-Zay GPU supercomputer
- + high-performance post-processing...

4 - Simulations

Cea Intermediate validations 1/3

Double Poiseuille test-case — validation of the flow sub-model

Ternary diffusion couple test-case — validation of the two-phase three-component sub-model

- Displacement of a plane interface by diffusion
- Test the diffuse-sharp interface aymptotic equivalence. Must reconstruct
 - discontinuous interface c, continuous interface μ
 - displacement $x_I(t) \propto \sqrt{t}$.

Cea Intermediate validations 3/3

- Comparison against analytical solutions
- Non-fitted K matrices (num. stability issues)

Cea Simulations of droplet growth 1/4

Modeling the growth kinetics

- Gibbs-Thomson condition: $|\mu \mu^{eq}| \sim 2\delta/R$ larger droplets have lower chemical potential
- Component diffusion flux: $j \sim abla \mu$

migration from smaller, vanishing droplets to larger, growing droplets

Expected mean radius⁴: $\langle R \rangle(t) \propto t^p$

with p = 1/3 without flow, = 1 with flow, > 1 with buoyancy.

Initial conditions

■ No concave *f*: must start from pre-nucleated droplets

⁴E. D. Siggia. "Late stages of spinodal decomposition in binary mixtures." In: *Phys. Rev. A* (2 1979)

Cea Simulations of droplet growth 2/4

- Purely diffusive, without flow.
- Start from a nucleated initial condition (~ 3000 droplets)
- After a transient regime we observe the power-law of $\langle R \rangle(t)$, homogeneization of μ .

Cea Simulations of droplet growth 3/4

- Large 3D simulation to stress test future exp. observations: 2048×512×512, ~20 hours with 16 V100 GPUs (Jean-Zay).
- Flow with sedimentation might be relevant with high MoO₃ composition

Initial condition (~2000 droplets)

Cea Simulations of droplet growth 4/4

- With a 3D buoyancy-accelerated flow, we start seeing the > 1 cross-over.
- Buoyancy accelerates larger droplets ⇒ accelerates coalescence

Evolution of the droplet mean radius

Final timestep with Eo =0 (top), Eo $=4\cdot 10^3$ (middle), Eo $=16\cdot 10^3$ (bottom).

Phase field simulations of phase separation in $\rm Na_2O-SiO_2-MoO_3$

Cea Simulations of droplet growth 4/4

- With a 3D buoyancy-accelerated flow, we start seeing the > 1 cross-over.
- Buoyancy accelerates larger droplets ⇒ accelerates coalescence

Evolution of the droplet crount

/47 Werner Verdier - LBM Workshop - April 5, 2023

Final timestep with Eo =0 (top), Eo $=4\cdot 10^3$ (middle), Eo $=16\cdot 10^3$ (bottom).

Phase field simulations of phase separation in $\rm Na_2O-SiO_2-MoO_3$

5 - Conclusion

Summary & results

- Established a model for the kinetics of a liquid-liquid interface in a nuclear glass
- Developed a high performance numerical simulation code (LBM_saclay) and carried out intermediate validations of the model
- Showed it reproduce the power-law growth regime with flow and sedimentation effects
- Coupling to Calphad data established and implemented

Perspectives

- model: "cleaner" hydrodynamic coupling $\Omega[\varphi, \mu, p, \mathbf{u}]$
- numerical: better LBM collision term to improve stability
- but more immediately...

• ... comparison to experimental observations carried out at CEA Marcoule.

- Pierre Kestener (CEA Saclay), first prototype of LBM_saclay
- Romain Le Tellier (CEA Cadarache, SIVIT), experience on phase-field-Calphad coupling
- Stéphane Gossé and Paul Fossati (CEA Saclay, SIVIT), Calphad Na₂O-SiO₂-MoO₃ database
- Experimentalists at LDPV and LM2T (CEA Marcoule, SIVIT), future experimental application
- Sophie Schuller (CEA Marcoule), head of project SIVIT
- Industrial partners of SIVIT: Orano, EDF.

Thank you for your attention.

Cea Simulation of droplet ripening (Calphad coupling)

-

Work in progress

- Simulations with fitted K_i diverge at long times
- Orders of magnitudes between K_i values ⇒ different num. stability ranges
- Additional conditions on D (symmetrical, interpolation between phases)
- ⇒ a few adjustments on the LBM discretization and/or phase field interpolations (or find an easier equilibrium)

$$M^{\alpha} \nabla \mu^{\alpha} \cong \underbrace{M^{\alpha} \sum_{\beta = \operatorname{Na}_{2} \operatorname{O}, \operatorname{SiO}_{2}} K(\varphi)^{\alpha \beta} \nabla c^{\beta}}_{\mathbf{D}(\varphi)}$$

phase	\mathbf{K}_i matrix		eigenvalues	
background (O)	$\begin{pmatrix} 4.38 & 4\\ 4.79 & 5 \end{pmatrix}$	1.79 5.49)	0.0685	9.70
droplet (1)	$\begin{pmatrix} 6.88 \\ -2.62 \end{pmatrix}$	(-2.62) 25.7	6.52	26.1

Fitted second derivatives matrix (dimensionless num. units)

Cea Components diffusion equation

• Use the chain rule and conservation law to obtain the $\partial_t \mu$ eq.

$$\partial_t \left(\frac{\delta\Omega}{\delta\mu^{\alpha}}\right) = \partial_t \varphi \frac{\partial \left(\delta\Omega/\delta\mu^{\alpha}\right)}{\partial\varphi} + \sum_{\beta=A,B} \partial_t \mu^{\beta} \frac{\partial \left(\delta\Omega/\delta\mu^{\alpha}\right)}{\partial\mu^{\beta}}$$
$$\partial_t \left(\frac{\delta\Omega}{\delta\mu^{\alpha}}\right) \propto \partial_t C^{\alpha} = \nabla \cdot M^{\alpha\beta} \nabla \mu^{\beta} \quad \text{for } \alpha = A, B$$

In the ternary case, becomes linearly coupled w.r.t. $\partial_t!$

$$\begin{split} &\sum_{\beta=A,B} \mathbf{X}^{\alpha\beta} \partial_t \mu^{\beta} = \nabla \cdot \left(\sum_{\beta=A,B} M^{\alpha\beta} \nabla \mu^{\beta} \right) - p'(\varphi) \frac{\partial(\omega_0 - \omega_1)}{\partial \mu^{\alpha}} \partial_t \varphi \\ &\mathbf{X}^{\alpha\beta} = p(1-\varphi) \frac{\partial^2 \omega_0}{\partial \mu^{\alpha} \partial \mu^{\beta}} + p(\varphi) \frac{\partial^2 \omega_1}{\partial \mu^{\alpha} \partial \mu^{\beta}} \end{split}$$

Cea Ternary diffusion couple – sharp-interface formulation

Ternary diffusion couple test-case — validation of the two-phase three-component sub-model

Bulk diffusion, interface conditions

45/47

Ce2 LBM Base algorithm

Boltzmann-BGK equation in discrete velocity-space c_k

$$f_{k}(t + \delta t, \mathbf{x} + \mathbf{c}_{k} \delta t) - f_{k}(t, \mathbf{x}) = -\frac{\delta t}{\tau} \left[f_{k} - f_{k}^{eq} \right](t, \mathbf{x})$$

• collision and transport of f_k on the lattice

• collision:
$$f_k^* = \left(1 - \frac{\delta t}{\tau}\right) f_k + \frac{\delta t}{\tau} f_k^{eq}$$

• transport:
$$f_k(t + \delta t, \mathbf{x} + \mathbf{c}_k \delta t) = f_k^*(t, \mathbf{x})$$

I $f_k^{eq} \sim expanded Maxwell-Boltzmann distribution$

$$f_k^{\mathsf{eq}}(\rho, \mathbf{u}) = w_k \rho \left(1 + \frac{\mathbf{c}_k \cdot \mathbf{u}}{c_s^2} + \frac{\left(\mathbf{c}_k \cdot \mathbf{u}\right)^2}{2c_s^4} - \frac{\mathbf{u}^2}{2c_s^2} \right)$$

Capillary force $\sigma \kappa(\varphi)/W$ normal to the interface with curvature measure

$$\kappa(\varphi) = (3/2) \left(W^2 \nabla^2 \varphi - f'_{\mathsf{dw}}(\varphi) \right) \nabla \varphi \quad \sim \, \delta(\mathbf{x} - \mathbf{x}_I) \kappa \mathbf{n}$$