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Context

Lattice Boltzmann method is a great tool but
Due to the low symmetry of standard lattices, standard stream-and-collide LB algorithm reduces to
an isothermal weakly compressible Navier-Stokes model:

Ma = |u|max
cs

≤ 0.3.

LB method is by nature a compressible method.

↪→ Extensive research focuses on lifting the restrictions to low Mach numbers and isothermal fluids in
LB approach.

↪→ Incompressible LB models only decrease the order of compressibility errors in steady flows.
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Why incompressible flows matter ?

The maximum time-step is, in general, expressed as

∆tmax = cfl ∆x

vmax
, where vmax = cs + |u|max

Courant-Friedrichs-Lewy (CFL) number: normalized maximum velocity at which flow variations can be
robustly propagated by numerical scheme.

∆tmax ≈ 3 × 10−6

1 + Ma for CFL ≈ 1, ∆x ≈ 10−3m, cs ≈ 343m/s

For a (truly) incompressible fluid

∆tmax = cfl ∆x

|u|max
=⇒ ∆tincomp.

max ≃ ∆tcomp.
max
Ma
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Artificial speed of sound

In the LB method, the distribution functions move from one lattice node to another during exactly
one time-step, with a characteristic speed c = ∆x/∆t.
On the other hand, the propagation of sound is associated to the effective transport of
mass-density variations via the distribution functions.

↪→ Speed of sound and speed of microscopic propagation are physically related, for standard lattice:

c = c0
√

3 , where c0 =
√

p/ρ is the isothermal speed of sound

↪→ Accelerate a LB simulation is to artificially decrease c0, or equivalently, to increase the
compressibility of the fluid (same as in the artificial compressibility method).
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Artificial speed of sound

× Set a targeted Ma. In unsteady simulations, maximum velocity may vary by orders of magnitude.
✓ Adapt ∆t as a function of the current maximum flow velocity.

! It has a side effect on the distribution functions
▶ N. Thürey et al. ”Optimization and stabilization of LBM free surface flow simulations using adaptive

parameterization”, Computers and Fluids (2006)
▶ J. Latt ”Hydrodynamic limit of lattice Boltzmann equations”. PhD thesis. Université de Genève (2007)

! The continuity of the pressure forces is not preserved in these algorithms.

Aims of this presentation
⊙ Comment on this impact.
⊙ Propose a correction to preserve the continuity of the pressure forces.
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Physical aspects of the adaptive time-stepping
The compressible Navier-Stokes equations with a fluctuated density field ρ (x, t) = ρref + ρ′ (x, t) read

∂ρ′

∂t
+ ∇ · (ρu) = 0 & ∂u

∂t
+ (u · ∇) u = −1

ρ
∇
(
ρ′c2

0
)

+ ν∆u + fext

ρ

If the speed of sound is changed from c0 to c∗
0 = λc0

↪→ By default, the above Navier-Stokes model is continuous in ρ (x, t).

The continuity of the pressure force per unit mass requires that

−c2
0
ρ

∇ρ′ = − (λc0)2

ρ∗ ∇ρ′∗ =⇒ ρ∗ = ρref

(
ρ

ρref

) 1
λ2

.

This yields to a spurious source term in the mass conservation equation:

∂ρ∗′

∂t
+ ∇ · (ρ∗u) = λ2 − 1

λ2 ρ∗ (∇ · u)

λ ≃ 1 and ∇ · u ≃ 0 in the weakly-compressible regime, this term remains small in practice.
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Subtleties of the algorithm implementation

In the adaptive time-stepping algorithm, the speed of sound is tailored in order to maintain a constant
target Mach number Mat so that

c∗
0(t) = umax(t)

Mat
= λ(t)c0(t) & ∆t∗ = 1

λ
∆t.

The stream-and-collide algorithm is usually solved in non-dimensional lattice units (□̃) for which
∆x̃ = ∆t̃ = 1.
Somewhat against our intuition, the speed of sound in this framework remains constant and equal
to c̃0 = 1/

√
3.

The rescaled maximum fluid velocity ũ∗
max (in lattice units) is adapted wrt Mat.
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Summary of the algorithm

1. Update gα via streaming by using gα(x, t) = ĝα(x − cα∆t, t − ∆t).
2. Compute ρ, f̃ext, ũ, and geq

α to obtain gneq
α by using gneq

α = gα − geq
α + ∆t

2 Fα.
3. Compute ũmax and λ = ũmax/ (c̃0Mat).
4. Compute ρ∗ for adaptive time-stepping (ats) with correction.
5. Compute the rescaled variables ũ∗ = ũ/λ and f̃∗

ext = f̃ext/λ2.
6. Compute g∗ eq

α and F̃ ∗
α with the rescaled variables

7. Compute τ̃∗
g by using τ̃∗

g = 1
λ

(
τ̃g − 1

2
)

+ 1
2 .

8. Compute g∗ neq
α using g∗ neq

α = 1
λ

ρ∗

ρ

τ̃∗
g

τ̃g
gneq

α together with gneq
α from step 2.

9. Compute ĝ∗
α by using ĝ∗

α(x, t) = g∗
α(x, t) − ∆t∗

τ∗
g

g∗neq
α (x, t) + ∆t∗F ∗

α(x, t).
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Detailed steps 5. & 7.

c∗
0 = λc0 & ∆t∗ = 1

λ
∆t

Step 5: rescaled variables ũ∗, f̃ ∗
ext

ũ∗ = u
∆t∗

∆x
= u

∆t

∆x

1
λ

= ũ
1
λ

& f̃∗
ext = fext

(∆t∗)2

∆x
= 1

λ2 f̃ext.

Step 7: rescaled relaxation time τ̃ ∗
g

Considering that the viscosity must remain unaltered with

ν =
(

τ̃g − 1
2

)
c0∆x√

3
=
(

τ̃∗
g − 1

2

)
c∗

0∆x√
3

=⇒ τ̃∗
g = 1

λ

(
τ̃g − 1

2

)
+ 1

2 .
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Detailed step 8. regularization as a possible option

The rescaling of gneq
α is not straightforward since its projection onto moment space includes

non-hydrodynamic moments, whose rescaling is not intuitive.

Regularization of gneq
α (as proposed by Latt)

Rescaling by regularization relies on the continuity of
∑

α gneq
α cαcα.

This expression does not lead to any particular properties at the macroscopic level.
Regularization can induce a computational overload.
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Detailed step 8.
Alternative rescaling based on the continuity of S

A Chapman-Enskog analysis establishes that

q−1∑
α=0

gneq
α cαcα = −2ρτgc2

0S + O(Ma3), where S is the rate-of-strain tensor.

The continuity of S then gives in lattice units

q−1∑
α=0

gneq
α eαeα

ρτ̃g∆t
=

q−1∑
α=0

g∗ neq
α eαeα

ρ∗τ̃∗
g ∆t∗

and eventually yields

g∗ neq
α = 1

λ

ρ∗

ρ

τ̃∗
g

τ̃g
gneq

α

by assuming that all the gneq
α ’s are rescaled by a same factor.
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Natural convection in thermal flow

Temperature-driven buoyancy force (Boussinesq hyptothesis):

fb(x, t) = ρ(x, t)gβ (T (x, t) − T0)

where β is the coefficient of thermal expansion of the fluid, g is the gravitational acceleration and T0 is
the temperature at rest.
Initial hot spot (plume): T (x, t0) = T0 + exp

(
− x2+y2

R2

)
∆T

Hybrid finite-difference scheme / LB scheme
∂T

∂t
+ (u · ∇) T = κ∇2T =⇒ T (x, t + 1) = T (x, t) − (ũ · ∇h) T + κ̃∆hT

where ∇h and ∆h stand for finite-difference gradient and Laplacian operators.

κ̃∗ = ν∆t∗/Pr∆x2 with the Prandtl number Pr = ν/κ.
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Diagram of the
Adaptive Time-Stepping
(ats) algorithm

To avoid abrupt changes at the be-
ginning of the simulation:

c∗
0 = max

(
umax
Mat

, c0.9
0

)
where Mat = 0.15.
∆t is reevaluated every 10 iterations.
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2D field: temperature [K] (∆T = 10) at 45.2 s
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(a) constant time-step at iteration 67310
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(b) ats at iteration 3690
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(c) ats with correction at iteration 3690
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2D field: velocity norm [ms−1] (∆T = 10) at 45.2 s

(a) constant time-step at iteration 67310 (b) ats at iteration 3690 (c) ats with correction at iteration 3690
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Rise of the thermal plume over a duration (physical time) of 45.3 s.

( ): constant time-step
( ): ats
( ): ats with correction
! Iterations in log-scale

Qualitative agreement
∼ 20× benefit for ats
ats: oscillations at the
end of the run (∆t plot)
ats with correction:
mass error
[−0.008%, 0.017%]
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Womersley flow: a pulsating 2D channel flow
The pressure gradient oscillates according to

∂P

∂x
= A cos(ωt)

The problem has an exact solution in the laminar
regime

ux(y, t) = ℜ

{
ı

A

ρ ω

(
1 −

cos(Λ ( 2y
Ly

− 1))
cos(Λ)

)
eı ω t

}
uy = 0

with Λ2 = −ı α2 and α2 = L2
y ω

4 ν .

Here α = 2.59, Re = 100 and T̃ = 5000
to mimic real life flow phenomena that can be en-
countered in the smaller arteries of the human body.
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0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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= 3
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= 9
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0 T/4 T/2 T/2 3T/4
0.0001
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0.0001
p
x

Temporal evolution of the pressure gradient (top) and the
corresponding velocity profile ux(y, t)/U0 for different values of the

Womersley number α.
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Womersley flow: body force vs inlet/outlet boundary conditions

The pressure gradient can either be established by two strategies:
1. an external body force to every nodes of the fluid

fext(t) = −A cos(ωt)ex

2. the inlet/outlet density boundary conditions

ρin(t) = ρref − ALx

2c2
0(t) cos(ωt) and ρout(t) = ρref + ALx

2c2
0(t) cos(ωt).

This induces the pressure gradient through the momentum equation. It is expected that the
continuity of the pressure forces will have an impact.
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Womersley flow: probe at the center of the oscillating channel

( ): constant time-step
( ): ats
( ): ats with correction
Mat = 0.15
ats is activated at
t̃ = t/T = 0.75.

No difference between forcing
strategies or correction in ats
Maximum theoretical gain:
π/2 ≈ 1.57
ats speedup ×1.53
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Left: body-force stirring Right: inlet/outlet conditions
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Womersley flow: velocity profile at the center of the oscillating channel
( ): constant time-step
( ): ats
( ): ats with correction

εu(t) =
∥u − ū∥L2

∥ū∥L2
=

√∑
y

(
ux(

Lx

2
, y, t) − ūx(y, t)

)2
/
∑

y

ūx(y, t)2

where ūx is the analytical solution.
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Left: body-force stirring Right: inlet/outlet conditions

Error peak when ūx → 0, εu → ∞ (flow reversal).
Body-force ats errors: one order of magnitude higher wrt constant ∆t.
Inlet/outlet ats with correction error: same order of magnitude wrt constant ∆t.
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Womersley flow: convergence rate of the ats algorithms
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Left: body-force stirring Right: inlet/outlet conditions

At Mat = 0.15
Body-force ats no influence of
the correction
Inlet/outlet ats error
independent of the resolution

↪→ Phase shift due to
compressibility effects wrt
incompressible solution

At Mat = 0.015
Inlet/outlet ats 2nd-order
convergence
Inlet/outlet ats with correction
improves the accuracy
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Channel entrance flow

Increase the previous channel length by ×20
Dirichlet pressure boundary condition at the outlet
Dirichlet velocity boundary condition at the inlet
Initial fluid at rest and initial ramp for the velocity at the inlet:

Uin(t) = sin
(

π

2
t

Tramp

)
Ubulk for t ≤ Tramp

Uin(t) = Ubulk for t > Tramp

with Ubulk = 0.75U0 and T̃ramp = 10000 = 1
5 T̃tot.

ats is activated when Ma > 0.03

Probe at x = 0.8Lx,
where the flow reaches a Poiseuille parabolic velocity profile (Umax = U0) when t ≫ Tramp
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Channel entrance flow: time evolution
( ): constant time-step ( ): ats ( ): ats with correction
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There is no free-lunch
ats does not always improve the (initial) convergence.
When c0 ↘, pressure waves take longer to dissipate.
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Conclusion

Adaptative time-stepping (ats) in LB method
ats introduces an error in either mass or momentum conservation:

preserving the continuity of the density field instead of the pressure force (per unit mass)
preserving the continuity of the pressure force (per unit mass) instead of the density field

Advantages of the ats
No prior knowledge about the maximum
velocity is required
Speed up can be considerable by optimally
adapting on the flow dynamics:
e.g. biological flows, transient thermal flows
and oscillating flows in general, where the
maximum velocity undergoes large variations.

We show that
ats does not always improve the (initial)
convergence.
ats with pressure correction performs better:

natural convection
channel flows with inlet/outlet boundary
conditions
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Conclusion

Defining the relative change of the time-step ε = ∆t∗−∆t
∆t

Continuity of the density field (ρ∗ = ρ) yields a relative error on the pressure force(
p∗ − p

p

)
∼
(

c∗
0

2 − c2
0

c2
0

)
∼ ε.

Continuity of the pressure force (per unit mass) yields a relative error on the density field(
ρ∗ − ρ

ρ

)
∼ ε

ρ − ρref

ρ
∼ ε Ma2,

↪→ This provides a plausible justification for the advantage of considering the continuity of the
pressure force (per unit mass) in the ats.
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Thank you for your attention
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Cryospray ANR - open Ph.D. position

Lattice Boltzmann simulations of the destabilization and fragmentation of a
liquid into droplets by a fast gas stream

E. Lévêque and J.-P. Matas, Laboratory of Fluid Mechanics and Acoustics, École Centrale de Lyon
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