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SHORT NOTE

CONCAVITY OF THERMOSTATIC
ENTROPY AND CONVEXITY OF
LAX'S MATHEMATICAL ENTROPY,
by F. DUBOIS ().

I. — INTRODUCTION

Gas dynamics is based on the conservation laws
of physics and an assumption of local thermostatic
equilibrium (for instance, see Germain [5]) leading to
the Euler equations in the case where viscosity and
heat conduction are neglected. These equations are
included in the general category of nonlinear hyper-
bolic systems for which Lax suggested a general con-
cept of mathematical entropy in [4, 10]. In the case
of a polytropic ideal gas, it is well known [7, 8, 11]
that this concept can be interpreted by the usual
thermostatic concept of entropy. In this note, we
show that for any real gas in chemical equilibrium,
the convexity proposed by Lax is equivalent to the
concavity of the entropy considered as thermody-
namic potential. Below, we recall the bases of ther-
mostatics and gas dynamics in the next two sections
(in order to define the mathematical framework of
our analysis), then, in the last section, we analyze
the relations between thermostatic entropy and Lax’s
entropy.

II. — THERMOSTATIC EQUILIBRIUM

In this section, we recall a few essential properties
of real gases in thermochemical equilibrium. These
properties are established in the classical works of
Landau-Lifchitz [9], Callen [1] and Germain (5], for
instance.

(*) Aérospatiale, Strategic and Space Systems Division,

The thermodynamic properties of a gas with mass
M, internal energy E enclosed in volume V are com-
pletely determined by these three parameters
(M, V, E). In effect, the thermostatic entropy S isa
function of the triplet (M, V, E).

S=Z (M, V, E). e8]

We assume that T can be differentiated; its first
derivatives (and second derivatives when defined) are
used to compute all the thermodynamic properties of
the gas.

We recall the two fundamental properties of
entropy X:

Hyporuesis 1: Function T is first-order homoge-
neous (entropy is an extensive variable):

SOM AV, AE)=AZ(M, V, D), YA>0. (2

Hyporresis 2: Function Z is superadditive:

SM+M,V+V,E+ENVZZ (M, V, E)

+Z (M, V,ED). (3)

This last property expresses the second principle of
thermodynamics: when two masses of gas are mixed,
the entropy of the resulting system is always higher
than or equal to the sum of the entropies of the
constituents. From this, we easily infer the following
result:

Proposition 1: Function
(10, +oD’s(M, V, ) > Z(M, V, E)

is concave.

We remark that temperature 7T is the inverse of the
derivative of the entropy with respect to the internal

energy:
1 3

z
~—=—=(M, V, E).
T 7 £)

3 4

1. — GAS DYNAMICS

The Euler gas dynamics equations express conser-
vation of mass, momentum and energy. They take the
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laws:

%ltz+divf(U)=O. )

Below, in order to simplify the notations, we will
restrict ourselves to the case of a single space
variable x, but the extension to more than one dimen-
sion is straightforward. The conservative variables
U and the flux f(U) are expressed as follows (for
instance Germain [5]):

(6)
@)

The pressure p introduced in the expression of the
flux (7) is defined by the relation p=(y—1)pe in the
case of an ideal gas with constant specific heats in a
ratio y (polytropic gas). For a real gas, we have the
following general result:

1
U=’<p, g=pu, aspe+5pu2>,

f)="pu, pu*+p, eu+tpu).

Proposition 2: The pressure p and the specific entropy
S=X/M are defined as functions of the conservative
variables U alone.

Proof: The second identity of (6) allows the internal
specific energy e to be defined as a function of U:
7
e=——- (8)
p 2p
In addition, considering the homogeneity of X, the
specific entropy s depends only on the density and
the specific internal energy:

1 1
s=a(p, e)sZ(l, -, e>=—Z<M, é{, Me>. %
P M P

We then define the pressure by the usual thermo-
static properties:

p=TEE<1, l e>.

av p’ (19

This last expression can be evaluated by function o
alone and the conservative variables by the following
relation:

_ _ 200/0p(p, e)

do/de(p, e) (h

V. — MATHEMATICAL ENTROPY

In [4, 10], P. Lax proposes a concept of mathemati-
cal entropy for any hyperbolic system of conservation
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laws (5). It is a function 1} (U) which has the following
properties:

There exists an entropy flux & (U) such that

& (U)y=dn(0).4f (U)
U - n(U) is convex.

(12)
(13)

For any hyperbolic system of conservation laws (1),
nothing a priori ensures the existence or uniqueness
of a mathematical entropy n satisfying relations (12)
and (13).

forany U

In the case of gas dynamics, a function n (U) satis-
fying equations (12), (13) and which is nonaffine has
the form

nW)=—ps(0)

as is suggested by Friedrichs-Lax in [4], where s(U)
was defined in (8) and (9). Below, we shall call this
“Lax’s entropy”.

(14)

Property (12) results from the additional conserva-
tion law

8 os@+L (pus@)=0 (1)
ot 0x

satisfied for regular solutions of (5), as was remarked
by Godunov in [6].

The convexity of Lax’s entropy (14) has been

thoroughly studied (for instance, Harten [7], Hughes-
Franca-Mallet [8] and Tadmor [11]) in the case of a
polytropic ideal gas for which function Z has the
following particular form:

(M, V, E)
EM VM,

=Mc,,(1o 24 (y=1)log— °>. 16

gEQM (v=1D gVoM, (16)

In the case of any real gas, Wagner demonstrated
[12] that this property was equivalent to the property
of convexity of the opposite of specific entropy (—s)
with respect to the variables (1/p, u. e+u?/2) of
Lagrangian gas dynamics. But. to our knowledge,
the convexity of Lax’s entropy does not seem to
have been established generally from suitable physical
hypotheses. When thermochemical equilibrium is
assumed reached, we have the following property:

Proposition 3: The convexity of function m (W
defined in (14) is equivalent to the concavity of function
(M, V, E) and the positivity of the temperature

Proof of proposition 3: We first assume Z to be
concave and T to be positive, i.e. Z(M, V, .) to be
nondecreasing. We compute Lax’s entropy (14) tak-
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ing (9) then (2) into account. This yields:

n<m=—ps(w=—p2<1,§, e>

n(@=-Z(p, 1, pe). (17)

We define two states, U,, U,, and we study
n(1-0)U,;+tU,, 051, With the notations
introduced in (6), the internal energy p e (¢) associated
with state (1 —1) U, +t U, equals, considering (8):

1((1"t)41+t‘72)2

e(=(1—Ne, +te,—— 18
pe(d=(1=9s +ie, =25 — S8 (18)
and, remarking that mapping
10, +0[x Ra(p, 9) = ¢*/peR
is convex, we deduce
1 2 2
pe(t)g(l—t)sl-i-tsz——((l—-t)g—l--?-tg—z-). (19)
2 P1 P2

As function T is non decreasing with respect to the
third argument, we deduce the following inequality
from (19)

n((l—t) U1+tUz>§-Z<(l-t)pl+tpz,

2 2
£>+;<52— q2)> (20)
2p, 2p,

which, considering the concavity of £ and relation
(17), establishes the convexity of Lax’s entropy.
We now assume 7 to be convex. We first dem-

onstrate the concavity of Z.
We choose two states, U, and U,, with zero
momentum:

1,(1—:)(51—

@D

Inequalities (19) and (20) are then equalities and
we deduce the following estimate from the convexity
of n:

Z((1—npy+tpy 1L, (1=1)e, +1e,)
Z(1-0Z(py, L, e)+1Z(pa 1, &3)

q:=4,=0.

(22)

which, considering the homogeneity of X, establishes
the required inequality through an elementary calcula-
tion detailed below:
(=DM +tM,, 1=V, +1V,, (1-0E +1E,)
=((1—z)V1+-:Vz)z<—--__(l_’)yl My
A=V, +tV, vV,
tV, M,
(= VvV, +tv, v,
(I-9V, E tV, E,
(A= Vi+tVoV, (I=nV, +1V,V,

1
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(1-nV, 2(& 1 E,
(I=-nV,+1V, \V, "V,

w7 ,z<£{z_ ) B
(=0 V,+e¥, \V," "V,

=(1 "'t)z(Mxx Vl, E1)+tZ(Mz: sz Ez)-

2=V, +1 Vz)l:

We now show that the temperature is positive, i.e.
that (M, V, .) is a nondecreasing function. For
this we introduce AE>0 and we define two states,
U, and U,, as follows:

9= /8pAL,
p2=p,  q;=0,

g, =FE+4AFE

P1=Ps
' (23)
g, =FE.

State (1—t)U,+tU, has an internal energy per
unit volume computed according to relation (18), i.e.;

pe()=E+4:(1—-DHAE. 24)
Furthermore, considering (17) and (23), we have:

(1= U+t U)=—Z(p, 1,157,} 25)
Ytel0, 1]

The convexity of 1 expressed by taking r=1/2
therefore results in the inequality:

Z(p, 1, E+AD)ZZ(p, 1, E)

which, considering the homogeneity (2), establishes
the required property.

(26)

Remark: In [2], we demonstrated the following, less
general result: if the temperature is positive and the
specific internal energy e is a regular function (of
class C?, excluding any phase transition) of the (spe-
cific entropy s, specific volume t=1/p) pair, the con-
vexity of function (s, 1) — ¢(s, 1) is equivalent to that
of Lax’s entropy. The property of positivity of the
temperature for gases in chemical equilibrium is a
classical result. For an establishment of this property
based on purely physical arguments, the reader is
referred, for instance, to Landau-Lifchitz [9]. This
last property was also used by Friedrichs-Lax in [4].
The convexity of Lax’s entropy was probably already
known by Godunov, who introduced in [6] the entropy
variables ¢, i e. the gradient of (14) with respect to
the conservative variables (the bijectivity of mapping
U — o results immediately from the strict convexity
of n). For an extension of the analysis concerning
mixing of two gases without mutual interaction, we
refer the reader to {3].
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