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Abstract 
 
Thermal Protection System is a key element for 
atmospheric re-entry missions of aerospace vehicles. 
Consequently, the identification of heat fluxes is of great 
industrial interest and is usually based on temperature 
measurements. This contribution is concerned with 
inverse analyses of highly evolutive heat fluxes. An 
inverse problem is used to estimate transient surface heat 
fluxes (or convection coefficient), for thermally 
degradable material (with ablation and pyrolysis 
phenomena), by using time domain temperature 
measurements on thermal protection. The inverse 
problem is formulated as a minimization problem 
involving an objective functional, through an 
optimization loop. An optimal control formulation 
(Lagrangian, adjoint and gradient steepest descent method 
combined with quasi-Newton method computations) is 
then developed and applied. Accurate results of 
identification on high fluxes test cases, and good 
agreement for temperatures restitutions, are obtained 
using synthetic, noisy, on-ground and in-flight data 
measurements, without and with ablation and pyrolysis. 
First encouraging results with an automatic differentiation 
procedure are also presented in this paper. 
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Nomenclature 
 

A = Frequency factor in pyrolysis (s-1) 
B = Activation temperature in pyrolysis (K) 

pC  = Heat capacity (J/kg/K) 

df  = First derivative of f function 

fd 2  = Second derivative of f function 

rd  = Descent direction in optimization iteration r 

e = Thickness of the one-dimensional slab 
F = Operator of direct evolution problem 

vF  = Pyrolysis gas formation heat (J/kg) 

f =  Discrete operator of evolution problem 

cH  = Pyrolysis gas combustion heat (J/kg) 

rH  = Hessian approximation at optimization r  

  iteration 

vH  = Ablation heat (J/kg) 

gh  = Pyrolysis gas enthalpy (J/kg) 

rh  = Athermanous enthalpy (J/kg) 

wh  = Surface enthalpy (J/kg) 
1+nInst  = Solver Program instruction at time (n+1) 

J (p)  = Cost function  
L = Lagrangian multiplyer  
 n = Time iteration 

cm�  = Ablation mass flow rate (kg/m2/s) 

gm�  = Pyrolysis gas mass flow rate (kg/m2/s) 

K = Number of 1D Grid points 
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k = Space index 
N = Number of time iterations 

opN  = Number of optimizer iterations  

n = Time index 
PA = Mechanical erosion coefficient 
PB = Normal constraint coefficient 
p = Parameter  

np  = Parameter value at time n 

optp  = Optimal parameter  

rq  = Parameter at optimizer iteration r 

r = Optimizer iteration indice 
s = Ablation variable 

ns  = Ablation variable computed at time n 

mecas�  = Mechanical Recession rate (m/s) 

chems�  = Chemical Recession rate (m/s) 

hys�  = Hydroerosion Recession rate (m/s) 

T = Temperature  

optT  = Optimal Temperature (at optimal p) 

0T  = Reference initial temperature (K) 
n

kT  = Temperature computed at time n, point m 

ET  = Mechanical erosion fictitious temperature  

rT  = Equivalent temperature (K) 

wT  = Surface temperature (K) 

t = time  

ft  = Final time 

W =  Continuous Direct state variable:    
  temperature & ablation 
w = Discrete Direct state variable: temperature  
  & ablation 

nw  = Direct state variable at time iteration n 
x  = Sensor position 

0x  = Sensor position 

z = Hessian intermediate function  

0α  = Unblocked convective heat transfer 

  coefficient (kg-s/m2) 

nβ  = Gear coefficient at time iteration n 

t∆  = Time step 
ε  = Total Emissivity 

1η  = Pyrolysis gas blocking factor 

2η  = Ablation gas blocking factor 

θ  =  Measured temperature 
n
mθ  = Measured temperature at time n, point m 

λ     = Thermal conductivity (W/m/K) 

µ  = Descent coefficient for optimizer 

rµ  = Descent coefficient at optimizer iteration r 

ξ  = Reduced scaled abscissa  

ρ  = Specific Mass (kg/m3) 

cρ   = Charred material densities (kg/m3) 

vρ  = Virgin material densities (kg/m3) 

σ  = Stefan-Boltzmann constant 
τ  = Mechanical erosion fictitious constraint 
ϕ  =  Discrete Adjoint state variable: temperature 

  & ablation 
2/1+nϕ  =  Adjoint state variableat time n+1/2 

 

I. Introduction 
 
The success of atmospheric re-entry missions is bound 

to the design of the Thermal Protection System (TPS) of 
the aerospace vehicles involved. The high level of heat 
fluxes encountered in such missions has a direct effect on 
mass balance of the heat shield. Consequently, the 
identification of heat fluxes is of great industrial interest 
but is in flight only available by indirect methods based 
on temperature measurements. For a more detailed 
description of the problem, we refer to some publications 
on the Atmospheric Reentry Demonstrator (ARD) 
suborbital reentry test flown1-3. The difficulty with flight 
data is that the uncertainty on the heat flux is coupled 
with an uncertainty coming also from the material 
(thermal properties for instance). In this contribution, we 
restrict ourselves to a supposed well known complex 
degradable material (with ablation and pyrolysis) and 
study in details the modeling and identification of thermal 
fluxes.  

A lot of studies on degradable materials can be found4 
for pyrolysis and ablation processes5,6 and the 
corresponding applications, like on-ground validations 
with arc plasma torch7, or various work on Thermal 
Protection Systems and reentry vehicles design8-12. 

Many authors have already adressed the so-called 
Inverse Heat Conduction problem, and the estimation of 
fluxes from temperature measurements13-17. Recently, 3D 
inverse thermal methods for non-ablative and non-
pyrolysable materials have been successfully applied18. 

The inverse problem in this paper is concerned with 
the estimation of time domain surface heat fluxes (or 
convection coefficient ( )t0α ), for thermally degradable 

material (ablation and pyrolysis processes), on a one-
dimensional slab of thicknesse , by using time domain 
temperature measurements )(tθ on thermal protection, 
taken below the boundary surface, at thermocouple 
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position 
0x , during the time interval 

ftt ≤≤0 , where 

ft denotes the final time.  

This inverse problem is formulated as a minimization 
problem involving a least square problem through an 
optimization loop. An optimal control formulation 
(Lagrangian, adjoint and gradient computations) is then 
applied and developed19 for the optimal control theory20,21 
on some industrial applications of inverse problems at 
EADS (European Aeronautics Defense and Space 
Company). 

We use the Monopyro direct and inverse code22,23, 
which was developed at EADS Astrium-ST Les Mureaux. 
It is a transient one-dimensional thermal tool with one 
moving boundary (ablative surface) and has been used to 
model complex chemical processes of simultaneous 
heating, pyrolysis, ablation, thermal degradation 
behaviour of ablative materials. 

The paper is structured as follows: in section II, we 
describe our physical model associated to the so called 
direct problem. In section III, we explain our inverse 
methodology for estimation and identification of the heat 
flux, using optimal control method, and analysis of 
optimization tools. In section IV, we emphasize on the 
possible use of automatic differentiation tools24 to 
generate the inverse code, for this highly non linear 
problem. In section V, we present some numerical results 
on test cases with carbon/resin material for synthetic and 
noisy temperatures measurements and assimilation of 
high fluxes without and with ablation and pyrolysis. 
Some comparisons with experimental on-ground (JP test 
case) and in-flight (ARD) aerothermal measurements 
data, with some uncertainties on the material, are also 
presented. 

 

II. Direct problem 
 

Continuous equations 
 

A transient one-dimensional thermal problem with one 
moving boundary (ablative surface) has been developed 
and used at EADS Astrium-ST25,26 to model complex 
chemical processes of simultaneous heating, pyrolysis, 
ablation and thermal degradation behaviour of ablative 
materials. We briefly present the direct model used. 

 
Internal energy balance (for pyrolysable ablative 

material) : 
 
The internal energy balance is a transient thermal 

conduction equation with additional pyrolysis terms 
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with  x the abscissa, t the time, T (x,t) the temperature, 

ρ (x,t) the specific mass, pC  the heat capacity, λ  the 

thermal conductivity, gm�  the pyrolysis gas mass flow 

rate, gh  the pyrolysis gas enthalpy, 1A a constant, vF  the 

pyrolysis gas formation heat. The rate of storage of 
sensible energy is balanced by the net rate of thermal 
conductive heat flux, the pyrolysis energy-consumption 
rate and the net rate of energy convected by pyrolysis gas. 

 
Pyrolysis with internal decomposition modelled via a 

first-order rate process based on the Arrhenius equation 
 
The evolution of specific mass is given by (2): 
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ρc and ρv are the charred and virgin material densities, A 
the frequency factor in pyrolysis, B the fictitious 
temperature in pyrolysis, np the order of the reaction. 
More complex pyrolysis models can be used, for instance 
as proposed in literature4. 
Internal decomposition converts some of the solid into 
pyrolysis gas. The pyrolysis gas mass flux is related to 
the decomposition by the simple mass balance: 
 

x
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t
g

∂
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∂ �ρ   (3) 

 
 
The surface recession : we denote by s the abscissa of 

the moving interface (ablation value), then s�  is the 
recession rate. This physical process can be splitted in 
three kinds of ablation: 

 

hychemmeca ssss ���� ++=   (4) 

 
The mechanical recession rate is modeled by  

( ) p

e

T

T

emeca ePBPPAs
−

+= τ�    (5) 

 

with ET the mechanical erosion fictitious temperature, τ  

the mechanical erosion fictitious constraint, cm� the 

pyrolysis gas mass flow rate, PA the  mechanical 
erosion coefficient, PB the normal constraint 

coefficient. The chemical recession rate ρ/cchim ms �� =  

is most of the time a tabulated value function of 
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0/αgm� , of temperature T and of pressure P on the 

material with  0α (t) the convection coefficient, or 

unblocked convective heat transfer coefficient (unknown 

for inverse problem), and cm�  the ablation mass flow rate. 

The hydroerosion recession rate hys�  variable is also most 

of the time a tabulated value. 
 
Surface energy balance on the moving boundary: 
 
The conditions at the hot surface are determined by 

convective heating and by thermochemical interactions of 
the surface with the boundary-layer gas. The surface 
energy balance takes the following form: 
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with  1η  the pyrolysis gas blocking factor, cH the 

pyrolysis gas heat combustion, cm� the ablation mass flow 

rate, rh the athermanous enthalpy, wh the surface 

enthalpy, 2η the ablation gas blocking factor, vH the 

ablation heat, ε  the total emissivity, σ  the Stefan-

Boltzmann constant, wT the surface temperature, rT the 

equivalent temperature. The first term of equation (6) 
represents the convective heat flux. The second term 
represents the heat loss by re-radiation of the surface. The 
third and fourth terms represent the contribution of 
pyrolysis and ablation gas respectively. The term on the 
right hand of (6) represents the rate of conduction into the 
TPS. 

We introduce 




=

s

T
W  the vector of temperature and 

ablation, functions of time t and position x. Therefore, the 
direct problem can be represented in condensed vector 
form by the following system of coupled nonlinear time 
domain evolution differential equations: 

 

( )

[ ] ( )[ ]etsxtt

xsTxT
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where ( )WF  is a non linear operator and 0T  the 

reference initial temperature. The other physical 
quantities and variables described above are hidden in the 
formulation of F, and in the linear system coefficients 
than will result from (7) after spatial and temporal 
discretization. 

Discrete scheme 

 
Space partial derivatives are computed with a centered 

finite difference type scheme27. The abscissa x  belongs 
to the interval ( )[ ]ets , . It is parameterized by a reduced 

scaled space variable [ ]1,0∈ξ  : 

 

( ) etsx ξξ +−= )(1   (8) 

 
Then the system (7) is rewritten relatively to the 

variables( )ξ,t  . The variable ξ  is discretized with the 

help of K grid points. This complete set of equations has 
been solved numerically, for non constant time steps, 
using a one-dimensional two time steps Gear Scheme, 
which is second order accurate implicit integration 
scheme, with the approximation of the time derivative on 

two contiguous time steps 2/1−∆ nt  and 2/1+∆ nt , with the 

nβ  Gear coefficient28: 
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For simplicity, we explain our method on the implicit 

Euler scheme with a constant time stept∆ . We define K 
the number of one-dimensional grid points, N the number 
of time iterations, k the space index, n the time index in 
the numerical scheme, ( )Nwww ,...,1=  the discrete direct 

state variables matrix of dimension (K+1)*N, with the 

discrete vector  ( )nn
K

nnn sTTTw ,,,, 21 �=  of dimension 

(K+1), n
mT the discrete computed temperature at time n, at 

grid point m, for the K different points on the grid, ns the 
discrete computed ablation, at time n. The equation (7) is 
written at time (n+1) : 
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We make a linearization of the equation (10) at time n 

and after some calculations, we finally obtain a forward 
time discrete linearized Euler scheme, with initial 
condition vanishing: 
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Note that ( )nwf  is a vector (K+1)*1, ( )( )nwdf  is the 

linearized square matrix (K+1)*(K+1). To solve the 
discrete matrix problem, we use an adapted sparse 
solver29. In order to focus on the inverse procedure, we 
won’t develop more in details the expressions of the 
discrete schemes, as the direct scheme is very complex, 
due to non linearities (complex chemical physical 
processes, ablation, pyrolysis), tabulated variables for the 
physical ablation process, and complex linearizations and 
discretizations. 

 

III. Inverse problem 
 
Inverse problems are concerned with the identification 

of unknowns and the improvement of the understanding 
of physical processes quantities which appear in the 
mathematical formulation of physical problems, by using 
measurements of the system response.  

The inverse problem in this paper is used to estimate 
time domain surface heat fluxes (convection coefficient), 
for degradable material (ablation and pyrolysis), on a one-
dimensional slab of thicknesse, by using time domain 
temperature measurements )(tθ on thermal protection, 

taken below the boundary surface, at thermocouple 

position 
0x , during the time interval 

ftt ≤≤0 , where 

ft  denotes the final time. The inverse problem is 

reformulated as a minimization problem involving a cost 
objective functional, through an optimization loop, 
requiring the computation of derivatives or gradients 
quantities and adjoint variables (optimal control 
formulation). 

 

Discrete problem and cost function 
 
 
To obtain an accurate numerical approximation of the 

gradient, the key strategy is to compute the exact gradient 
of the discretized problem, instead of applying a 
discretization scheme to the above systems of PDE-s30. 

Therefore the best way is to proceed to the derivation 
of the direct schemes. Let us consider that the time 
domain content of the unknown heat flux convection 
coefficient is represented by a vector ( )Nppp ,...,1=  

which is sampled over time, where the subscripts refer to 
the sampled time. N is the number of unknowns and time 
iterations. These sampled values will be the control 
parameter variables for the optimization process. 

Let us define a discrete scalar inner product of two 

discrete vectors ( )n
K

nn aaa ,,1 �=  and ( )n
K

nn bbb ,,1 �=  

, K being the number of one-dimensional grid points, by a 
discrete summation over the time and space domains : 

∑
=

>=<
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To simplify our presentation, we present the inverse 

problem with measurements data with only one 
thermocouple sensor, point m in the grid. Therefore, the 
first step in establishing a procedure for the solution of 
either inverse is thus the definition of an objective (cost) 
function: it is in our case a least squares performance 
index J(p) that measures the difference between model 

predictions n
mT  of temperature, given a heat flux 

parameter p value, and measurements temperaturesn
mθ , at 

point m on the grid, time (n). The quadratic error or cost 
function j(p), depending on the source parameters p, is 
defined by : 
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with n
mθ  the discrete measured temperature, at time n, 

point m, and n
mT the discrete computed temperature 

vector, at time n, point m. 
To minimize this quantity, by optimization algorithm, 

we need the derivatives of this least squares objective 
function J(p), with respect to the parameters p. 

Adjoint and gradients computations 
 
 
We introduce the adjoint state matrix ( )2/12/1 ; += Nϕϕϕ �  

adjoint of the direct state matrix w , 2/1+nϕ being a vector 

(K+1)*1, for all n=0,N. A Lagrangian formalism is used 
in the minimization of the functional J(p) because the 
estimated dependent variable )( pw  appearing in such 

functional J(p) needs to satisfy a constraint, which is the 
solution of the discrete direct problem. In order to derive 
the adjoint problem, the governing equation of the direct 
problem, is therefore multiplied by the Lagrange 
multiplier, integrated in the space and time domains of 
interest and added to the original cost functional J(p). The 
following Lagrangian L on these discrete quantities is: 

 



 
40th AIAA Thermophysics Conference,  Seattle, USA 

23 - 26 June 2008 

6 

( )

( )

( ) ( )( )( )∑

∑
−

=

+
+

+

=

+

−−−
∆
−+

∆−=














=

1

0

1
1

2/1

1

2

varint

2/12/1

var

11

,

,...,,,...,,,...,,,

N

n

nnnn
nn

n

N

n

nn
m

iablesadjo

N

wiables

N

pparameter

N

wwwdfwf
t

ww

tT

wwppLwpL

ϕ

θ

ϕϕϕ
ϕ

�� ��� ������������

  (14) 
 
Differentiating the Lagrangian L with first order 

sensitivity variations, computing Lδ  as function of 

δϕδδ ,, wp , the variations of Lδ  with respect to wδ are 

cancelled with an adequate choice of the adjoint state ϕ . 

It leads to the discrete adjoint system31 in 2/1−nϕ  

unknown, n going backward from N to 0,  
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With this particular choice of ϕ , the gradient of the cost 

function is simply obtained by : 
 

p

L

p

J
J

∂
∂=

∂
∂=∇     (16) 

 
Note that that ( )( )nwfd 2  is a tensor of dimension 

(K+1)*(K+1)*(K+1), and ( )( )( )[ ]nnn wwwfd −+12  is a 

square matrix (K+1)*(K+1). We note also that the adjoint 
problem involves final conditions given instead of the 
initial conditions (direct problem): it has to be 
numerically solved by integrating backward in time as a 
terminal value problem. The final condition, not detailed 
here, simply results from the differentiation of (14). 

The variations of Lδ function of pδ  leads to the 

expression of the discrete gradients: 
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Note that ( )nw
p

f

∂
∂  is a tensor (K+1)*N, ( )nw

p

df

∂
∂  is a 

tensor (K+1)*(K+1)*N, 
p

J

∂

∂
 is a vector 1*N. It can be 

shown28 that gradients appeared as combination of direct 

and adjoint discrete quantities. We won’t get into more 
detailed expressions, because the exact developed terms 
are quite complex and too big to be described here, the 
point being the method main principles and the 
corresponding applications. 

Optimization Minimization algorithm 
 
 
Once the gradient of cost function is computed, we 

can now apply an iterative inverse procedure minimizing 
J(p) to obtain an estimation of the unknown parameter 

optimal function optp . We will use the combination of a 

gradient steepest descent method at the beginning of 
minimization and a Quasi Newton method to finish the 
minimization. 

The basic idea of the gradient Steepest Descent 
Method32 is to move downwards on the objective function 
J(p) along the direction of highest variation, in order to 
locate its minimum value. Therefore, the direction of 
descent is given by the gradient direction, since it is the 
one that gives the fastest increase of the objective 
function. Usually the steepest-descent method starts with 
large variations in the objective function and good initial 
exploration steps, but, as the minimum value is reached, 
the convergence rate becomes very low. The algorithm is 
(18) : 

•  0qp =  is the initial guess parameter, and r, the 

number of the optimizer iteration has the value r=1, Nop 
being the maximum number of  optimizer iteration. 

•  
rq

J
rd

∂

∂
= gives the descent direction 

•  rrrr dqqp µ+== +1  leads to p parameter 

updating with the descent coefficient rµ  chosen to 

satisfy the steepest descent of the J(q) cost function 
( )rrr dqJInf µµ µ −= . 

When steepest gradient method does not converge any 
more, the idea is to pursue the optimization process with a 
second order Quasi Newton method33,34, which has a 
strong local convergence. In these types of methods, the 
Hessian second derivative matrix is approximated in such 
a way that it does not involve the computation of costly 
second derivatives. Usually, the approximations for the 
Hessian are based on first derivatives (gradients) and it 
accelerates the convergence locally. 

Starting with an initial guess for the estimated 

parameter 0qp = , and with an initial matrix 1
0
−H  which 

is an approximation for the inverse of the Hessian, a 
Quasi-Newton Broyden Fletcher Goldfarb Shanno 
(BFGS) optimizer is used to update the parameter value 

rqp =  at the optimizer step r, and the value of 1
0
−H , 

until the number of total steps Nop of the optimizer is 
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reached. We stops the process before if an optimal optp  

parameter is found, which causes the gradients to vanish 
(at least a local minimum of J(p)). The BFGS algorithm is 
the following (19): 
•  

00, HHqp r == , are the initial guess parameter and 

Hessian, r is again the current step of optimizer 
and

opN the total number of optimizer iterations. 

•  
rq

J
rHrd

∂

∂−−= 1  gives the descent direction  

•  









−

−∂

∂

∂

∂
−−+−= 1,

1

,,2,11 rH

rq

J

rq

J
rqrqzrHrH  

updates the Hessian approximated matrix, with z a 
function not explicited here  
•  rdrrqrqp µ−=+= 1

 allows the parameter updating 

with the descent coefficient rµ  chosen to satisfy the 

steepest descent of the J(q) cost function 
( )rrr dqJInf µµ µ −= . 

 

IV. Inverse problem computation using automatic 
differentiation 

 
 
To compute numerically the adjoint and gradient 

discrete quantities for the inverse problem in heat 
convection coefficient, we have also used the Automatic 
Differentiation (AD) engine tool, Tapenade, developed at 
INRIA Sophia-Antipolis by the Tropics team24. 
Automatic differentiation is a family of techniques for 
computing the derivatives of a function defined by a 
computer program (interpreted as computing a 
mathematical function, including arbitrarily complex 
simulation codes), for sensitivity and gradient analysis 
applications35-37. The new program obtained is called the 
differentiated program. Automatic differentiation with 
adjoint models and gradients computations are used in 
many fields of science such as pioneering work in 
meteorology38-40. 

The derivatives of the instructions of a program 
(elemental operations) are combined according to the 
chain rule of differential calculus, leading to the two 
major modes of computing derivatives with AD, the so-
called forward (tangent-linear) mode and reverse 
(cotangent-linear or adjoint) mode. 

• The forward mode uses directional derivatives on 
a given direction vector in the input space (tangent 
approach. It is appropriate to derive functions with small 
numbers of independent variables (input).  

• The reverse mode uses derivatives starting with 
the dependent variables (output) and proceeding toward 
the independent variables (input), and it is computed in 

the reverse of the original program's order. It is 
appropriate for functions with small numbers of 
dependent variables (output) and lots of input 
independent variables. The reverse mode of automatic 
differentiation is functionally equivalent to hand written 
discrete adjoint codes. 

The implementation of robust and effective automatic 
differentiation tools requires advances in compiler 
technology, graph algorithms, and automatic 
differentiation theory, and compared with other methods 
to compute adjoint and gradients, automatic 
differentiation offers a number of advantages: 

• Accuracy: unlike finite difference approximations, 
derivatives computed via automatic differentiation exhibit 
no truncation error. 

• Reduced software costs: automatic differentiation 
eliminates the time spent developing and debugging 
derivative code by hand, or experimenting with step sizes 
for finite difference approximations.  

 
We have applied these techniques to our inverse 

thermal problem, considering that the flow of instructions 
in the direct program (Monopyro direct code), can be 
schematically represented as sequential instructions 

( ) 1+nInst to compute the direct state variables 1+nw  given 

the parameter p   

( ) [ ] NnpwwInstw nnnn ,..,0,,,,,, 111 == −++ ���  

         (20) 

( ) 1+nInst are discrete functions (that could be non 

linear functions, recursive functions or interpolated 
tabulated functions) of discrete temperature and ablation 
variables. The final output of the program is the discrete 
cost function ( ) ( )( )( )pwwJpwJpJ N,...,)()( 1== . The 

adjoint code in ϕ  variables is built by automatic 

backward differentiation of the output J  versus w  
direct state variables, following and analyzing the flow of 
instructions in the direct program, and the dependences in 
w . The gradient computation of )( pJ  versus p  

parameter is built by automatic backward differentiation 

of the output ( )pJ  versus p parameter, also following 

the flow of instructions in the direct program and 
analyzing the flow dependences in p . It can be shown 

again that the gradient result depends on the wdirect 
state variable and the ϕ  adjoint state variable. 

 

V. Numerical results 
 

 
We now present some applications of inverse problem 

of the estimation of time domain surface heat convection 
coefficient for thermally degradable material, on a one-
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dimensional slab of thickness e, by using time domain 
temperature measurements taken below the boundary 
surface, at a given thermocouple position, during a time 
interval. As mentionned before, the inverse problem is 
formulated as a minimization problem involving an 
objective functional, through an optimization loop. We 
start the minimization loop by an initial guess on 
convection coefficient and try to restitute the 
measurements. In all the following curve results legends, 
INI stands for initial guess of the convection coefficient, 
NUM for reconstruction obtained at the end of 
optimization process, and OBS for the reference solution 
of the convection coefficient (when this targetted result is 
known) or for the corresponding measurements, input of 

inverse method. The final time is denoted by 
ft . 

 
We first define two test configurations on 

measurements: 
•  Synthetic measurements: the estimated temperatures 
are obtained from the solution of the direct problem, by 

using a given well known convection coefficient ( )t0α . 

We want to restitute by inversion this coefficient. 
 

•  Noise measurements : the measurements may contain 
random errors, which are assumed here to be  

o additive, uncorrelated, normally distributed, with 
zero mean and known standard deviation (2%) 
o additive, uncorrelated, uniformally distributed, 
with zero mean and known standard deviation (5%) 

 
Here, we want to see the effect of adding this noise to 

synthetic measurements on the reconstruction of 

convection coefficient ( )t0α , in order to test the stability 

and robustness of the inverse method. 
 
Moreover, we define now two similar quality 

estimators for inverse problem : 
 

•  A good estimator for the quality of restitution of 
temperature measurements is the RMST error: Root Mean 

Square error between the nmθ  measured temperature and 

the reconstructed temperature n
mTopt , at sensor m, for 

the optimal inverse solution optp : 

( )
N

Topt
EQMRMS

N

n

n
m

n
m

T

∑
=

−
== 1

2θ
 (21) 

 
•  A good estimator for the quality of 
restitution/identification of convection coefficient is the 

RMSp error between the reference 0α  convection 

coefficient and the reconstructed optimal optp : 

( )
N

p
RMS

N

n

nn
opt

p

∑
=

−
= 1

2

0α
 (22) 

Theses tests have been realised to address the problem 
of fluxes identification on a carbon/resin material. To 
ensure the method, we first tried to examine the effects of 
pyrolysis (test 1) and ablation (test 2) separately, then we 
worked on the real ablating and pyrolysing material (test 
3), then we applied the new method to operationnal cases, 
such as the quite well known ARD (Atmospheric Reentry 
Demonstrator, test 4 with a different material: alestrasil), 
or the more relevant arc plasma torch test on the 
considered carbon/resin material, where the fluxes are 
very high and the flow conditions better known and 
where some fluxmeters measurements are also available 
(test 5). 

 Test 1 : Identification of virgin material : without 
ablation , x0=1.3 mm 

 
 
We use synthetic data (errorless measurements). We 

start (INI) with a bad initial guess half value of 
convection coefficient, with sharp discontinuity. Fig. 1 
shows a good agreement for the reconstruction (NUM) of 
the convection coefficient, compared to the reference 
convection coefficient (OBS), with the inverse code 
developed in section III (“hand computed” gradients and 
adjoints), except near the final time. The RMS error on 
the flux is 0.04.  

 

 
 

 
Figure 1. Test 1 : Flux Identification of virgin 

material : without ablation , x0=1.3 mm 
 
 
The results shown in Fig. 2 were obtained with the 

inverse code developed in section IV (Automatic 
Differentiation tool was used) and are very correct too. 
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Near final time, the value of the estimated flux has very 
little influence on the temperature in the material, at x0. 
Even if the flux is worse evaluated at the end, the impact 
on the corresponding solution is not visible. 

 

 
 
 
Figure 2. Test 1 : Flux Identification of virgin 

material : without ablation, x0=1.3 mm 
Automatic Differentiation tool 

 
 
 
Fig. 3 shows that the RMS error on temperature 

obtained at the end of optimization process (also using the 
Automatic Differentiation tool), is very low (0.01), and 
we can observe the change in optimizer (iteration 25), 
switching from gradient steepest descent at the beginning, 
to Quasi Newton after. The gain in convergence is 
promising, after 60 optimizer iterations. 

 
 
 

 
 

Figure 3. Test 1 : Temperature RMS error  
Virgin material : without ablation , x0=1.3 mm  

Automatic Differentiation tool 
 
 

 Test 2 : Identification of High Flux with ablation, 
Carbon/Resin material , x0=2.6 mm 

 
 
It is a quite difficult test case, with high fluxes. In Fig. 

4, a good agreement in the reconstructed convection 
coefficient value is obtained, except at final time, with 
initial half guess and using synthetic data (errorless 
measurements). The RMS error on the flux is 0.06.   

 

 
 

Figure 4. Test 2 : Identification of High Flux with 
ablation, x0=2.6 mm 

 
 
Fig. 5 shows that the RMS error on measured 

temperature obtained at the end of optimization process is 
very low (0.7), after 70 optimizer iterations. 
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Figure 5. Test 2 : RMS error on temperature :  

with ablation , x0=2.6 mm 
 
 
Fig. 6 shows results in the convection coefficient 

obtained, with initial half of the value, additive, 
uncorrelated, normally distributed, zero mean and known 
standard deviation (2%) noise.  The RMS error on the 
flux is 0.105, which is satisfactory. 

 

 
 

Figure 6. Test 2 : Identification of High Flux with: 
with ablation 2% normal noise , x0=2.6 mm 

 
 
Fig. 7 shows results in the convection coefficient 

obtained, with initial half of the value, additive, 
uncorrelated, uniformally distributed, zero mean and 
known standard deviation (5%) noise. The RMS error on 
the flux is 0.125. 

 
 
 

 
 

Figure 7. Test 2 : Identification of High Flux with 
ablation, 5% uniform noise, x0=2.6 mm 

 

 Test 3 : Identification of High Flux with ablation and 
pyrolysis, Carbon/Resin material x0=4.2 mm 

 
 
We now examine the present inverse analysis 

approach for a difficult test case, with high fluxes, 
ablation, pyrolysis, and deep thermocouples location and 
synthetic measurements on a “real” material. 

Successful results are obtained in the reconstructed 
convection coefficient and displayed on Fig. 8, with a 
RMS error on the flux of 0.07.  

 
 

 
 

Figure 8. Test 3 : Identification of High Flux with 
ablation and pyrolysis, x0=4.2 mm 
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Fig. 9 shows that the RMS error on temperature at the 
sensors obtained at the end of optimization process is 
very low (0.9), after 75 optimizer iterations. 

 
 
 

 
 

Figure 9. Test 3 : Temperature RMS error  
High Flux with ablation and pyrolysis, x0=4.2 mm 
 

Test 4 : ARD Test case 
 
We now examine the present inverse analysis 

approach for the ARD flight test case. The Atmospheric 
Reentry Demonstrator (ARD) was a suborbital reentry 
test flown on the third Ariane 5 flight. ARD was launched 
in october 1998 from Kourou, French Guyana, by an 
Ariane 5 and splashed down 1 hour 41 min. after liftoff. It 
was recovered and transported in EADS Astrium 
Aquitaine plant for expertise. More than 200 different 
parameters were recorded during flight. After ARD 
recovery, a preliminary analysis of recorded data has been 
performed. 

A picture of the recuperation of the capsule is given 
on Fig. 10. The heat shield (Fig. 11) has been expertise 
(Fig. 12) after the flight. 

 

 
Figure 10. ARD sea landing 

      
Figure 11. ARD heat shield 

 
 

 
Figure 12. ARD thermocoil 

 
 Successful results are obtained in the reconstructed 

flux (Fig. 13), which are very similar to those obtained 
before (see Fig. 14 and 23).  

 

 
 

Figure 13. ARD heat flux restitution  
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Figure 14. ARD post flight analysis : heat fluxes, 

courtesy of 23  
 

Test 5 : Operational test case (Plasma Jet case) 
 
This case has been investigated to improve the 

robustness on an industrial problem where many 
experimental data were available. The industrial 
applications are straight forward. The plasma jet facility 
of the Astrium’s Aquitaine plant is shown on Fig. 15, 
with the schematic principal of a plasma torch. The 
experimental test facility uses four coupled plasma torchs. 

 

 
Figure 15. Plasma jet facility 

We show Fig. 16 the sensibility to the inverse 
convection coefficient problem, for two different initial 
guess on the flux. The temperature restitutions, as shown 
Fig. 17, are very similar at the sensors, for these two 
different solutions. 

 
 

Figure 16. Test 5 Flux identification  
Plasma Jet test case - Two different initial guess 

 
Figure 17. Test 5 Temperature Restitution  

Plasma Jet test case - Two different initial guess 
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VI. Conclusion 
 
Motivated by atmospheric re-entry of aerospace 

vehicles and Thermal Protection System dimensioning 
problems, this article is concerned with inverse analyses 
of highly dynamical heat fluxes. It addresses the inverse 
problem of using temperature measurements to estimate 
the heat flux convection coefficient, at the surface of 
ablating materials.  

The inverse problem is formulated as a minimization 
problem involving a least square problem functional, 
through an optimization loop. An optimal control 
formulation (Lagrangian, adjoint and gradient 
computations) is then applied and developed, using an 
inverse software Monopyro which was developed at 
EADS Astrium-ST Les Mureaux, and which is a transient 
one-dimensional thermal code, with ablative surface and 
Gear integration scheme.  

Several validation test cases, using synthetic, noisy 
on-ground and in-flight data temperatures measurements 
are carried out, by applying the results of the 
minimization algorithm. Main results are: 

•  Validity of the inverse formulation for the 
description of the temperature and ablation 
variables evolution  

•  Improvement by using a combined gradient 
steepest descent method at the beginning of 
minimization process and Quasi Newton method 
to finish the minimization, 

•  Convection coefficient restitution has been 
improved for hard cases (with great ablation) for 
fluxes functions containing sharp corners and 
discontinuities, 

•  Successful test case on carbon/resin material with 
high heat fluxes and large magnitudes, ablation 
including pyrolysis effects, and opartional data, 

•  Encouraging results with an automatic 
differentiation tool are also obtained, without 
ablation 

Future works have to be done on the: 
•  Robustness to initial guess, sensitivity to 

measurements, number and position of sensors, 
and application of regularization methods to 
stabilize noise errors on measurements, 

•  Implementation of the automatic differentiation 
tool to generate the inverse code, 

•  Thermal model uncertainties influences on the 
accuracy of extracted flight heat flux, athermanous 
enthalpy identification, 

•  Validations on aerothermal flight measurements. 
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