Convergence of an axisymmetric finite element

François Dubois^{*} and **Stefan Duprey**^{\dagger}

1) INTRODUCTION

• Let Ω be a two-dimensional bounded domain. We suppose that its boundary $\partial \Omega$ is decomposed into three components Γ_0 , Γ_D and Γ_N :

(1.1) $\partial \Omega = \overline{\Gamma_0} \cup \overline{\Gamma_D} \cup \overline{\Gamma_N}, \Gamma_0 \cap \Gamma_D = \emptyset, \Gamma_0 \cap \Gamma_N = \emptyset, \Gamma_D \cap \Gamma_N = \emptyset,$ where Γ_0 is the intersection of $\overline{\Omega}$ with the "axis" y = 0:

(1.2) $\Gamma_0 = \overline{\Omega} \cap \{(x, y) \in \mathbb{R}^2, y = 0\}.$

• Let $f : \Omega \longrightarrow \mathbb{R}$ and $g : \Gamma_{\mathbb{N}} \longrightarrow \mathbb{R}$ be two given functions. We wish to approximate the solution u of the problem

(1.3)
$$-\frac{\partial^2 u}{\partial x^2} - \frac{1}{y}\frac{\partial}{\partial y}\left(y\frac{\partial u}{\partial y}\right) + \frac{u}{y^2} = f \qquad \text{in }\Omega$$

 $(1.4) u = 0 on \Gamma_{\rm D}$

(1.5)
$$\frac{\partial u}{\partial n} = g$$
 on $\Gamma_{\rm N}$

where n is the external normal of the boundary $\partial \Omega$.

^{*} Numerical Analysis and Partial Differential Equations, Department of Mathematics, University Paris Sud, Bat. 425, F-91405 Orsay Cedex, EU, and Conservatoire National des Arts et Métiers, Paris.

Mail: francois.dubois@math.u-psud.fr

[†] Institut de Mathématiques Elie Cartan, University Henri Poincaré, Nancy.

[□] Presented at the Fourth European Finite Element Fair, Zurich, 2-3 June 2006. Unfinished work. Edition 19 February 2008.

FRANÇOIS DUBOIS AND STEFAN DUPREY

• The first question is to formulate the problem (1.3)-(1.5) in order to prove the existence and uniqueness. Our variational formulation follows the approach of Mercier and Raugel [MR82] and is briefly recalled in Section 2. By doing this, it is natural to introduce weighted Sobolev spaces L_a^2 , H_a^1 and H_a^2 associated with axisymmetric problems. The approximation is done with the help of finite elements. We introduce in Section 3 a simplicial conforming mesh \mathcal{T} composed by vertices (set \mathcal{T}^0), edges (set \mathcal{T}^1) and triangles (set \mathcal{T}^2) and we denote by $h_{\mathcal{T}}$ the maximal value of the Lebesgue measure of the edges of the mesh \mathcal{T} :

(1.6)
$$h_{\mathcal{T}} = \inf_{a \in \mathcal{T}^1} |a|.$$

We propose a new finite element interpolation based on vertices and defining a discrete space $H_{\mathcal{T}}^{\checkmark}$ which is "naturally" associated with the Sobolev space H_a^1 . The analysis of this new method is not straightforward. Due to the singular weight y, it is necessary to use Clément's interpolate [C ℓ 75] and Section 4 summarizes the essential of what has to be known on this subject. In Section 5, we show that if a function u belongs to the space H_a^2 , it is possible to define an interpolate $\Pi_{\mathcal{T}} u$ such that the error $||u - \Pi_{\mathcal{T}} u||$ measured with the norm in space H_a^1 , is of order $h_{\mathcal{T}}$. Then the proof of convergence follows classical arguments with Cea's lemma (see *e.g.* the book [Ci78] of Ciarlet) and is presented in Section 6.

• Some notations: $\operatorname{diam}(K)$: diameter of the triangle K. where $|\bullet|$ is the bi-dimensional Lebesgue measure. classical Sobolev spaces space $\mathcal{C}^0(\overline{\Omega})$. semi-norm in $\operatorname{H}^k(\Lambda)$ Sobolev space:

(1.7)
$$|\mathbf{d}^k u|^2 \equiv \sum_{\alpha+\beta=k} \left(\frac{\partial^{\alpha+\beta} u}{\partial x^{\alpha} \partial y^{\beta}}\right)^2$$

(1.8)
$$|u|_{k,\Lambda}^2 = \int_{\Lambda} |\mathrm{d}^k u|^2 \,\mathrm{d}x \,\mathrm{d}y$$

2) Weighted Sobolev spaces

• We multiply the equation (1.3) by a test function v null on the portion $\Gamma_{\rm D}$ of the boundary and we integrate by parts relatively to the measure $y \, dx \, dy$. We introduce by this calculus a bilinear form $a(\bullet, \bullet)$ and a linear form $< b, \bullet >$ according to

(2.1)
$$a(u, v) = \int_{\Omega} y \nabla u \bullet \nabla v \, \mathrm{d}x \, \mathrm{d}y + \int_{\Omega} \frac{u v}{y} \, \mathrm{d}x \, \mathrm{d}y$$

(2.2)
$$\langle b, v \rangle = \int_{\Omega} f v y \, \mathrm{d}x \, \mathrm{d}y + \int_{\Gamma_{\mathrm{N}}} g v y \, \mathrm{d}\gamma.$$

In consequence of the algebraic expression (2.1) of the bilinear form $a(\bullet, \bullet)$, we introduce two notations. If u is some function $\Omega \longrightarrow \mathbb{R}$, we define $u_{\sqrt{a}}$ and $u^{\sqrt{a}}$ as two functions $\Omega \longrightarrow \mathbb{R}$ as

(2.3)
$$u_{\sqrt{x}}(x, y) = \frac{1}{\sqrt{y}}u(x, y), \quad (x, y) \in \Omega$$

(2.4)
$$u\sqrt{(x, y)} = \sqrt{y} u(x, y), \quad (x, y) \in \Omega.$$

• Following Mercier and Raugel [MR82], we define the three attached Sobolev "axi-spaces"

(2.5)
$$L_a^2(\Omega) = \{ v : \Omega \longrightarrow \mathbb{R}, v \checkmark \in L^2(\Omega) \}$$

(2.6)
$$\mathrm{H}^{1}_{a}(\Omega) = \{ v \in \mathrm{L}^{2}_{a}(\Omega), \ v_{\sqrt{v}} \in \mathrm{L}^{2}(\Omega), \ (\nabla v)^{\sqrt{v}} \in (\mathrm{L}^{2}(\Omega))^{2} \}$$

These spaces are Hilbert spaces associated with the following norms and seminorms defined according to:

(2.8)
$$||v||_{0,a}^2 = \int_{\Omega} y |v|^2 \, \mathrm{d}x \, \mathrm{d}y$$

(2.9)
$$|v|_{1,a}^2 = \int_{\Omega} \left(\frac{1}{y}|v|^2 + y |\nabla v|^2\right) dx dy$$

(2.10)
$$|v|_{2,a}^2 = \int_{\Omega} \left(\frac{1}{y^3} |v|^2 + \frac{1}{y} |\nabla v|^2 + y |\mathrm{d}^2 v|^2 \right) \mathrm{d}x \,\mathrm{d}y$$

(2.11)
$$||v||_{1,a}^2 = ||v||_{0,a}^2 + |v|_{1,a}^2$$

(2.12)
$$||v||_{2,a}^2 = ||v||_{1,a}^2 + |v|_{2,a}^2$$

We do not need here the expression of the associated scalar products.

- Theorem of trace, hypotheses for f and g.
- We observe that the condition

$$(2.13) u = 0 on \Gamma_0$$

on the axis is completely incorporated inside the choice of the axi-space $H_a^1(\Omega)$. We introduce the Sobolev space that takes into account the homogeneous Dirichlet boundary condition (1.4):

(2.14)
$$V = \{ v \in \mathrm{H}^{1}_{a}(\Omega), \ \gamma v = 0 \text{ on } \Gamma_{\mathrm{D}} \}.$$

Then the problem (1.3)-(1.5) admits the following variational formulation

(2.15)
$$\begin{cases} u \in V \\ a(u, v) = \langle b, v \rangle, \ \forall v \in V \end{cases}$$

Due to the fact that

 $a(v\,,\,v)\,=\,|v|^2_{1,\,a}\,,\quad\forall\,v\in\mathrm{H}^1_a(\Omega)\,,$ (2.16)

the existence and uniqueness of the solution of problem (2.15) is easy according to the so-called Lax-Milgram-Vishik's lemma and we refer to [MR82] for the study of the ellipticity property.

3)A NATURAL AXISYMMETRIC FINITE ELEMENT

Let \mathcal{T} be a conforming mesh of the domain Ω with triangles. Recall our notations: \mathcal{T}^0 for the set of vertices, \mathcal{T}^1 for edges and \mathcal{T}^2 for triangular elements. We first observe that if we consider a function v of the form

(3.1)
$$v(x, y) = \sqrt{y} (ax + by + c), \quad (x, y) \in K \in T^2,$$

we have

we nave

(3.2)
$$\sqrt{y} \nabla v(x, y) = \left(a y, \frac{1}{2} (a x + 3b y + c)\right).$$

In other terms, if we denote by P_1 the space of polynomials of total degree less or equal to 1, we have:

(3.3)
$$v_{\sqrt{v}} \in P_1 \implies (\nabla v)^{\sqrt{v}} \in (P_1)^2$$

We denote by P_1^{\checkmark} the linear space

(3.5)
$$P_1^{\checkmark} = \{v, v_{\checkmark} \in P_1\}.$$

We define the degrees of freedom $\langle \widetilde{\delta}_S, v \rangle$ for v sufficiently regular and Svertex of the mesh \mathcal{T} $(S \in \mathcal{T}^0)$ by

(3.6)
$$\langle \widetilde{\delta}_S, v \rangle = v_{\sqrt{S}}(S), S \in \mathcal{T}^0$$

We observe that if the vertex S is not lying on the axis, the number < $\widetilde{\delta}_S$, v > is nothing else that the value v(S) divided by $\sqrt{y(S)}$. If S is on the axis, consider this point at the origin to fix the ideas and the representation (3.1) joined with (3.6) claims that $\langle \delta_S, v \rangle = c$, *id est* is equal to the coefficient of \sqrt{y} that particularizes the approach. We observe that we still have v(S) = 0 but a non trivial degree of freedom is still present for such a vertex.

Proposition 1. Unisolvance property of the axi-finite element.

Let $K \in \mathcal{T}^2$ be a triangle of the mesh \mathcal{T} , Σ the set of linear forms $\langle \widetilde{\delta}_S, \bullet \rangle$ for S vertex of the triangle K $(S \in \mathcal{T}^0 \cap \partial K)$ and P_1^{\checkmark} defined at relation (3.5). Then the triple $(K, \Sigma, P_1^{\checkmark})$ that constituates our axi-finite element is unisolvant.

Proof of Proposition 1.

Given three numbers $\alpha_S \in \mathbb{R}$, there exists a unique function $v \in P_1^{\checkmark}$ such that

 $<\widetilde{\delta}_{S}, v > = \alpha_{S}, S \in \mathcal{T}^{0} \cap \partial K.$ (3.7)

Due to the definition of $\widetilde{\delta}_S$, the relation (3.7) express that $v_{\checkmark}(S) = \alpha_S$ and the hypothesis $v \in P_1^{\checkmark}$ express that $v_{\checkmark} \in P_1$. Then the proof is a conse-quence of classical arguments for linear finite elements explained *e.g.* in Ciarlet's book.

Conformity of the axi-finite element. **Proposition 2**.

The finite element $(K, \Sigma, P_1^{\checkmark})$ is conforming in space $\mathcal{C}^0(\overline{\Omega})$.

Proof of Proposition 2.

The property express that given arbitrary values $\alpha_S \in \mathbb{R}$ for all $S \in \mathcal{T}^0$, the function $v: \Omega \longrightarrow \mathbb{R}$ defined by interpolation in each triangle $K \in \mathcal{T}^2$ by the relation (3.7) is lying in space $\mathcal{C}^0(\overline{\Omega})$. The proof is nothing else that the classical \mathcal{C}^0 -conformity of the P_1 finite element: $v_{\mathcal{N}} \in P_1$ in each triangle and is defined by its values in each vertex. \Box

We can introduce our discrete space:

(3.8)
$$\mathbf{H}_{\mathcal{T}}^{\checkmark} = \{ v \in \mathcal{C}^{0}(\overline{\Omega}), v_{\checkmark} |_{K} \in P_{1}, \forall K \in \mathcal{T}^{2} \}.$$

We have the property:

Proposition 3. Conformity in the axi-space $H^1_a(\Omega)$. The discrete space H^{\checkmark}_T is included in the axi-space $H^1_a(\Omega)$: $\mathrm{H}^{\checkmark}_{\tau} \subset \mathrm{H}^{1}_{a}(\Omega)$. (3.9)

Proof of Proposition 3. It is a direct consequence of the previous property: $v \in H_{\mathcal{T}}^{\checkmark}$ is continuous then its gradient in the sense of distributions is a classical function. Due to the relation (3.2), this function is clearly in the space $L^2(\Omega)$. Of course, $v_{\mathcal{I}}$ is continuous then the conditions proposed in (2.6) are all valid. • The discrete space for the approximation of the variational problem (2.15) is simply

 $(3.10) V_{\mathcal{T}} = \mathrm{H}_{\mathcal{T}}^{\checkmark} \cap V.$

with V introduced in (2.14). The discrete variational formulation takes the form

(3.11)
$$\begin{cases} u_{\mathcal{T}} \in V_{\mathcal{T}} \\ a(u_{\mathcal{T}}, v) = \langle b, v \rangle, \ \forall v \in V_{\mathcal{T}} \end{cases}$$

It has a unique solution $u_{\mathcal{T}} \in V_{\mathcal{T}}$ and the question is now to estimate the error $||u - u_{\mathcal{T}}||$ measured with the norm in the axi-space $\mathrm{H}^1_a(\Omega)$. For doing this, it is classical to study the interpolation error $||u - \Pi_{\mathcal{T}} u||$ when u is sufficiently regular and $\Pi_{\mathcal{T}} u$ is some interpolate of function u.

4) CLÉMENT'S INTERPOLATION.

• We recall in this section the essential of what to be known about Clément's interpolation [C ℓ 75] in the particular case of affine interpolation with triangles. Let Ω be a bounded bidimensional domain as introduced in Section 1. Let v be a function in space $L^2(\Omega)$. Let \mathcal{T} be a mesh of the domain Ω and $h_{\mathcal{T}}$ introduced in (1.6). We observe also that $h_{\mathcal{T}}$ is also the maximal diameter of elements in mesh \mathcal{T} :

(4.1)
$$h_{\mathcal{T}} = \sup_{K \in \mathcal{T}^2} \operatorname{diam}(K).$$

Of course, the value v(S) is not defined for a vertex $S \in \mathcal{T}^0$ and the interest of Clément's interpolate is to introduce such an approached value even if vonly belongs to the space $L^2(\Omega)$.

• First, if
$$S \in \Gamma_{\rm D}$$
, we set
(4.2) $< \delta_S^{\mathcal{C}}, v > = 0, \quad S \in \mathcal{T}^0 \cap \Gamma_{\rm D}.$

If not, for $S \in \mathcal{T}^0$, we introduce the subset Ξ_S of Ω defined by

(4.3)
$$\Xi_S = \bigcup_{K \in \mathcal{T}^2, \, \partial K \supset S} K$$

and presented on Figure 1. The interpolate value $<\delta_S^{\mathcal{C}}\,,\,v>$ at the vertex $\,S$ is defined by

(4.4)
$$\langle \delta_S^{\mathcal{C}}, v \rangle = \frac{1}{|\Xi_S|} \int_{\Xi_S} v(x) \, \mathrm{d}x \, \mathrm{d}y, \quad S \in \mathcal{T}^0, \ S \notin \Gamma_{\mathrm{D}}.$$

• First we introduce the Clement interpolate $\Pi^{\mathcal{C}} v$ of $v \in L^2(\Omega)$ with the help of classical P_1 continuous interpolate functions φ_S defined by

CONVERGENCE OF AN AXISYMMETRIC FINITE ELEMENT

(4.5)
$$\varphi_S|_K \in P_1, \forall K \in \mathcal{T}^2, \varphi_S(S') = \begin{cases} 1 & \text{if } S' = S \\ 0 & \text{if } S' \neq S \end{cases}$$

With Clément $[C\ell 75]$, we set

(4.6)
$$\Pi^{\mathcal{C}} v = \sum_{S \in \mathcal{T}^0} < \delta_S^{\mathcal{C}}, v > \varphi_S.$$

Figure 1. Left: Vicinity Ξ_S of the vertex $S \in \mathcal{T}^0$. Right: Vicinity Z_K for a given triangle $K \in \mathcal{T}^2$.

• We suppose now that the function v is a bit more regular. The interest of Clément's interpolation is that all the Ciarlet-Raviart [CR72] classical results for Lagrange interpolation in Sobolev spaces can be extended to Clément's. In order to quantify the result, we suppose in the following that the mesh \mathcal{T} belongs to a family \mathcal{F} of meshes such that no infinitesimal angle belongs in the mesh \mathcal{T} ; in other terms,

(4.7)
$$\exists C > 0, \forall T \in \mathcal{F}, \forall S \in \mathcal{T}^0, \sharp \{K \in \mathcal{T}^2, K \subset \Xi_S\} \le C.$$

We introduce also the set Z_K for a given triangle $K \in \mathcal{T}^2$ (see again the Figure 1) :

(4.8)
$$Z_K = \{ L \in \mathcal{T}^2, \overline{K} \cap \overline{L} \neq \emptyset \} = \bigcup_{S \in \mathcal{T}^0, S \subset \partial K} \Xi_S.$$

According to the hypothesis (4.7), we have

(4.9) $\exists C > 0, \forall T \in \mathcal{F}, \forall K \in \mathcal{T}^2, \ \sharp Z_K \leq C.$

• Consider now a function $v \in H^1(Z_K)$. Then a main results of Clément's contribution can be stated as

(4.10) $|v - \Pi^{\mathcal{C}} v|_{0, K} \leq C h_{\mathcal{T}} |v|_{1, Z_{K}}$

(4.11)
$$|v - \Pi^{\mathcal{C}} v|_{1, K} \leq C |v|_{1, Z_{K}}$$

with a constant C > 0 that does not depend on the particular mesh \mathcal{T} chosen in the family \mathcal{F} . If the function v is more regular ($v \in \mathrm{H}^2(Z_K)$), we can consolidate the estimate (4.11):

(4.12)
$$|v - \Pi^{\mathcal{C}} v|_{1, K} \leq C h_{\mathcal{T}} |v|_{2, Z_{K}}$$

Finally, if v is globally regular, we have

(4.13)
$$||v - \Pi^{\mathcal{C}} v||_{0,\Omega} \leq C h_{\mathcal{T}} |v|_{1,\Omega}.$$

5) AN INTERPOLATION RESULT

• We suppose in this section that a given function u belongs to the space $\mathrm{H}^2_a(\Omega)$ defined in (2.7). It is possible to define the value u(S) for a vertex $S \in \mathcal{T}^0$ due to the Sobolev embedding Theorem (see *e.g.* Brézis [Br83]) that claims that

(5.1)
$$\mathrm{H}^2(\Omega) \subset \mathcal{C}^0(\overline{\Omega}).$$

The question is now to define or not the number $\langle \tilde{\delta}_S, u \rangle$ introduced in (3.6).

Proposition 4. Lack of regularity.

Let $u \in H^2_a(\Omega)$ and $u_{\sqrt{1}}$ introduced in (2.3). Then $u_{\sqrt{1}}$ belongs to the space $H^1(\Omega)$ and we have

$$(5.2) \|u_{\sqrt{u}}\|_{1,\Omega} \le C \|u\|_{2,a}$$

Proof of Proposition 4.

We set

(5.3) $v \equiv u_{\checkmark}$

and we have the following calculus:

(5.4)
$$\nabla v = -\frac{1}{2y\sqrt{y}} u \nabla y + \frac{1}{\sqrt{y}} \nabla u.$$

Then

$$\begin{split} &\int_{\Omega} |v|^2 \, \mathrm{d}x \, \mathrm{d}y \, \leq \, \int_{\Omega} \frac{1}{y} \, |u|^2 \, \mathrm{d}x \, \mathrm{d}y \, \leq \, C \, \|u\|_{2,\,a}^2 \\ &\int_{\Omega} |\nabla v|^2 \, \mathrm{d}x \, \mathrm{d}y \, \leq \, 2 \, \int_{\Omega} \left(\frac{1}{4y^3} \, |u|^2 \, + \, \frac{1}{y} \, |\nabla u|^2 \right) \, \mathrm{d}x \, \mathrm{d}y \, \leq \, C \, \|u\|_{2,\,a}^2 \, . \end{split}$$
Due to (2.10) the relation (5.2) is established

Due to (2.10), the relation (5.2) is established.

Π

• Il we derive (formally !) the relation (5.4), we get

(5.5)
$$d^2 v = \frac{3}{4y^2\sqrt{y}} u \nabla y \bullet \nabla y - \frac{1}{y\sqrt{y}} \nabla u \bullet \nabla y + \frac{1}{\sqrt{y}} d^2 u$$

and we have not sufficiently powers of y to be sure that we obtain a finite result when we integrate the square of d^2v . In consequence, the function v is not necessarily continuous. Nevertheless, it is possible to define the Clement interpolate of u_{\checkmark} relatively to the mesh \mathcal{T} and due to (5.2), this interpolate has good regularity properties. We define our interpolate Πu by conjugation and we set

(5.6)
$$\Pi u = (\Pi^{\mathcal{C}} u_{\sqrt{2}})^{\sqrt{2}}$$

or equivalently

(5.7) $\Pi u(x, y) = \sqrt{y} \left(\Pi^{\mathcal{C}} v \right)(x, y), \qquad (x, y) \in K \in \mathcal{T}^2$ with $v(\bullet)$ introduced in (5.3).

• We assume that the mesh \mathcal{T} admits angles that are aware from 0 and π :

(5.8)
$$\begin{cases} \exists (\alpha, \beta), 0 < \alpha < \frac{\pi}{2} < \beta < \pi, \forall \mathcal{T} \in \mathcal{F}, \forall K \in \mathcal{T}^2, \\ \forall \theta \text{ angle in } K, \alpha \leq \theta \leq \beta. \end{cases}$$

We observe that the hypothesis (5.8) clearly implies (4.7). We assume also that the sizes of triangles are quasi-uniform:

(5.9)
$$\exists \gamma > 0, \forall \mathcal{T} \in \mathcal{F}, \forall a \in \mathcal{T}^1, \gamma h_{\mathcal{T}} \leq |a| \leq h_{\mathcal{T}}$$

with $h_{\mathcal{T}}$ introduced at the relation (1.6). We have the following interpolation theorem:

Theorem 1. An interpolation result.

We suppose that the mesh \mathcal{T} belongs to a family \mathcal{F} that satisfy the above hypotheses (5.8) and (5.9). Let $u \in \mathrm{H}^2_a(\Omega)$ and Πu defined by (5.6). Then we have

(5.10) $||u - \Pi u||_{1, a} \leq C h_{\mathcal{T}} ||u||_{2, a}.$

• In order to prepare the technical points of the proof, we introduce, following [MR82] the sub-domains Ω_+ and Ω_- as

(5.12) $\Omega_{+} = \{ K \in \mathcal{T}^{2}, \operatorname{dist} (Z_{K}, \Gamma_{0}) > 0 \}$ (5.13) $\Omega_{-} = \Omega \setminus \Omega_{+}.$

9

Proposition 5. Geometrical lemma.

If the family \mathcal{F} of meshes satisfy the hypotheses (5.8) and (5.9), we have

- (5.14) $\begin{cases} \exists \delta > 0, \forall \mathcal{T} \in \mathcal{F}, \forall K \in \mathcal{T}^2, \\ (K \subset \Omega_+) \Longrightarrow (\operatorname{dist}(Z_K, \Gamma_0) \ge \delta h_{\mathcal{T}}). \end{cases}$
- (5.15) $\forall \mathcal{T} \in \mathcal{F}, \forall K \in \mathcal{T}^2, (K \subset \Omega_-) \Longrightarrow (\forall (x, y) \in K, |y| \le 2h_{\mathcal{T}}).$

Figure 2. Triangle element K that belongs to the sub-domain Ω_+ .

Proof of Proposition 5.

• If dist $(Z_K, \Gamma_0) > 0$, consider a vertex $S \in \mathcal{T}^0$ such that dist $(Z_K, \Gamma_0) =$ dist (S, Γ_0) (see Figure 2). Then the vertex S belongs to a triangle T that does **not** belong to the family Z_K and dist $(S, \Gamma_0) \geq \sin \theta \cdot \gamma h_T \geq$ $\gamma \sin \alpha h_T$. This property establishes the relation (5.14) with $\delta = \gamma \sin \alpha$.

• If $K \subset \Omega_{-}$ and $|y| \geq 2 h_{\mathcal{T}}$ for a point $(x, y) \in K$, it is clear from the definition of Z_K and is illustrated by the Figure 2 that the distance between Z_K and the axis Γ_0 is strictly positive, then $K \subset \Omega_{+}$ and this contradiction establishes the relation (5.15).

Proof of Theorem 1.

Our proof is constructed in the same spirit that the pioneering work proposed by Mercier and Raugel.

• We first consider the term of order zero in the error $||u - \Pi u||_{1, a}$ (c.f. the relation (2.11)):

Convergence of an axisymmetric finite element

$$\int_{\Omega} \frac{1}{y} |u - \Pi u|^2 \, \mathrm{d}x \, \mathrm{d}y = \int_{\Omega} \frac{1}{y} |u - \sqrt{y} \, \Pi^{\mathcal{C}} v|^2 \, \mathrm{d}x \, \mathrm{d}y$$
$$= \int_{\Omega} |v - \Pi^{\mathcal{C}} v|^2 \, \mathrm{d}x \, \mathrm{d}y = ||v - \Pi^{\mathcal{C}} v||_{0, \Omega}^2$$
$$\leq C \, h_{\mathcal{T}}^2 \, |v|_{1, \Omega}^2 \qquad \qquad \text{due to (4.13)}$$
$$\leq C \, h_{\mathcal{T}}^2 \, ||v||_{2, a}^2 \qquad \qquad \text{according to (5.2)}$$

(5.16)
$$\int_{\Omega} \frac{1}{y} |u - \Pi u|^2 \, \mathrm{d}x \, \mathrm{d}y = \|v - \Pi^{\mathcal{C}} v\|_{0,\Omega}^2 \leq C h_{\mathcal{T}}^2 \|u\|_{2,a}^2.$$

• On the other hand, we have

$$\nabla \left(\sqrt{y} \left(v - \Pi^{\mathcal{C}} v \right) \right) = \frac{1}{2\sqrt{y}} \left(v - \Pi^{\mathcal{C}} v \right) \nabla y + \sqrt{y} \nabla \left(v - \Pi^{\mathcal{C}} v \right).$$

Then

(5.17)
$$\begin{cases} \int_{\Omega} y \, |\nabla (u - \Pi u)|^2 \, \mathrm{d}x \, \mathrm{d}y \leq \\ \leq \int_{\Omega} |v - \Pi^{\mathcal{C}} v|^2 \, \mathrm{d}x \, \mathrm{d}y + 2 \int_{\Omega} y^2 \, |\nabla (v - \Pi^{\mathcal{C}} v)|^2 \, \mathrm{d}x \, \mathrm{d}y. \end{cases}$$

The first term in the right hand side of (5.17) is majored with the help of estimation (5.16). We focus now on the second term. We have

$$\begin{cases} \int_{\Omega} y^2 |\nabla(v - \Pi^{\mathcal{C}} v)|^2 \, \mathrm{d}x \, \mathrm{d}y = \\ = \int_{\Omega_+} y^2 \, \nabla(|v - \Pi^{\mathcal{C}} v)|^2 \, \mathrm{d}x \, \mathrm{d}y + \int_{\Omega_-} y^2 |\nabla(v - \Pi^{\mathcal{C}} v)|^2 \, \mathrm{d}x \, \mathrm{d}y. \end{cases}$$

• From the relation (5.16), we have for the internal sub-domain Ω_{-} :

$$\int_{\Omega_{-}} y^{2} |\nabla(v - \Pi^{\mathcal{C}} v)|^{2} dx dy \leq 4 h_{\mathcal{T}}^{2} \int_{\Omega_{-}} |\nabla(v - \Pi v)|^{2} dx dy$$

$$\leq C h_{\mathcal{T}}^{2} |v|_{1,\Omega}^{2} \qquad \text{due to (4.11)}$$

$$\leq C h_{\mathcal{T}}^{2} ||u||_{2,a}^{2} \qquad \text{thanks to (5.2)}$$

(5.18)
$$\int_{\Omega_{-}} y |\nabla (v - \Pi^{\mathcal{C}} v)|^{2} dx dy \leq C h_{\mathcal{T}}^{2} ||u||_{2, a}^{2}.$$

• We have in the external part of the domain

$$\int_{\Omega_+} y^2 |\nabla(v - \Pi^{\mathcal{C}} v)|^2 \, \mathrm{d}x \, \mathrm{d}y = \sum_{K \in \mathcal{T}^2, \, K \subset \Omega_+} \int_K y^2 |\nabla(v - \Pi^{\mathcal{C}} v)|^2 \, \mathrm{d}x \, \mathrm{d}y.$$
We fix $K \subset \Omega_+$, we introduce (y_{\min}, y_{\max}) according to
 $y_{\min} = \min_{(x, y) \in K} y, \qquad y_{\max} = \max_{(x, y) \in K} y.$

Then $y_{\min} \leq y \leq y_{\max}, y_{\max} - y_{\min} \leq h_{\mathcal{T}}$ and (5.19) $y^2 \leq y^2_{\max} \leq 2(y^2_{\min} + h^2_{\mathcal{T}}), (x, y) \in K.$ Now if $(x, y) \in Z_K$, we have, due to the definition of Z_K and to (5.15): $y_{\min} - h_{\mathcal{T}} \leq y, y \geq \delta h_{\mathcal{T}}$ and

(5.20)
$$\frac{y_{\min}^2 + h_{\mathcal{T}}^2}{y^2} \le \frac{1}{y^2} \left(2y^2 + 2h_{\mathcal{T}}^2 + h_{\mathcal{T}}^2\right) \le 2 + \frac{3}{\delta^2}.$$

• Due to the property (4.12) of Clément's interpolate and to estimate (5.20), we have

$$\begin{split} \int_{K} y^{2} |\nabla(v - \Pi^{\mathcal{C}} v)|^{2} \, \mathrm{d}x \, \mathrm{d}y &\leq 2 \left(y_{\min}^{2} + h_{\mathcal{T}}^{2} \right) \int_{K} |\nabla(v - \Pi^{\mathcal{C}} v)|^{2} \, \mathrm{d}x \, \mathrm{d}y \\ &\leq 2 \left(y_{\min}^{2} + h_{\mathcal{T}}^{2} \right) \int_{Z_{K}} C \, h_{\mathcal{T}}^{2} \, |\mathrm{d}^{2} v|^{2} \, \mathrm{d}x \, \mathrm{d}y \\ &\leq C \left(2 + \frac{3}{\delta^{2}} \right) h_{\mathcal{T}}^{2} \, \int_{Z_{K}} y^{2} \, |\mathrm{d}^{2} v|^{2} \, \mathrm{d}x \, \mathrm{d}y \\ &\leq C \, h_{\mathcal{T}}^{2} \, \int_{Z_{K}} \left(\frac{1}{y^{3}} \, |v|^{2} + \frac{1}{y} \, |\nabla v|^{2} + y \, |\mathrm{d}^{2} v|^{2} \right) \, \mathrm{d}x \, \mathrm{d}y \end{split}$$

according to (5.5). Then, taking into account (2.10), we have

(5.22)
$$\int_{\Omega_{+}} y^{2} |\nabla(v - \Pi^{\mathcal{C}} v)|^{2} \, \mathrm{d}x \, \mathrm{d}y \leq C h_{\mathcal{T}}^{2} \, \|u\|_{2, a}^{2}.$$

The inequality (5.11) is a consequence of (5.16), (5.17), (5.18) and (5.22). The theorem is now established.

6) Convergence of the axi-finite element approximation.

• We suppose now that the data Ω , f and g are chosen in such a way that the solution u of the variational problem (2.13) belongs to the space $\mathrm{H}^2_a(\Omega)$: (6.1) $u \in \mathrm{H}^2_a(\Omega)$, u solution of problem (2.13). Let $u_{\mathcal{T}} \in \mathrm{H}^{\checkmark}_{\mathcal{T}}$ be the solution of the discrete problem (3.11).

Theorem 2. First order approximation

Under the above hypotheses, we have

(6.2) $||u - u_{\mathcal{T}}||_{1, a} \leq C h_{\mathcal{T}} ||u||_{2, a}.$

Proof of Theorem 2.

It is a classical consequence of the ellipticity of the functional $a(\bullet, \bullet)$ and of Céa's lemma. We denote by κ the ellipticity constant of the functional. Thus we get

$$\kappa \|u - u_{\mathcal{T}}\|_{1, a}^{2} \leq a(u - u_{\mathcal{T}}, u - u_{\mathcal{T}})$$

$$\leq C a(u - u_{\mathcal{T}}, u - \Pi u) \quad \text{take } v = \Pi u - u_{\mathcal{T}} \in \mathcal{H}_{\mathcal{T}}^{\checkmark} \text{ in (3.11)}$$

$$\leq C \|u - u_{\mathcal{T}}\|_{1, a} \|u - \Pi u_{\mathcal{T}}\|_{1, a}.$$
Then $\|u - u_{\mathcal{T}}\|_{1, a} \leq C \|u - \Pi u\|_{1, a} \leq C h_{\mathcal{T}} \|u\|_{2, a}$
due to the theorem 1.

- 7) REFERENCES.
- [Br85] H. Brézis. Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983.
- [CR72] P.G. Ciarlet, P.A. Raviart. "General Lagrange and Hermite interpolation in \mathbb{R}^n with applications to finite element methods", Archive for Rational Mechanics and Analysis, vol. 46, p. 177-199, 1972.
- [Ci78] P.G. Ciarlet. The Finite Element Method for Elliptic Problems, Series "Studies in Mathematics and its Applications", North-Holland, Amsterdam, 1978.
- [Cl75] P. Clément. "Approximation by finite element functions using local regularization", R.A.I.R.O Analyse numérique, vol. 9, n°2, p. 77-84, 1975.
- [DD06] F. Dubois, S.Duprey. "Eléments finis naturels pour l'axisymétrique", reseauch report, may 2006.
- [MR82] B. Mercier, G. Raugel. "Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en (r, z) et séries de Fourier en θ ", R.A.I.R.O Analyse numérique, vol. 16, n°4, p. 405-461, 1982.