Convergence of an axisymmetric

 finite elementFrançois Dubois ${ }^{*}$ and Stefan Duprey ${ }^{\dagger}$

1) Introduction

- Let Ω be a two-dimensional bounded domain. We suppose that its boundary $\partial \Omega$ is decomposed into three components Γ_{0}, Γ_{D} and Γ_{N} :

$$
\begin{equation*}
\partial \Omega=\overline{\Gamma_{0}} \cup \overline{\Gamma_{\mathrm{D}}} \cup \overline{\Gamma_{\mathrm{N}}}, \Gamma_{0} \cap \Gamma_{\mathrm{D}}=\emptyset, \Gamma_{0} \cap \Gamma_{\mathrm{N}}=\emptyset, \Gamma_{\mathrm{D}} \cap \Gamma_{\mathrm{N}}=\emptyset, \tag{1.1}
\end{equation*}
$$ where Γ_{0} is the intersection of $\bar{\Omega}$ with the "axis" $y=0$:

$$
\begin{equation*}
\Gamma_{0}=\bar{\Omega} \cap\left\{(x, y) \in \mathbb{R}^{2}, y=0\right\} \tag{1.2}
\end{equation*}
$$

- Let $f: \Omega \longrightarrow \mathbb{R}$ and $g: \Gamma_{\mathrm{N}} \longrightarrow \mathbb{R}$ be two given functions. We wish to approximate the solution u of the problem

$$
\begin{array}{ll}
-\frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{y} \frac{\partial}{\partial y}\left(y \frac{\partial u}{\partial y}\right)+\frac{u}{y^{2}}=f & \text { in } \Omega \\
u=0 & \text { on } \Gamma_{\mathrm{D}} \\
\frac{\partial u}{\partial n}=g & \text { on } \Gamma_{\mathrm{N}} \tag{1.5}
\end{array}
$$

where n is the external normal of the boundary $\partial \Omega$.
Presented at the Fourth European Finite Element Fair, Zurich, 2-3 June 2006. Unfinished work. Edition 19 February 2008.

* Numerical Analysis and Partial Differential Equations, Department of Mathematics, University Paris Sud, Bat. 425, F-91405 Orsay Cedex, EU, and Conservatoire National des Arts et Métiers, Paris.
Mail: francois.dubois@math.u-psud.fr
\dagger Institut de Mathématiques Elie Cartan, University Henri Poincaré, Nancy.

François Dubois and Stefan Duprey

- The first question is to formulate the problem (1.3)-(1.5) in order to prove the existence and uniqueness. Our variational formulation follows the approach of Mercier and Raugel [MR82] and is briefly recalled in Section 2. By doing this, it is natural to introduce weighted Sobolev spaces $\mathrm{L}_{a}^{2}, \mathrm{H}_{a}^{1}$ and H_{a}^{2} associated with axisymmetric problems. The approximation is done with the help of finite elements. We introduce in Section 3 a simplicial conforming mesh \mathcal{T} composed by vertices (set \mathcal{T}^{0}), edges (set \mathcal{T}^{1}) and triangles (set \mathcal{T}^{2}) and we denote by $h_{\mathcal{T}}$ the maximal value of the Lebesgue measure of the edges of the mesh \mathcal{T} :

$$
\begin{equation*}
h_{\mathcal{T}}=\inf _{a \in \mathcal{T}^{1}}|a| . \tag{1.6}
\end{equation*}
$$

We propose a new finite element interpolation based on vertices and defining a discrete space $\mathrm{H}_{\mathcal{T}}^{\sqrt{~}}$ which is "naturally" associated with the Sobolev space H_{a}^{1}. The analysis of this new method is not straightforward. Due to the singular weight y, it is necessary to use Clément's interpolate [$\mathrm{C} \ell 75$] and Section 4 summarizes the essential of what has to be known on this subject. In Section 5 , we show that if a function u belongs to the space H_{a}^{2}, it is possible to define an interpolate $\Pi_{\mathcal{T}} u$ such that the error $\left\|u-\Pi_{\mathcal{T}} u\right\|$ measured with the norm in space H_{a}^{1}, is of order $h_{\mathcal{T}}$. Then the proof of convergence follows classical arguments with Cea's lemma (see e.g. the book [Ci78] of Ciarlet) and is presented in Section 6.

- Some notations:
$\operatorname{diam}(K)$: diameter of the triangle K.
where $|\bullet|$ is the bi-dimensional Lebesgue measure.
classical Sobolev spaces
space $\mathcal{C}^{0}(\bar{\Omega})$.
semi-norm in $\mathrm{H}^{k}(\Lambda)$ Sobolev space:

$$
\begin{align*}
\left|\mathrm{d}^{k} u\right|^{2} & \equiv \sum_{\alpha+\beta=k}\left(\frac{\partial^{\alpha+\beta} u}{\partial x^{\alpha} \partial y^{\beta}}\right)^{2} \tag{1.7}\\
|u|_{k, \Lambda}^{2} & =\int_{\Lambda}\left|\mathrm{d}^{k} u\right|^{2} \mathrm{~d} x \mathrm{~d} y
\end{align*}
$$

2) Weighted Sobolev spaces

- We multiply the equation (1.3) by a test function v null on the portion Γ_{D} of the boundary and we integrate by parts relatively to the measure $y \mathrm{~d} x \mathrm{~d} y$. We introduce by this calculus a bilinear form $a(\bullet, \bullet)$ and a linear form $\langle b, \bullet>$ according to

$$
\begin{align*}
& a(u, v)=\int_{\Omega} y \nabla u \bullet \nabla v \mathrm{~d} x \mathrm{~d} y+\int_{\Omega} \frac{u v}{y} \mathrm{~d} x \mathrm{~d} y \tag{2.1}\\
& <b, v>=\int_{\Omega} f v y \mathrm{~d} x \mathrm{~d} y+\int_{\Gamma_{\mathrm{N}}} g v y \mathrm{~d} \gamma \tag{2.2}
\end{align*}
$$

In consequence of the algebraic expression (2.1) of the bilinear form $a(\bullet, \bullet)$, we introduce two notations. If u is some function $\Omega \longrightarrow \mathbb{R}$, we define $u_{\sqrt{ }}$ and $u^{\sqrt{V}}$ as two functions $\Omega \longrightarrow \mathbb{R}$ as

$$
\begin{array}{ll}
u_{\sqrt{ }}(x, y)=\frac{1}{\sqrt{y}} u(x, y), \quad(x, y) \in \Omega \\
u^{\sqrt{ }}(x, y)=\sqrt{y} u(x, y), \quad(x, y) \in \Omega \tag{2.4}
\end{array}
$$

- Following Mercier and Raugel [MR82], we define the three attached Sobolev "axi-spaces"

$$
\begin{align*}
& \mathrm{L}_{a}^{2}(\Omega)=\left\{v: \Omega \longrightarrow \mathbb{R}, v^{\left.\sqrt{ } \in \mathrm{L}^{2}(\Omega)\right\}}\right. \tag{2.5}\\
& \mathrm{H}_{a}^{1}(\Omega)=\left\{v \in \mathrm{~L}_{a}^{2}(\Omega), v_{\sqrt{ }} \in \mathrm{L}^{2}(\Omega),(\nabla v) \sqrt{ } \in\left(\mathrm{L}^{2}(\Omega)\right)^{2}\right\} \tag{2.6}\\
& \mathrm{H}_{a}^{2}(\Omega)=\left\{\begin{array}{c}
v \in \mathrm{H}_{a}^{1}(\Omega), v_{\sqrt{ } \sqrt{ } \sqrt{ } \in \mathrm{L}^{2}(\Omega),(\nabla v)_{\sqrt{ }} \in\left(\mathrm{L}^{2}(\Omega)\right)^{2}}^{\left(\mathrm{d}^{2} v\right) \sqrt{ } \in\left(\mathrm{L}^{2}(\Omega)\right)^{4}}
\end{array}\right\} \tag{2.7}
\end{align*}
$$

These spaces are Hilbert spaces associated with the following norms and seminorms defined according to:

$$
\begin{align*}
\|v\|_{0, a}^{2} & =\int_{\Omega} y|v|^{2} \mathrm{~d} x \mathrm{~d} y \tag{2.8}\\
|v|_{1, a}^{2} & =\int_{\Omega}\left(\frac{1}{y}|v|^{2}+y|\nabla v|^{2}\right) \mathrm{d} x \mathrm{~d} y \\
|v|_{2, a}^{2} & =\int_{\Omega}\left(\frac{1}{y^{3}}|v|^{2}+\frac{1}{y}|\nabla v|^{2}+y\left|\mathrm{~d}^{2} v\right|^{2}\right) \mathrm{d} x \mathrm{~d} y \\
\|v\|_{1, a}^{2} & =\|v\|_{0, a}^{2}+|v|_{1, a}^{2} \\
\|v\|_{2, a}^{2} & =\|v\|_{1, a}^{2}+|v|_{2, a}^{2}
\end{align*}
$$

We do not need here the expression of the associated scalar products.

- Theorem of trace, hypotheses for f and g.
- We observe that the condition

$$
\begin{equation*}
u=0 \quad \text { on } \Gamma_{0} \tag{2.13}
\end{equation*}
$$

on the axis is completely incorporated inside the choice of the axi-space $\mathrm{H}_{a}^{1}(\Omega)$. We introduce the Sobolev space that takes into account the homogeneous Dirichlet boundary condition (1.4):

$$
\begin{equation*}
V=\left\{v \in \mathrm{H}_{a}^{1}(\Omega), \gamma v=0 \text { on } \Gamma_{\mathrm{D}}\right\} . \tag{2.14}
\end{equation*}
$$

- Then the problem (1.3)-(1.5) admits the following variational formulation

$$
\left\{\begin{array}{l}
u \in V \tag{2.15}\\
a(u, v)=<b, v>, \forall v \in V
\end{array}\right.
$$

Due to the fact that

$$
\begin{equation*}
a(v, v)=|v|_{1, a}^{2}, \quad \forall v \in \mathrm{H}_{a}^{1}(\Omega) \tag{2.16}
\end{equation*}
$$

the existence and uniqueness of the solution of problem (2.15) is easy according to the so-called Lax-Milgram-Vishik's lemma and we refer to [MR82] for the study of the ellipticity property.

3) A natural axisymmetric finite element

- Let \mathcal{T} be a conforming mesh of the domain Ω with triangles. Recall our notations: \mathcal{T}^{0} for the set of vertices, \mathcal{T}^{1} for edges and \mathcal{T}^{2} for triangular elements. We first observe that if we consider a function v of the form

$$
\begin{equation*}
v(x, y)=\sqrt{y}(a x+b y+c), \quad(x, y) \in K \in \mathcal{T}^{2} \tag{3.1}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sqrt{y} \nabla v(x, y)=\left(a y, \frac{1}{2}(a x+3 b y+c)\right) . \tag{3.2}
\end{equation*}
$$

In other terms, if we denote by P_{1} the space of polynomials of total degree less or equal to 1 , we have:

$$
\begin{equation*}
v_{\sqrt{ }} \in P_{1} \Longrightarrow(\nabla v)^{\sqrt{ }} \in\left(P_{1}\right)^{2} \tag{3.3}
\end{equation*}
$$

- We denote by $P_{1}^{\sqrt{ }}$ the linear space

$$
\begin{equation*}
P_{1}^{\sqrt{ }}=\left\{v, v_{\sqrt{ }} \in P_{1}\right\} . \tag{3.5}
\end{equation*}
$$

We define the degrees of freedom $<\widetilde{\delta}_{S}, v>$ for v sufficiently regular and S vertex of the mesh $\mathcal{T}\left(S \in \mathcal{T}^{0}\right)$ by

$$
\begin{equation*}
<\widetilde{\delta}_{S}, v>=v_{\sqrt{ }}(S), S \in \mathcal{T}^{0} \tag{3.6}
\end{equation*}
$$

We observe that if the vertex S is not lying on the axis, the number $<$ $\widetilde{\delta}_{S}, v>$ is nothing else that the value $v(S)$ divided by $\sqrt{y(S)}$. If S is on the axis, consider this point at the origin to fix the ideas and the representation (3.1) joined with (3.6) claims that $\left\langle\widetilde{\delta}_{S}, v\right\rangle=c$, id est is equal to the coefficient of \sqrt{y} that particularizes the approach. We observe that we still have $v(S)=0$ but a non trivial degree of freedom is still present for such a vertex.

Proposition 1. Unisolvance property of the axi-finite element. Let $K \in \mathcal{T}^{2}$ be a triangle of the mesh \mathcal{T}, Σ the set of linear forms $<\widetilde{\delta}_{S}, \bullet>$ for S vertex of the triangle $K\left(S \in \mathcal{T}^{0} \cap \partial K\right)$ and $P_{1}^{\sqrt{ }}$ defined at relation (3.5). Then the triple ($K, \Sigma, P_{1}^{\sqrt{ }}$) that constituates our axi-finite element is unisolvant.

Proof of Proposition 1.

Given three numbers $\alpha_{S} \in \mathbb{R}$, there exists a unique function $v \in P_{1}^{\sqrt{ }}$ such that

$$
\begin{equation*}
<\widetilde{\delta}_{S}, v>=\alpha_{S}, S \in \mathcal{T}^{0} \cap \partial K \tag{3.7}
\end{equation*}
$$

Due to the definition of $\widetilde{\delta}_{S}$, the relation (3.7) express that $v_{\sqrt{ }}(S)=\alpha_{S}$ and the hypothesis $v \in P_{1}^{\sqrt{ }}$ express that $v_{\checkmark} \in P_{1}$. Then the proof is a consequence of classical arguments for linear finite elements explained e.g.in Ciarlet's book.

Proposition 2. Conformity of the axi-finite element.
The finite element ($K, \Sigma, P_{1}^{\sqrt{ }}$) is conforming in space $\mathcal{C}^{0}(\bar{\Omega})$.

Proof of Proposition 2.

The property express that given arbitrary values $\alpha_{S} \in \mathbb{R}$ for all $S \in \mathcal{T}^{0}$, the function $v: \Omega \longrightarrow \mathbb{R}$ defined by interpolation in each triangle $K \in \mathcal{T}^{2}$ by the relation (3.7) is lying in space $\mathcal{C}^{0}(\bar{\Omega})$. The proof is nothing else that the classical \mathcal{C}^{0}-conformity of the P_{1} finite element: $v_{\sqrt{ }} \in P_{1}$ in each triangle and is defined by its values in each vertex.

- We can introduce our discrete space:

$$
\begin{equation*}
\mathrm{H}_{\mathcal{T}}^{\sqrt{ }}=\left\{v \in \mathcal{C}^{0}(\bar{\Omega}),\left.v_{\sqrt{ }}\right|_{K} \in P_{1}, \forall K \in \mathcal{T}^{2}\right\} . \tag{3.8}
\end{equation*}
$$

We have the property:
Proposition 3. Conformity in the axi-space $\mathrm{H}_{a}^{1}(\Omega)$.
The discrete space $\mathrm{H}_{\mathcal{T}}^{\sqrt{ }}$ is included in the axi-space $\mathrm{H}_{a}^{1}(\Omega)$:

$$
\begin{equation*}
\mathrm{H}_{\mathcal{T}}^{\sqrt{2}} \subset \mathrm{H}_{a}^{1}(\Omega) . \tag{3.9}
\end{equation*}
$$

Proof of Proposition 3.

It is a direct consequence of the previous property: $v \in \mathrm{H}_{\mathcal{T}}^{\sqrt{ }}$ is continuous then its gradient in the sense of distributions is a classical function. Due to the relation (3.2), this function is clearly in the space $\mathrm{L}^{2}(\Omega)$. Of course, $v_{\sqrt{ }}$ is continuous then the conditions proposed in (2.6) are all valid.

François Dubois and Stefan Duprey

- The discrete space for the approximation of the variational problem (2.15) is simply

$$
\begin{equation*}
V_{\mathcal{T}}=\mathrm{H}_{\mathcal{T}}^{\sqrt{ }} \cap V \tag{3.10}
\end{equation*}
$$

with V introduced in (2.14). The discrete variational formulation takes the form

$$
\left\{\begin{array}{l}
u_{\mathcal{T}} \in V_{\mathcal{T}} \tag{3.11}\\
a\left(u_{\mathcal{T}}, v\right)=<b, v>, \forall v \in V_{\mathcal{T}} .
\end{array}\right.
$$

It has a unique solution $u_{\mathcal{T}} \in V_{\mathcal{T}}$ and the question is now to estimate the error $\left\|u-u_{\mathcal{T}}\right\|$ measured with the norm in the axi-space $\mathrm{H}_{a}^{1}(\Omega)$. For doing this, it is classical to study the interpolation error $\left\|u-\Pi_{\mathcal{T}} u\right\|$ when u is sufficiently regular and $\Pi_{\mathcal{T}} u$ is some interpolate of function u.

4) Clément's interpolation.

- We recall in this section the essential of what to be known about Clément's interpolation [C $\ell 75$] in the particular case of affine interpolation with triangles. Let Ω be a bounded bidimensional domain as introduced in Section 1. Let v be a function in space $\mathrm{L}^{2}(\Omega)$. Let \mathcal{T} be a mesh of the domain Ω and $h_{\mathcal{T}}$ introduced in (1.6). We observe also that $h_{\mathcal{T}}$ is also the maximal diameter of elements in mesh \mathcal{T} :

$$
\begin{equation*}
h_{\mathcal{T}}=\sup _{K \in \mathcal{T}^{2}} \operatorname{diam}(K) . \tag{4.1}
\end{equation*}
$$

Of course, the value $v(S)$ is not defined for a vertex $S \in \mathcal{T}^{0}$ and the interest of Clément's interpolate is to introduce such an approached value even if v only belongs to the space $\mathrm{L}^{2}(\Omega)$.

- First, if $S \in \Gamma_{\mathrm{D}}$, we set

$$
\begin{equation*}
<\delta_{S}^{\mathcal{C}}, v>=0, \quad S \in \mathcal{T}^{0} \cap \Gamma_{\mathrm{D}} \tag{4.2}
\end{equation*}
$$

If not, for $S \in \mathcal{T}^{0}$, we introduce the subset Ξ_{S} of Ω defined by

$$
\begin{equation*}
\Xi_{S}=\bigcup_{K \in \mathcal{T}^{2}, \partial K \supset S} K \tag{4.3}
\end{equation*}
$$

and presented on Figure 1. The interpolate value $\left\langle\delta_{S}^{\mathcal{C}}, v\right\rangle$ at the vertex S is defined by

$$
\begin{equation*}
<\delta_{S}^{\mathcal{C}}, v>=\frac{1}{\left|\Xi_{S}\right|} \int_{\Xi_{S}} v(x) \mathrm{d} x \mathrm{~d} y, \quad S \in \mathcal{T}^{0}, S \notin \Gamma_{\mathrm{D}} \tag{4.4}
\end{equation*}
$$

- First we introduce the Clement interpolate $\Pi^{\mathcal{C}} v$ of $v \in \mathrm{~L}^{2}(\Omega)$ with the help of classical P_{1} continuous interpolate functions φ_{S} defined by

$$
\left.\varphi_{S}\right|_{K} \in P_{1}, \forall K \in \mathcal{T}^{2}, \varphi_{S}\left(S^{\prime}\right)= \begin{cases}1 & \text { if } S^{\prime}=S \tag{4.5}\\ 0 & \text { if } S^{\prime} \neq S\end{cases}
$$

With Clément [C $\ell 75$], we set

$$
\begin{equation*}
\Pi^{\mathcal{C}} v=\sum_{S \in \mathcal{T}^{0}}<\delta_{S}^{\mathcal{C}}, v>\varphi_{S} \tag{4.6}
\end{equation*}
$$

Figure 1. Left: Vicinity Ξ_{S} of the vertex $S \in \mathcal{T}^{0}$.
Right: Vicinity Z_{K} for a given triangle $K \in \mathcal{T}^{2}$.

- We suppose now that the function v is a bit more regular. The interest of Clément's interpolation is that all the Ciarlet-Raviart [CR72] classical results for Lagrange interpolation in Sobolev spaces can be extented to Clément's. In order to quantify the result, we suppose in the following that the mesh \mathcal{T} belongs to a family \mathcal{F} of meshes such that no infinitesimal angle belongs in the mesh \mathcal{T}; in other terms,

$$
\begin{equation*}
\exists C>0, \forall \mathcal{T} \in \mathcal{F}, \forall S \in \mathcal{T}^{0}, \sharp\left\{K \in \mathcal{T}^{2}, K \subset \Xi_{S}\right\} \leq C . \tag{4.7}
\end{equation*}
$$

We introduce also the set Z_{K} for a given triangle $K \in \mathcal{T}^{2}$ (see again the Figure 1) :

$$
\begin{equation*}
Z_{K}=\left\{L \in \mathcal{T}^{2}, \bar{K} \cap \bar{L} \neq \varnothing\right\}=\bigcup_{S \in \mathcal{T}^{0}, S \subset \partial K} \Xi_{S} \tag{4.8}
\end{equation*}
$$

According to the hypothesis (4.7), we have

$$
\begin{equation*}
\exists C>0, \forall \mathcal{T} \in \mathcal{F}, \forall K \in \mathcal{T}^{2}, \sharp Z_{K} \leq C \tag{4.9}
\end{equation*}
$$

- Consider now a function $v \in \mathrm{H}^{1}\left(Z_{K}\right)$. Then a main results of Clément's contribution can be stated as

$$
\begin{align*}
\left|v-\Pi^{\mathcal{C}} v\right|_{0, K} & \leq C h_{\mathcal{T}}|v|_{1, Z_{K}} \tag{4.10}\\
\left|v-\Pi^{\mathcal{C}} v\right|_{1, K} & \leq C|v|_{1, Z_{K}} \tag{4.11}
\end{align*}
$$

with a constant $C>0$ that does not depend on the particular mesh \mathcal{T} chosen in the family \mathcal{F}. If the function v is more regular $\left(v \in \mathrm{H}^{2}\left(Z_{K}\right)\right)$, we can consolidate the estimate (4.11):

$$
\begin{equation*}
\left|v-\Pi^{\mathcal{C}} v\right|_{1, K} \leq C h_{\mathcal{T}}|v|_{2, Z_{K}} \tag{4.12}
\end{equation*}
$$

Finally, if v is globally regular, we have

$$
\begin{equation*}
\left\|v-\Pi^{\mathcal{C}} v\right\|_{0, \Omega} \leq C h_{\mathcal{T}}|v|_{1, \Omega} \tag{4.13}
\end{equation*}
$$

5) An interpolation Result

- We suppose in this section that a given function u belongs to the space $\mathrm{H}_{a}^{2}(\Omega)$ defined in (2.7). It is possible to define the value $u(S)$ for a vertex $S \in \mathcal{T}^{0}$ due to the Sobolev embedding Theorem (see e.g. Brézis [Br83]) that claims that

$$
\begin{equation*}
\mathrm{H}^{2}(\Omega) \subset \mathcal{C}^{0}(\bar{\Omega}) \tag{5.1}
\end{equation*}
$$

The question is now to define or not the number $<\widetilde{\delta}_{S}, u>$ introduced in (3.6).

Proposition 4. Lack of regularity.
Let $u \in \mathrm{H}_{a}^{2}(\Omega)$ and $u_{\sqrt{ }}$ introduced in (2.3). Then $u_{\sqrt{ }}$ belongs to the space $\mathrm{H}^{1}(\Omega)$ and we have
(5.2) $\quad\left\|u_{\sqrt{ }}\right\|_{1, \Omega} \leq C\|u\|_{2, a}$

Proof of Proposition 4.

We set

$$
\begin{equation*}
v \equiv u_{\sqrt{ }} \tag{5.3}
\end{equation*}
$$

and we have the following calculus:

$$
\begin{equation*}
\nabla v=-\frac{1}{2 y \sqrt{y}} u \nabla y+\frac{1}{\sqrt{y}} \nabla u \tag{5.4}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \int_{\Omega}|v|^{2} \mathrm{~d} x \mathrm{~d} y \leq \int_{\Omega} \frac{1}{y}|u|^{2} \mathrm{~d} x \mathrm{~d} y \leq C\|u\|_{2, a}^{2} \\
& \int_{\Omega}|\nabla v|^{2} \mathrm{~d} x \mathrm{~d} y \leq 2 \int_{\Omega}\left(\frac{1}{4 y^{3}}|u|^{2}+\frac{1}{y}|\nabla u|^{2}\right) \mathrm{d} x \mathrm{~d} y \leq C\|u\|_{2, a}^{2}
\end{aligned}
$$

Due to (2.10), the relation (5.2) is established.

- Il we derive (formally !) the relation (5.4), we get

$$
\begin{equation*}
\mathrm{d}^{2} v=\frac{3}{4 y^{2} \sqrt{y}} u \nabla y \bullet \nabla y-\frac{1}{y \sqrt{y}} \nabla u \bullet \nabla y+\frac{1}{\sqrt{y}} \mathrm{~d}^{2} u \tag{5.5}
\end{equation*}
$$

and we have not sufficiently powers of y to be sure that we obtain a finite result when we integrate the square of $\mathrm{d}^{2} v$. In consequence, the function v is not necessarily continuous. Nevertheless, it is possible to define the Clement interpolate of $u_{\sqrt{ }}$ relatively to the mesh \mathcal{T} and due to (5.2), this interpolate has good regularity properties. We define our interpolate Πu by conjugation and we set

$$
\begin{equation*}
\Pi u=\left(\Pi^{\mathcal{C}} u_{\sqrt{ }}\right)^{\sqrt{ }} \tag{5.6}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\Pi u(x, y)=\sqrt{y}\left(\Pi^{\mathcal{C}} v\right)(x, y), \quad(x, y) \in K \in \mathcal{T}^{2} \tag{5.7}
\end{equation*}
$$

with $v(\bullet)$ introduced in (5.3).

- We assume that the mesh \mathcal{T} admits angles that are aware from 0 and π :

$$
\left\{\begin{array}{rl}
\exists(\alpha, \beta), 0<\alpha<\frac{\pi}{2}<\beta<\pi, & \forall \mathcal{T} \in \mathcal{F}, \tag{5.8}
\end{array} \quad \forall K \in \mathcal{T}^{2}, ~ 子 ~ \forall \theta \text { angle in } K, \alpha \leq \theta \leq \beta . ~ \$\right.
$$

We observe that the hypothesis (5.8) clearly implies (4.7). We assume also that the sizes of triangles are quasi-uniform:

$$
\begin{equation*}
\exists \gamma>0, \forall \mathcal{T} \in \mathcal{F}, \forall a \in \mathcal{T}^{1}, \gamma h_{\mathcal{T}} \leq|a| \leq h_{\mathcal{T}} \tag{5.9}
\end{equation*}
$$

with $h_{\mathcal{T}}$ introduced at the relation (1.6). We have the following interpolation theorem:

Theorem 1. An interpolation result.
We suppose that the mesh \mathcal{T} belongs to a family \mathcal{F} that satisfy the above hypotheses (5.8) and (5.9). Let $u \in \mathrm{H}_{a}^{2}(\Omega)$ and Πu defined by (5.6). Then we have

$$
\begin{equation*}
\|u-\Pi u\|_{1, a} \leq C h_{\mathcal{T}}\|u\|_{2, a} . \tag{5.10}
\end{equation*}
$$

- In order to prepare the technical points of the proof, we introduce, following [MR82] the sub-domains Ω_{+}and Ω_{-}as

$$
\begin{align*}
& \Omega_{+}=\left\{K \in \mathcal{T}^{2}, \operatorname{dist}\left(Z_{K}, \Gamma_{0}\right)>0\right\} \tag{5.12}\\
& \Omega_{-}=\Omega \backslash \Omega_{+} \tag{5.13}
\end{align*}
$$

François Dubois and Stefan Duprey

Proposition 5. Geometrical lemma.
If the family \mathcal{F} of meshes satisfy the hypotheses (5.8) and (5.9), we have

$$
\begin{align*}
& \left\{\begin{array}{l}
\exists \delta>0, \forall \mathcal{T} \in \mathcal{F}, \forall K \in \mathcal{T}^{2} \\
\\
\left(K \subset \Omega_{+}\right)
\end{array}\right. \tag{5.14}\\
& \forall \mathcal{T} \in \mathcal{F}, \forall K \in \mathcal{T}^{2},\left(K \subset \Omega_{-}\right) \Longrightarrow\left(\forall(x, y) \in K,|y| \leq 2 h_{\mathcal{T}}\right) \tag{5.15}
\end{align*}
$$

Figure 2. Triangle element K that belongs to the sub-domain Ω_{+}.

Proof of Proposition 5.

- If $\operatorname{dist}\left(Z_{K}, \Gamma_{0}\right)>0$, consider a vertex $S \in \mathcal{T}^{0}$ such that $\operatorname{dist}\left(Z_{K}, \Gamma_{0}\right)=$ $\operatorname{dist}\left(S, \Gamma_{0}\right)$ (see Figure 2). Then the vertex S belongs to a triangle T that does not belong to the family Z_{K} and $\operatorname{dist}\left(S, \Gamma_{0}\right) \geq \sin \theta \cdot \gamma h_{\mathcal{T}} \geq$ $\gamma \sin \alpha h_{\mathcal{T}}$. This property establishes the relation (5.14) with $\delta=\gamma \sin \alpha$.
- If $K \subset \Omega_{-}$and $|y| \geq 2 h_{\mathcal{T}}$ for a point $(x, y) \in K$, it is clear from the definition of Z_{K} and is illustrated by the Figure 2 that the distance between Z_{K} and the axis Γ_{0} is strictly positive, then $K \subset \Omega_{+}$and this contradiction establishes the relation (5.15).

Proof of Theorem 1.

Our proof is constructed in the same spirit that the pioneering work proposed by Mercier and Raugel.

- We first consider the term of order zero in the error $\|u-\Pi u\|_{1, a}$ (c.f. the relation (2.11)):

$$
\begin{align*}
\int_{\Omega} \frac{1}{y}|u-\Pi u|^{2} \mathrm{~d} x & \mathrm{~d} y=\int_{\Omega} \frac{1}{y}\left|u-\sqrt{y} \Pi^{\mathcal{C}} v\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{\Omega}\left|v-\Pi^{\mathcal{C}} v\right|^{2} \mathrm{~d} x \mathrm{~d} y=\left\|v-\Pi^{\mathcal{C}} v\right\|_{0, \Omega}^{2} \\
& \leq C h_{\mathcal{T}}^{2}|v|_{1, \Omega}^{2} \tag{4.13}\\
& \leq C h_{\mathcal{T}}^{2}\|v\|_{2, a}^{2} \tag{5.2}
\end{align*}
$$

$$
\begin{equation*}
\int_{\Omega} \frac{1}{y}|u-\Pi u|^{2} \mathrm{~d} x \mathrm{~d} y=\left\|v-\Pi^{\mathcal{C}} v\right\|_{0, \Omega}^{2} \leq C h_{\mathcal{T}}^{2}\|u\|_{2, a}^{2} \tag{5.16}
\end{equation*}
$$

- On the other hand, we have
$\nabla\left(\sqrt{y}\left(v-\Pi^{\mathcal{C}} v\right)\right)=\frac{1}{2 \sqrt{y}}\left(v-\Pi^{\mathcal{C}} v\right) \nabla y+\sqrt{y} \nabla\left(v-\Pi^{\mathcal{C}} v\right)$.
Then

$$
\left\{\begin{array}{l}
\int_{\Omega} y|\nabla(u-\Pi u)|^{2} \mathrm{~d} x \mathrm{~d} y \leq \tag{5.17}\\
\quad \leq \int_{\Omega}\left|v-\Pi^{\mathcal{C}} v\right|^{2} \mathrm{~d} x \mathrm{~d} y+2 \int_{\Omega} y^{2}\left|\nabla\left(v-\Pi^{\mathcal{C}} v\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y
\end{array}\right.
$$

The first term in the right hand side of (5.17) is majored with the help of estimation (5.16). We focus now on the second term. We have

$$
\left\{\begin{aligned}
\int_{\Omega} y^{2} \mid \nabla & \left.\left(v-\Pi^{\mathcal{C}} v\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y= \\
& =\left.\int_{\Omega_{+}} y^{2} \nabla\left(\mid v-\Pi^{\mathcal{C}} v\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y+\int_{\Omega_{-}} y^{2}\left|\nabla\left(v-\Pi^{\mathcal{C}} v\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y
\end{aligned}\right.
$$

- From the relation (5.16), we have for the internal sub-domain Ω_{-}:

$$
\begin{gather*}
\int_{\Omega_{-}} y^{2}\left|\nabla\left(v-\Pi^{\mathcal{C}} v\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y \leq 4 h_{\mathcal{T}}^{2} \int_{\Omega_{-}}|\nabla(v-\Pi v)|^{2} \mathrm{~d} x \mathrm{~d} y \\
\leq C h_{\mathcal{T}}^{2}|v|_{1, \Omega}^{2} \tag{4.11}\\
\leq C h_{\mathcal{T}}^{2}\|u\|_{2, a}^{2} \\
\text { (5.18) } \quad \int_{\Omega_{-}} y\left|\nabla\left(v-\Pi^{\mathcal{C}} v\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y \leq C h_{\mathcal{T}}^{2}\|u\|_{2, a}^{2} . \tag{5.18}
\end{gather*}
$$

thanks to (5.2)

- We have in the external part of the domain
$\int_{\Omega_{+}} y^{2}\left|\nabla\left(v-\Pi^{\mathcal{C}} v\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y=\sum_{K \in \mathcal{T}^{2}, K \subset \Omega_{+}} \int_{K} y^{2}\left|\nabla\left(v-\Pi^{\mathcal{C}} v\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y$.
We fix $K \subset \Omega_{+}$, we introduce ($y_{\min }, y_{\max }$) according to

$$
y_{\min }=\min _{(x, y) \in K} y, \quad y_{\max }=\max _{(x, y) \in K} y .
$$

François Dubois and Stefan Duprey

Then $y_{\text {min }} \leq y \leq y_{\text {max }}, y_{\text {max }}-y_{\text {min }} \leq h_{\mathcal{T}}$ and

$$
\begin{equation*}
y^{2} \leq y_{\max }^{2} \leq 2\left(y_{\min }^{2}+h_{\tau}^{2}\right), \quad(x, y) \in K \tag{5.19}
\end{equation*}
$$

Now if $(x, y) \in Z_{K}$, we have, due to the definition of Z_{K} and to (5.15):
$y_{\text {min }}-h_{\mathcal{T}} \leq y, \quad y \geq \delta h_{\mathcal{T}}$
and

$$
\begin{equation*}
\frac{y_{\min }^{2}+h_{\mathcal{T}}^{2}}{y^{2}} \leq \frac{1}{y^{2}}\left(2 y^{2}+2 h_{\mathcal{T}}^{2}+h_{\mathcal{T}}^{2}\right) \leq 2+\frac{3}{\delta^{2}} . \tag{5.20}
\end{equation*}
$$

- Due to the property (4.12) of Clément's interpolate and to estimate (5.20), we have

$$
\begin{array}{rl}
\int_{K} y^{2}\left|\nabla\left(v-\Pi^{\mathcal{C}} v\right)\right|^{2} & \mathrm{~d} x \mathrm{~d} y \leq 2\left(y_{\text {min }}^{2}+h_{\mathcal{T}}^{2}\right) \int_{K}\left|\nabla\left(v-\Pi^{\mathcal{C}} v\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
& \leq 2\left(y_{\text {min }}^{2}+h_{\mathcal{T}}^{2}\right) \int_{Z_{K}} C h_{\mathcal{T}}^{2}\left|\mathrm{~d}^{2} v\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
& \leq C\left(2+\frac{3}{\delta^{2}}\right) h_{\mathcal{T}}^{2} \int_{Z_{K}} y^{2}\left|\mathrm{~d}^{2} v\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
& \leq C h_{\mathcal{T}}^{2} \int_{Z_{K}}\left(\frac{1}{y^{3}}|v|^{2}+\frac{1}{y}|\nabla v|^{2}+y\left|\mathrm{~d}^{2} v\right|^{2}\right) \mathrm{d} x \mathrm{~d} y
\end{array}
$$

according to (5.5). Then, taking into account (2.10), we have

$$
\begin{equation*}
\int_{\Omega_{+}} y^{2}\left|\nabla\left(v-\Pi^{\mathcal{C}} v\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y \leq C h_{\mathcal{T}}^{2}\|u\|_{2, a}^{2} \tag{5.22}
\end{equation*}
$$

The inequality (5.11) is a consequence of (5.16), (5.17), (5.18) and (5.22). The theorem is now established.

6) Convergence of the axi-Finite element approximation.

- We suppose now that the data Ω, f and g are chosen in such a way that the solution u of the variational problem (2.13) belongs to the space $\mathrm{H}_{a}^{2}(\Omega)$: (6.1) $\quad u \in \mathrm{H}_{a}^{2}(\Omega), \quad u$ solution of problem (2.13).

Let $u_{\mathcal{T}} \in \mathrm{H}_{\mathcal{T}}^{\sqrt{~}}$ be the solution of the discrete problem (3.11).
Theorem 2. First order approximation
Under the above hypotheses, we have

$$
\begin{equation*}
\left\|u-u_{\mathcal{T}}\right\|_{1, a} \leq C h_{\mathcal{T}}\|u\|_{2, a} . \tag{6.2}
\end{equation*}
$$

Proof of Theorem 2.

It is a classical consequence of the ellipticity of the functional $a(\bullet, \bullet)$ and of Céa's lemma. We denote by κ the ellipticity constant of the functional. Thus we get

$$
\begin{aligned}
& \kappa\left\|u-u_{\mathcal{T}}\right\|_{1, a}^{2} \leq a\left(u-u_{\mathcal{T}}, u-u_{\mathcal{T}}\right) \\
& \quad \leq C a\left(u-u_{\mathcal{T}}, u-\Pi u\right) \quad \text { take } v=\Pi u-u_{\mathcal{T}} \in \mathrm{H}_{\mathcal{T}}^{\sqrt{V}} \text { in (3.11) } \\
& \quad \leq C\left\|u-u_{\mathcal{T}}\right\|_{1, a}\left\|u-\Pi u_{\mathcal{T}}\right\|_{1, a} .
\end{aligned}
$$

Then $\left\|u-u_{\mathcal{T}}\right\|_{1, a} \leq C\|u-\Pi u\|_{1, a} \leq C h_{\mathcal{T}}\|u\|_{2, a}$ due to the theorem 1 .

7) References.

[Br85] H. Brézis. Analyse fonctionnelle. Théorie et applications, Masson, Paris, 1983.
[CR72] P.G. Ciarlet, P.A. Raviart. "General Lagrange and Hermite interpolation in \mathbb{R}^{n} with applications to finite element methods", Archive for Rational Mechanics and Analysis, vol. 46, p. 177-199, 1972.
[Ci78] P.G. Ciarlet. The Finite Element Method for Elliptic Problems, Series "Studies in Mathematics and its Applications", North-Holland, Amsterdam, 1978.
[Cl75] P. Clément. "Approximation by finite element functions using local regularization", R.A.I.R.O Analyse numérique, vol. 9, n${ }^{\circ} 2$, p. 77-84, 1975.
[DD06] F. Dubois, S.Duprey. "Eléments finis naturels pour l'axisymétrique", reseauch report, may 2006.
[MR82] B. Mercier, G. Raugel. "Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en (r, z) et séries de Fourier en $\theta^{\prime \prime}$, R.A.I.R.O Analyse numérique, vol. 16, n ${ }^{\circ} 4$, p. 405-461, 1982.

