European Finite Element Fair 4 ETH Zürich, 2-3 June 2006

A natural finite element for axisymmetric problem
François Dubois
CNAM Paris and University Paris South, Orsay
conjoint work with
Stefan Duprey
University Henri Poincaré Nancy and EADS Suresnes.

1) Axi-symmetric model problem
2) Axi-Sobolev spaces
3) Discrete formulation
4) Numerical results for an analytic test case
5) About Clément's interpolation
6) Numerical analysis
7) Conclusion

Motivation : solve the Laplace equation in a axisymmetric domain Find a solution of the form $u(r, z) \exp (i \theta)$
Change the notation : $x \equiv z, y \equiv r$
Consider the meridian plane Ω of the axisymmetric domain $\partial \Omega=\overline{\Gamma_{0}} \cup \overline{\Gamma_{\mathrm{D}}} \cup \overline{\Gamma_{\mathrm{N}}}, \Gamma_{0} \cap \Gamma_{\mathrm{D}}=\emptyset, \Gamma_{0} \cap \Gamma_{\mathrm{N}}=\emptyset, \Gamma_{\mathrm{D}} \cap \Gamma_{\mathrm{N}}=\emptyset$, Γ_{0} is the intersection of $\bar{\Omega}$ with the "axis" $y=0$

Then the function u is solution of
$-\frac{\partial^{2} u}{\partial x^{2}}-\frac{1}{y} \frac{\partial}{\partial y}\left(y \frac{\partial u}{\partial y}\right)+\frac{u}{y^{2}}=f \quad$ in Ω
Boundary conditions : $\quad u=0 \quad$ on $\Gamma_{\mathrm{D}}, \quad \frac{\partial u}{\partial n}=g \quad$ on Γ_{N}

Test function v null on the portion Γ_{D} of the boundary Integrate by parts relatively to the measure $y \mathrm{~d} x \mathrm{~d} y$.

Bilinear form

$$
a(u, v)=\int_{\Omega} y \nabla u \bullet \nabla v \mathrm{~d} x \mathrm{~d} y+\int_{\Omega} \frac{u v}{y} \mathrm{~d} x \mathrm{~d} y
$$

Linear form $\quad<b, v>=\int_{\Omega} f v y \mathrm{~d} x \mathrm{~d} y+\int_{\Gamma_{\mathrm{N}}} g v y \mathrm{~d} \gamma$.
Two notations:
$u_{\sqrt{ }}(x, y)=\frac{1}{\sqrt{y}} u(x, y), \quad u^{\sqrt{ }}(x, y)=\sqrt{y} u(x, y), \quad(x, y) \in \Omega$.
Sobolev spaces:

$$
\begin{aligned}
& \mathrm{L}_{a}^{2}(\Omega)=\left\{v: \Omega \longrightarrow \mathbb{R}, v \sqrt{ } \in \mathrm{~L}^{2}(\Omega)\right\} \\
& \mathrm{H}_{a}^{1}(\Omega)=\left\{v \in \mathrm{~L}_{a}^{2}(\Omega), v_{\sqrt{ }} \in \mathrm{L}^{2}(\Omega),(\nabla v) \sqrt{ } \in\left(\mathrm{L}^{2}(\Omega)\right)^{2}\right\} \\
& \mathrm{H}_{a}^{2}(\Omega)=\left\{\begin{array}{c}
v \in \mathrm{H}_{a}^{1}(\Omega), v_{\sqrt{ } \sqrt{ } \sqrt{ } \in \mathrm{L}^{2}(\Omega),(\nabla v)_{\sqrt{ }} \in\left(\mathrm{L}^{2}(\Omega)\right)^{2},}^{\left(\mathrm{d}^{2} v\right) \sqrt{ } \in\left(\mathrm{L}^{2}(\Omega)\right)^{4}}
\end{array}\right\} .
\end{aligned}
$$

Norms and semi-norms:

$$
\begin{aligned}
&\|v\|_{0, a}^{2}=\int_{\Omega} y|v|^{2} \mathrm{~d} x \mathrm{~d} y \\
&|v|_{1, a}^{2}=\int_{\Omega}\left(\frac{1}{y}|v|^{2}+y|\nabla v|^{2}\right) \mathrm{d} x \mathrm{~d} y, \quad\|v\|_{1, a}^{2}=\|v\|_{0, a}^{2}+|v|_{1, a}^{2} \\
&|v|_{2, a}^{2}=\int_{\Omega}\left(\frac{1}{y^{3}}|v|^{2}+\frac{1}{y}|\nabla v|^{2}+y\left|\mathrm{~d}^{2} v\right|^{2}\right) \mathrm{d} x \mathrm{~d} y, \\
&\|v\|_{2, a}^{2}=\|v\|_{1, a}^{2}+|v|_{2, a}^{2}
\end{aligned}
$$

The condition $\quad u=0 \quad$ on Γ_{0}
is incorporated inside the choice of the axi-space $\mathrm{H}_{a}^{1}(\Omega)$.
Sobolev space that takes into account the Dirichlet boundary condition

$$
V=\left\{v \in \mathrm{H}_{a}^{1}(\Omega), \gamma v=0 \text { on } \Gamma_{\mathrm{D}}\right\} .
$$

Variational formulation: $\quad\left\{\begin{array}{l}u \in V \\ a(u, v)=\langle b, v>, \forall v \in V\end{array}\right.$
We observe that $\quad a(v, v)=|v|_{1, a}^{2}, \quad \forall v \in \mathrm{H}_{a}^{1}(\Omega)$,
The existence and uniqueness of the solution of problem is (relatively !) easy according to the so-called Lax-Milgram-Vishik's lemma.

See the article of B. Mercier and G. Raugel !

Very simple, but fundamental remark
Consider $\quad v(x, y)=\sqrt{y}(a x+b y+c), \quad(x, y) \in K \in \mathcal{T}^{2}$,
Then we have $\quad \sqrt{y} \nabla v(x, y)=\left(a y, \frac{1}{2}(a x+3 b y+c)\right)$.
P_{1} : the space of polynomials of total degree less or equal to 1
We have

$$
v_{\sqrt{ }} \in P_{1} \Longrightarrow(\nabla v)^{\sqrt{ }} \in\left(P_{1}\right)^{2}
$$

A two-dimensional conforming mesh \mathcal{T}
\mathcal{T}^{0} set of vertices
\mathcal{T}^{1} set of edges
\mathcal{T}^{2} set of triangular elements.

Linear space $\quad P_{1}^{\sqrt{ }}=\left\{v, v_{\sqrt{ }} \in P_{1}\right\}$.
Degrees of freedom $\left\langle\widetilde{\delta}_{S}, v>\right.$ for v regular, $S \in \mathcal{T}^{0}:\left\langle\widetilde{\delta}_{S}, v>=v_{\sqrt{ }}(S)\right.$
Proposition 1. Unisolvance property.
$K \in \mathcal{T}^{2}$ be a triangle of the mesh \mathcal{T},
Σ the set of linear forms $\left\langle\widetilde{\delta}_{S}, \bullet>, S \in \mathcal{T}^{0} \cap \partial K\right.$
$P_{1}^{\sqrt{ }}$ defined above.
Then the triple $\left(K, \Sigma, P_{1}^{\sqrt{ }}\right.$) is unisolvant.
Proposition 2. Conformity of the axi-finite element The finite element ($K, \Sigma, P_{1}^{\sqrt{V}}$) is conforming in space $\mathcal{C}^{0}(\bar{\Omega})$.

Proposition 3. Conformity in the axi-space $\mathrm{H}_{a}^{1}(\Omega)$.
The discrete space $\mathrm{H}_{\mathcal{T}}^{\sqrt{ }}$ is included in the axi-space $\mathrm{H}_{a}^{1}(\Omega)$:

$$
\mathrm{H}_{\mathcal{T}}^{\mathcal{V}} \subset \mathrm{H}_{a}^{1}(\Omega) .
$$

ETH Zürich, 2-3 June 2006
$\Omega=] 0,1\left[{ }^{2}, \quad \Gamma_{D}=\varnothing\right.$
Parameters $\alpha>0, \beta>0$,
Right hand side: $f(y, x) \equiv y^{\alpha}\left[\left(\alpha^{2}-1\right) \frac{x^{\beta}}{y^{2}}+\beta(\beta-1) x^{\beta-2}\right]$
Neumann datum:
$g(x, y)=\alpha$ if $y=1,-\beta y^{\alpha} x^{\beta-1}$ if $x=0, \beta y^{\alpha}$ if $x=1$.
Solution: $u(x, y) \equiv y^{\alpha} x^{\beta}$.

Comparison between
the present method (DD)
the use of classical P_{1} finite elements (MR)

ETH Zürich, 2-3 June 2006

ETH Zürich, 2-3 June 2006

ETH Zürich, 2-3 June 2006

Numerical study of the convergence properties
Test cases :

$$
\begin{aligned}
& \alpha=1 / 4, \alpha=1 / 3, \alpha=2 / 3 \\
& \beta=0, \beta=1, \beta=2
\end{aligned}
$$

Three norms: $\quad\|v\|_{0, a} \quad|v|_{1, a} \quad\|v\|_{\ell_{\infty}}$
Order of convergence easy (?) to see.
Example : $\beta=0$ and $\alpha=2 / 3$:
our axi-finite element has a rate of convergence $\simeq 3$ for the $\|\bullet\|_{0, a}$ norm.
Synthesis of these experiments:
same order of convergence than with the classical approach errors much more smaller!

$\log _{2}\left(\left\|u-u_{h}\right\|_{L_{a}^{2}(\Omega)}\right)$

ETH ZÜrich, 2-3 June 2006

ETH Zürich, 2-3 June 2006

Discrete space for the approximation of the variational problem:

$$
V_{\mathcal{T}}=\mathrm{H}_{\mathcal{T}}^{\sqrt{ }} \cap V .
$$

Discrete variational formulation: $\quad\left\{\begin{array}{l}u_{\mathcal{T}} \in V_{\mathcal{T}} \\ a\left(u_{\mathcal{T}}, v\right)\end{array}=\left\langle b, v>, \forall v \in V_{\mathcal{T}}\right.\right.$.
Estimate the error $\left\|u-u_{\mathcal{T}}\right\|_{1, a}$
Study the interpolation error $\left\|u-\Pi_{\mathcal{T}} u\right\|_{1, a}$
What is the interpolate $\Pi_{\mathcal{T}} u$??
Proposition 4. Lack of regularity.
Hypothesis: $u \in \mathrm{H}_{a}^{2}(\Omega)$.
Then $u_{\sqrt{ }}$ belongs to the space $\mathrm{H}^{1}(\Omega)$ and $\quad\left\|u_{\sqrt{ }}\right\|_{1, \Omega} \leq C\|u\|_{2, a}$

Introduce $\quad v \equiv u_{\sqrt{ }} . \quad$ Small calculus: $\quad \nabla v=-\frac{1}{2 y \sqrt{y}} u \nabla y+\frac{1}{\sqrt{y}} \nabla u$.
Then $\quad \int_{\Omega}|v|^{2} \mathrm{~d} x \mathrm{~d} y \leq \int_{\Omega} \frac{1}{y}|u|^{2} \mathrm{~d} x \mathrm{~d} y \leq C\|u\|_{2, a}^{2}$
$\int_{\Omega}|\nabla v|^{2} \mathrm{~d} x \mathrm{~d} y \leq 2 \int_{\Omega}\left(\frac{1}{4 y^{3}}|u|^{2}+\frac{1}{y}|\nabla u|^{2}\right) \mathrm{d} x \mathrm{~d} y \leq C\|u\|_{2, a}^{2}$.

Derive (formally !) two times:

$$
\mathrm{d}^{2} v=\frac{3}{4 y^{2} \sqrt{y}} u \nabla y \bullet \nabla y-\frac{1}{y \sqrt{y}} \nabla u \bullet \nabla y+\frac{1}{\sqrt{y}} \mathrm{~d}^{2} u
$$

Even if u is regular, v has no reason to be continuous.

Vicinity Ξ_{S} of the vertex $S \in \mathcal{T}^{0}$.
Degree of freedom

$$
<\delta_{S}^{\mathcal{C}}, v>=\frac{1}{\left|\Xi_{S}\right|} \int_{\Xi_{S}} v(x) \mathrm{d} x \mathrm{~d} y, \quad S \in \mathcal{T}^{0}
$$

Clément's interpolation:

$$
\Pi^{\mathcal{C}} v=\sum_{S \in \mathcal{T}^{0}}<\delta_{S}^{\mathcal{C}}, v>\varphi_{S}
$$

ETH ZÜrich, 2-3 June 2006

Vicinity Z_{K} for a given triangle $K \in \mathcal{T}^{2}$.

$$
\begin{aligned}
\left|v-\Pi^{\mathcal{C}} v\right|_{0, K} \leq C h_{\mathcal{T}}|v|_{1, Z_{K}}, \quad & \left|v-\Pi^{\mathcal{C}} v\right|_{1, K} \leq C|v|_{1, Z_{K}} \\
& \left|v-\Pi^{\mathcal{C}} v\right|_{1, K} \leq C h_{\mathcal{T}}|v|_{2, Z_{K}}
\end{aligned}
$$

ETH ZÜrich, 2-3 June 2006

Interpolate Πu by conjugation: $\quad \Pi u=\left(\Pi^{\mathcal{C}} u_{\sqrt{ }}\right)^{\sqrt{ }}$
id est $\quad \Pi u(x, y)=\sqrt{y}\left(\Pi^{\mathcal{C}} v\right)(x, y), \quad(x, y) \in K \in \mathcal{T}^{2}$
Theorem 1. An interpolation result.
Relatively strong hypotheses concerning the mesh \mathcal{T} Let $u \in \mathrm{H}_{a}^{2}(\Omega)$ and Πu defined above. Then we have $\quad\|u-\Pi u\|_{1, a} \leq C h_{\mathcal{T}}\|u\|_{2, a}$.

$$
\begin{array}{rl}
\int_{\Omega} \frac{1}{y}|u-\Pi u|^{2} & \mathrm{~d} x \mathrm{~d} y=\int_{\Omega} \frac{1}{y}\left|u-\sqrt{y} \Pi^{\mathcal{C}} v\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{\Omega}\left|v-\Pi^{\mathcal{C}} v\right|^{2} \mathrm{~d} x \mathrm{~d} y=\left\|v-\Pi^{\mathcal{C}} v\right\|_{0, \Omega}^{2} \\
& \leq C h_{\mathcal{T}}^{2}|v|_{1, \Omega}^{2} \\
& \leq C h_{\mathcal{T}}^{2}\|u\|_{2, a}^{2}
\end{array}
$$

$$
\begin{aligned}
& \nabla\left(\sqrt{y}\left(v-\Pi^{\mathcal{C}} v\right)\right)=\frac{1}{2 \sqrt{y}}\left(v-\Pi^{\mathcal{C}} v\right) \nabla y+\sqrt{y} \nabla\left(v-\Pi^{\mathcal{C}} v\right) \\
& \int_{\Omega} y|\nabla(u-\Pi u)|^{2} \mathrm{~d} x \mathrm{~d} y \leq \\
& \quad \leq \int_{\Omega}\left|v-\Pi^{\mathcal{C}} v\right|^{2} \mathrm{~d} x \mathrm{~d} y+2 \int_{\Omega} y^{2}\left|\nabla\left(v-\Pi^{\mathcal{C}} v\right)\right|^{2} \mathrm{~d} x \mathrm{~d} y \\
& \Omega_{+}=\left\{K \in \mathcal{T}^{2}, \operatorname{dist}\left(Z_{K}, \Gamma_{0}\right)>0\right\} \quad \Omega_{-}=\Omega \backslash \Omega_{+} .
\end{aligned}
$$

Triangle element K that belongs to the sub-domain Ω_{+}.

Theorem 2. First order approximation relatively strong hypotheses concerning the mesh \mathcal{T} u solution of the continuous problem: $u \in \mathrm{H}_{a}^{2}(\Omega)$, Then we have $\quad\left\|u-u_{\mathcal{T}}\right\|_{1, a} \leq C h_{\mathcal{T}}\|u\|_{2, a}$.

Proof: classical with Cea's lemma!
"Axi-finite element"

Interpolation properties founded of the underlying axi-Sobolev space

First numerical tests: good convergence properties
Numerical analysis based on Mercier-Raugel contribution (1982)
See also Gmati (1992), Bernardi et al. (1999)
May be all the material presented here is well known ?!

