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[Abstract]: The simulation of two-phase turbulent flows is currently an important 
scientific and industrial challenge. Among the many issues underlying the modeling of that 
complex phenomenology, the accumulation of solid particles in preferential zones and the 
interaction of particles with gas turbulence are of particular interest, because they have a 
significant impact on the overall performance of the studied system.The objective of this 
work is to propose an original numerical model to solve problems of particulate 
concentration occurring in laminar or turbulent convergent two-phase flows. The 
formulation, expressed in the Eulerian framework, uses a particulate pressure and a pseudo 
particulate viscosity. Firstly the new hyperbolic system for pure particulate gas is analyzed 
in terms of consistency and numerical robustness. Existence of entropy and appropriate 
numerical schemes for the Riemann problem are discussed and tested in a one dimensional 
shock tube application. Secondly the whole system with the pseudo viscous terms and the 
source terms is explained. The coupling with the gas flow is especially derived in laminar or 
turbulent case. In particular the development of a space marching Parabolized Navier 
Stokes code for 2D axi-symmetric flow is presented. Implementation of the method in a fully 
3D time dependent Navier Stokes code is under work. First encouraging applications of the 
axi-symmetric PNS code are presented. Comparisons with a classical two-phase flow 
formulation, without particulate pressure are performed. It indicates how efficient the new 
model is regarding the undesired axial accumulation of heavy particles. Also different 
Riemann solvers are tested. 

Nomenclature 

lccc r ,,  = pseudo sound speed  
d = particle diameter 
DNS = Direct Numerical Simulation 
E = total energy 
H = enthalpy 

fp kkk ,,  = fluctuating kinetic energy 
M = Mach number 
NS = Navier Stokes 

pPP,  = pressure 
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kpP  = production term of  pk
PNS = Parabolized Navier Stokes 

ifip UUwvu ,, ,,,,  = mean velocity components 

ifip uu ,, ','  = fluctuating velocity components 
T = temperature  

*T  = integral time scale  
γ  = tensor parameter 3/5=γ   
ι  = internal particle energy 

fp ρρρ ,,  = density 

pν  = pseudo cinematic viscosity 

>< pτ  = mean particle relaxation time  
 
Subscript: 
 p = particulate 

f  = fluid or gas 

 r = right 

l  = left 

i or  = Cartesian coordinates j

I. Problem position 
The Eulerian formulation is very practical for engineer modelling of two-phase flows. The approach suits a wide 

range of particles in turbulent fluid and is currently recommended before using more time consuming modelling like 
lagrangian or DNS (see Ref. 1). The Eulerian framework allows the use of the same mesh for gas and particles, and 
is generally less expensive in computer time and memory. In aerospace applications, like two-phase rocket plume 
for instance, particles can be considered as a dispersed phase, where volume occupancy or collisions can be 
neglected. As a matter of fact, the particulate flow is modelled like a gas without pressure. This simplifies the 
equations, and namely for the Riemann problem, a simple “donor cell” scheme is sufficient.  

One drawback, which may also appear in Lagrangian formulation, is that particle accumulation in preferential 
region can occur in the simulation. Because of the complexity of the phenomenology, engineers have to face a real 
problem: is this accumulation a numerical artefact related to the method? or is it a physical description? The answer 
is not obvious because concentrations occur for specific configurations in the physical world.  

For a convergent axi-symmetric flow of a particulate gas without pressure (with the eulerian formulation), the 
axis is a singularity where particulate density in the mixture goes to infinity, as shown by Saurel2. 

The proposed solution is to introduce a particulate pressure, which was also done by Saurel & Abgrall3, 
Simonin4, Simoes & al5,6,7, in different ways. 

In the present work, this particulate pressure is only related to the fluctuating particle velocity and density in the 
mixture. In particular, there is no direct relation between that pressure and the particle internal energy  ι  , which 
exhibits fundamental differences with a gas pressure. The fluctuating velocity applies in laminar gas flow (it does 
then represent the Brownian motion), and in turbulent gas flow (it is then added the coupling with turbulent gas 
velocity fluctuations by the covariance). The model follows the engineering methods proposed in the book of 
Oesterlé8, and is implemented in an existing two-phase turbulent and reactive PNS code. 

II. Hyperbolic system of conservation laws 
We introduce the density ρ  of the gas of particles, the velocity   u , internal energy  ι  and turbulent kinetic 

energy  Total energy is the sum of kinetic energy, internal energy and turbulent kinetic energy:  k

(1)        .
2
1 2 kuE ++= ι  
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The variables of specific mass ρ , momentum uρ , and total massic energy Eρ  are naturally conserved. 
Moreover, we suppose here that the volumic turbulent kinetic energy kρ  is also conserved. We can introduce a 
vector W  with four coordinates according to  

(2)                 .),,,( tkEuW ρρρρ=
The associated vector flux  follows classical results of gas dynamics (see e g Landau and Lifchitz9). We 

have:  
)(Wf

(3)                 .),,,()( 2 tukpuuEpuuWf ρρρρ ++=
Then the particle-gas system can be written in one space dimension as a conservative system of a four-

dimensional vector  ),( txW

(4)    .0))(( =
∂
∂

+
∂
∂ Wf

tt
W

 

The system is mathematically entirely defined if the pressure can be evaluated from the conserved variables. 
Following Hug10, we set   
(5)                    kp ργ )1( −=  
with 1>γ  a constant that parameterizes the model. The pressure does not depend anymore on the internal 

energy as in an usual gas (see e g Ref. 9) and the physical hypothesis is constitutive of what we call here “particle-
gas system”. 

The previous system is hyperbolic and exhibits four eigenvalues:  
(6)    cuucu +≡<≡=<−≡ 4321 λλλλ  
The sound velocity  is simply obtained by a non-standard relation  c

(7)          kpc )1( −== γ
ρ

 

as proven in Ref. 11  
The fields numbered with indexes 1 and 4 are genuinely nonlinear (e g the book of Godlewski and Raviart12). 

The second (identical to the third) field is linearly degenerated. The corresponding Riemann invariants jβ  (that are 
constant in rarefaction waves and inside contact discontinuities) are given according to  

(8)      

{ }
{ }

{ }⎢
⎢
⎢

⎣

⎡

−−∈
∈

−+∈

.
2

4
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2
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log,log,
,,

log,log,

ριρβ
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ριρβ
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A shock wave of velocity σ  between a given state  and an “aval” state W  satisfies the following algebraic 
relations11: 

lW

(9)     

⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢

⎣

⎡

−=−

−=
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l

lll
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ρρ

ιι
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ρρ
ρρ
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c
cp

cuu

kk
cuu

 

III. Riemann problem 
Given a pair of states  the Riemann problem is the Cauchy problem associated with the system of 

conservation laws Eq. (4) and the initial condition  
),( rWWl
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(10)   , ),()0,( rWWxW l=

and the solution is searched as self-similar ).(),(
t
xVtxW =  

It is supposed to be composed by four constant states separated by simple waves.  rWWWW ,,, *
2

*
1l

From the previous section (and details established in Ref. 13) the numerical resolution of the Riemann problem 
Eq. (4) and Eq. (10) consists essentially in finding the common pressure  and the common velocity  of the 

two intermediate states  and . On the one hand, the state  belongs to the 1-wave issued from : 

*p *u

lW*
1W *

2W *
1W

(11)      =*u

⎢
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on the other hand, the  belongs to the 4-wave arriving to : *
2W rW

(12)      =*u

⎢
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The system of Eq. (11) and Eq. (12) is then solved with a standard Newton algorithm.  
After the intermediate  velocity and pressure  are determined, the structure of the solution of the 

Riemann problem Eq. (4) and Eq. (10) is elementary to derive13. 
*u *p

 
Godunov scheme 
One introduces the solution ),,( rWWV lξ  of the Riemann problem with initial condition (10) as a function of 

the similitude velocity 
t
x

≡ξ . It is classical (see e. 

g. Ref. 12 or Ref. 14) that the flux function  
initially proposed by Godunov15 is given by the 
relation  

G
rlΦ

(13)     )),,0(( r
G
r WWVf ll =Φ

The numerical results of a first order scheme 
satisfying the following discrete volume framework  

(14)   +
Δ
−+

t
WW n

j
n
j

11

   

0
)),,0(()),,0(( 11 =

Δ
− −+

x
WWVfWWVf jjjj  

 are presented on Fig. 1 
 
Roe scheme 
We have introduced in Ref. 11 a Roe matrix 

associated with the system defined by the 
constitutive relations Eq. (1) to Eq. (5). First, after 
the pioneering work of P. Roe16, we introduce the 
total enthalpy H  according to  

 
Figure 1. Approximate solution of particle-gas system with the 
Godunov scheme  
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(15)    
ρ
pEH +=  

and consider the following mean values:  

(16)          
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Then a so-called “Roe state”  is entirely 
defined and the associated sound velocity is 
simply given according to 

*W

*)1(* kc −= γ . 

The jacobian matrix  is given by the 
relation 

*)(Wdf

(17)  =*)(Wdf  
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⎟
⎟
⎟

⎠

⎞

⎜⎜
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⎜
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γ

and it satisfies the fundamental relation introduced in Ref. 16: 
(18)    )()()()( *

ll WWWdfWfWf rr −•=−
and is proven in Ref. 11. 
After evaluation of the previous matrix, the associated eigenvectors such that  *

jr

(19)     
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are easy to specify. We have in particular 
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Then we can decompose the discontinuity lWWr −  along these waves,  

(21)     ∑
=

=

=−
4

1

*
j

j
jjr rWW αl

and we obtain: 

 
Figure 2. Approximate solution of particle-gas system with the 
Roe scheme  
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(22)    
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The Roe-flux  is then easy to determine. The idea is to solve the Riemann problem between the two states 

 and with the flux  replaced by the following affine function: 

R
rlΦ

lW rW f

(23)        )()()()( *
lll WWWdfWfWr −•+=Φ )()()( *

rr WWWdfWf −•+≡
We have after some lines of algebra (see Ref. 12 or Ref. 14): 

(24)      =ΦR
rl
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⎢
⎢
⎢
⎢

⎣

⎡
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r

r α
αl

l

The results of the discrete integration are presented on Fig. 2. 
 
Sanders and Prendergast splitting scheme 
Using splitting scheme is very popular in computational fluid dynamics. In Ref. 10, the popular splitting scheme 

initially proposed by Sanders and Prendergast17 for the perfect gas has been generalized for gas-particle modelling. 
The physical flux function  introduced in Eq. (3) is split into two parts: f

(25)     )()()( WfWfWf −+ +=

With the following classical conditions, parameterized by the Mach number 
c
uM ≡  and taking into account 

the particular value of Eq. (7) of the particulate sound velocity, we obtain for 1>M : 

(26)    ⎢  
⎣

⎡
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For the “subsonic” cases, following the approach of Ref. 17 where the particulate velocity is modelized by a 3 
points discrete distribution {u-c , u , u+c}, we obtain  

 When , 01 ≤≤− M
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When , 10 ≤≤ M
(28) 
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Then the numerical splitting scheme    is 
defined according to  

SP
rlΦ

(29)     ).()( r
SP
r WfWf −+ +=Φ ll

The results of the discrete simulation are presented in Fig. 3: 
 
Comparison of the 1D results : 
We note that the two flux difference decomposition of Godunov and Roe are very similar, whereas the Sanders 

& Prendergast flux splitting exhibits more numerical viscosity. Nevertheless the three test cases indicate that the 
formulation is robust and validated for basic non viscous flow. This allows more complex developments and 
applications.  

 
Figure 3. Approximate solution of the Sanders-Prendergast 
splitting scheme.  

IV. Complete formulation in the PNS code 
We describe here the specific features of the particulate pressure model, implemented in an axi-symmetric, two-

phase, reactive and turbulent PNS code18: 
 
Stress tensor and pseudo particle viscosity: 
Let us start with the kinetic stress tensor for particle flow, described in Ref. 8, and proposed by Simonin19. It is 

expressed here in classical tensor notation and contraction: 

(30)    =〉〈 jpip uu ,, '' )()1()( ,,,

l

lp
ppij

i

jp

j

ip
p x

U
k

x
U

x
U

∂
∂

+−+
∂
∂

+
∂
∂

− νδγν , 

 where  are the Cartesian components of mean and fluctuating particle velocity. By definition, the 

trace of the tensor must be , and is the fluctuating kinetic energy, identical to  in the previous section, but 
the subscript 

ipip uU ,, ',

pk2 pk k
p  is now needed to distinguish with the gas variables. This leads to the value of the parameterγ : 

(31)    
3
5

=γ  

The energy is defined by  pk

(32)    ).(
2
1 222

pppp wvuk ′+′+′=  

By setting then Eq. (5): 
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(33)    ,
3
2

ppp kP ρ=  

we recognize some similarities with the Reynolds stress tensor as described by Wilcox20 and the Boussinesq 
approximation. Following Simonin19, the particle pseudo-viscosity is: 

(34)    .
3
2

3
1 * 〉〈+= ppfpp kTk τν  

The first right-hand term is the direct relation with the turbulent gas (it is 0 in laminar gas flow).  is the trace 

of the covariance matrix, where subscript refers to the gas (fluid): 
fpk

f
(35)     .'' ,, 〉〈= jpiffp uuk

*T is related to the Taylor integral time scale , and can depend on particle inertia: We retain from Ref. 8 

(36)    .2.0* cor
k

T
f

f

ε
=  

fk is the gas turbulent kinetic energy and fε the associated dissipation. 1<cor  is a correction term to take 
account of crossing trajectory effect8. 

The 2nd right hand term in Eq. (34) is related to the mean particle relaxation time, which is a fundamental 
parameter.  

(37)    ,
3

)5.0(4 ,

〉〉〈〈
+

=〉〈
RDf

fmaterialp
p UC

d
ρ

ρρ
τ  

Where  is the particle diameter, the mean particle drag coefficient, d 〉〈 DC 〉〈 RU  the mean relative velocity 

fpR V
r

−VU
r

=  , and materialp,ρ is the material density of the particle. The variable pτ  characterizes the time 

response of the particle to fluid solicitation, it depends on inertia and drag force. 
  
Governing equation: 
At this step, we can reconstruct the governing equation as for the NS equation of gas with an additional k 

equation. Note that the pressure term in Eq. (33) is extracted from the tensor of Eq. (30) multiplied by pρ , to form 

the conservative variables for momentum and total energy, whereas for the equation, Eq. (33) is maintained in 
the production term.  

pk

The following system is obtained for particles. It contains 5 conservation equations: one for mass, 2 for 
momentum (2D cylindrical), one for total energy, and one for fluctuating kinetic energy : pk

(38)    

),,,,,(

),,,,(

0))(())((

2

2

ppppppppppppp

ppppppppppppp

yxyx

vkvHPvvuvF

ukuHvuPuuE

F
J

E
J

FF
J

E
J

E

SFvFrEvEr

p

p

ρρρρρ

ρρρρρ

ηηξξ
ηξ

+=

+=

+=+=

=′′+
∂
−∂

+
∂
−∂

 

The expression of total enthalpy , consistent with Eq. (1) and Eq. (3) is: pH
(39)    ,

3
5)(

2
1)(

2
1 2222

ppppp
p

p
pppppp kvuTC

P
kvuTCH +++=++++=

ρ
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The system of Eq. (38) is written in a 
conservative form (multiplication by radial 
coordinate r, inside the derivatives).A classical 
transformation is used    ),( rx ),( ηξ  where 

x=ξ is the axial direction and η  is a non 
dimensional function of r and rmax(x), with a 
stretching function to refine mesh around a specified 
radial position. 

The Eulerian fluxes F are computed in 
cylindrical coordinates for the Roe scheme or the 
flux splitting scheme, following the state of the art 
described in section III. 

Ev  and Fv  are the pseudo viscous fluxes, also 
originating from the tensor of Eq. (30) for 
momentum.  Note that we apply the PNS 
approximation by setting 0=Ev  and by 
implementing a space-marching process in the x 
direction (Fig. 4). The gas and particle meshes are 
the same. 

 
System closure: 
The inter-particular collisions are neglected, so the associated dissipation term in the equation is 0.  pk
Moreover, the third order correlation tensor is set to 0. 
We choose not to add a supplementary equation for the covariance , but to propose a closure based on Tchen 

theory21:  
fpk

(40)    ,
1

2
*St

k
k f

fp +
=  

Where is the Stokes number: *St

(41)    .*
*

T
St p 〉〈

=
τ

 

  
Source terms: 
The S ′′  term in Eq. (38) involves different source terms that will be detailed. The first one is the production 

term in the  equation: The same formalism as for gas turbulence (see for instance Ref. 20) is used (production 
term on left hand side, tensor notation: this is a contraction of 2 tensors, giving a real): 

pk

(42)    ,'' ,
,,

j

ip
jpippkp x

U
uuP

∂
∂

⊗〉〈= ρ  

kpP is expressed in 2D cylindrical coordinates in the  PNS code. The expression, replaced right hand side in Eq. 
(38), becomes: 

(43)     ) (
3
2 2

p ppppkp VdivVdivPP
rr

νρ−−=− ( ) ( )( ),22
p gradVprotVpp ++ νρ  

where the first right hand side term plays an important role for convergent particle flows. The velocity 
divergence pVdiv

r
 is then negative, and the production term of is increased, so that pressure and pseudo 

viscosity are increased, acting as accumulation solvers.  
pk

Following Oesterlé8 and Simonin19 the source term (on left hand side) in the  equation is: pk

PNS mesh

axis x

Flow direction

Current cell

1rst Cell on the axis 
Interface area on axis=0 Flux= 0

R
ad

iu
s 

r

PNS mesh

axis x

Flow direction

Current cell

1rst Cell on the axis 
Interface area on axis=0 Flux= 0

R
ad

iu
s 

r

 
Figure 4. PNS mesh. 
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(44)    ),2(' fpp
p

p
kp kkM −

〉〈
=

τ
ρ

 

In the total particle energy equation, it is correct to repeat the term in Eq. (44) and to add the more classical term 
of the work of the drag force (source term on left hand side): 

(45)    Rp
p

p
workdrag UUM

rr
.' _ 〉〈

=
τ
ρ

 

Also two classical source terms, the heat exchanges between gas and particles and the particle radiation are not 
detailed here.   

The important coupling in momentum equations is (for the velocity components i=1,2; and source term on left 
hand side): 

(46)    ,' ,, iR
p

p
ip UM

〉〈
=

τ
ρ

 

Where is defined as: iRU ,

(47)     ,,,,, iDifipiR UUUU −−=

The expression introduces the drift velocity , explained by Oesterlé8 and proposed by Simonin22 is 
related to the turbulent diffusion of particles, which can be caused by particulate density gradient, non-
homogeneous turbulence, or physical accumulation due to vortex. We also add the formulation for drift velocity of 
Bocksell and Loth23, based on the gradient of the gas turbulent kinetic energy, and the eddy and particle lifetimes 
(see section V).  

iDU , iDU ,

Note also two classical additional source terms in the radial velocity equation, due to conservative formulation 
and Reynolds stress θθσ  in the orthogonal direction, not detailed here.  

 
Coupling with the gas: 
The gas PNS system with a turbulent ),( ffk ε  model, is a 6-equations system (one for mass, 2 for momentum 

(2D cylindrical), one for total energy, one for fluctuating kinetic energy   and one for the dissipationfk fε . In the 
gas momentum and the gas total energy equations, the coupling terms are exactly the opposite. For example we 
have for one particle size type: 

(48)     ipif MM ,, '' −=
The PNS code can deal with several particle types (characterized by different sizes). They act independently and 

coupling is only performed through the gas. The gas source term in Eq. (48) is then the sum of the particle 
contributors. 

Following Ref. 8, the coupling with the  equation for gas is not straightforward: firstly it introduces the drift 
velocity, secondly it distinguishes the turbulence generated by the wake of each particle, from the turbulence at 
large scale. The added expression is: (source term on left hand side in the gas turbulent energy equation) 

fk

fk

(49)    ).2(' RDffp
p

p
kf UUkkM

rr
+−

〉〈
−=
τ
ρ

 

Again, following Ref. 8 the added source term in the gas turbulent dissipation equation fε  is: 

(50)    .'8.1' kf
f

f
f M

k
M

ε
ε ≈  

V. First applications 
Firstly an important verification is performed: for a solid rocket plume calculation, imposed in laminar gas 

regime: The two options of the present particulate pressure model (Flux splitting and Roe schemes) are run with the 
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particulate pressure imposed at a very low value, so that the detailed formulation is computed at the limit of the 
model. The results are compared with the initial PNS without particulate pressure (“donor cell” scheme). They were 
similar (in the computer precision range): this validates the correct coding of the new schemes.  

Secondly, a high altitude solid rocket plume is computed, again with the two options of the particulate pressure 
model, and the initial PNS without particulate pressure. High altitude plume from an expanded nozzle exhibits no 
compression or convergent particle flow ( pVdiv

r
 is positive quite everywhere). It was satisfactory that the results 

indicate low differences with the case without particulate pressure. 
Thirdly we evaluate the present method by comparison with published application cases, and we choose a 

particle dispersion case in a jet-like flow, proposed and tested by Papp, York, Sinha and Dash24.  
Finally we propose. a case of a compressed jet , where axial accumulation of particles can numerically occur. 
 
Modelling consideration:  
For these applications we consider first the classical model, where particles are solved as an eulerian gas without 

pressure. The system (38) is then reduced to: 

(51)    

),,,,(

),,,(

0)()(

2

2

ppppppppp

ppppppppp

vHvvuvF

uHvuuuE

SFrEr

p

p

ρρρρ

ρρρρ
ηξ

=

=

=′′+
∂

∂
+

∂
∂

. 

There is no particle pressure, and no pseudo viscous term. The source terms (46), (47) contain no drift velocity, 
and there are no source terms (49) and (50). This model is called “w/o Pp (particulate pressure)”. The numerical 
scheme is a classical “Donor Cell”. 

We compare this early formulation with the present one, called “with Pp” and described in section IV. In 
particular the expression of the drift velocity is: 

(52)    ,
3
11

3
1 *

,
i

f

i

p

p
fpiD x

k
t

x
TkU

∂
∂

Δ+
∂
∂

−=
ρ

ρ
 

The first term on the right is related to the particulate density gradient Ref. 8. The second term, proposed by 
Bocksell and Loth23 and also retained by Papp, York, Sinha and Dash24, relates the drift to the gradient of gas 
turbulence and a characteristic time :  is the shortest time of the eddy life time, and the crossing time of the 
eddy by the particle. Theses terms are important in the radial direction.  

tΔ tΔ

To illustrate the effect of the drift velocity, we compare the applications of the present formulation and a 
formulation without drift, called “with Pp, w/o 
drift”.  

All applications are performed with two-way 
coupling and PNS space marching. 

 
High speed shear layer , d=0.1µm: 
The conditions of the shear layer case, proposed 

by Ref. 24, are given in table 1. It is the turbulent 
interaction of two streams. Stream 1 contains very 
small solid alumina particles at a low dilution rate 
(initial particle volume ratio=4.5E-06). 

Variable Stream 1 Stream 2 
Mach 2.41 0.723 
T(K) 1000 300 
U(m/s) 1531.1 251.6 
P(Pa) 101325 101325 
ρp kg/m3) 0.018 - 
Al2O3 

d(µm) 
0.1 - 

Shear Layer D=0,1µm
Comparison of particle cloud density profile at 25m

Turbulent kinetic energy
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Figure 5. 

Table 1: high speed shear layer 
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According to a pressure split technique, the PNS 

approach is allowed in the subsonic stream. Here in 
2D cylindrical coordinates, the entry section of 
stream 1 has a radius of 2m, so it compares well 
with the planar shear layer of Ref. 24. 

Figure 5 represents particle cloud density profile 
at 25m from the initial section. We notice that for 
these small particles, there are little differences 
between the approaches, and that the particle 
dispersion is low. Comparison of gas and particle 
turbulent kinetic energy indicates that they are in 
phase, when both are present.  

Comparisons of velocities in Fig. 6, indicate that 
the fluid and particles remain in phase.  

For non stressing cases, it’s important to notice 
here, that the results with the present formulation 
remain consistent with the early approach without 
particulate pressure.  

 
High speed shear layer, d=10µm: 

The conditions of the shear layer case of table 1 
are the same, except for the 10µm particle diameter. 
Figure 7 shows the particle cloud density contours 
computed by the previous model without particle 
pressure. It is very similar to the results of Ref. 24 
without dispersion. 

The cloud density profiles in the region affected 
by gas turbulent kinetic energy exhibit an increase 
to the edge of the cloud, before abruptly vanishing 
(see Fig. 8). Furthermore, this abrupt edge is slightly 
extended outward when progressing in x stations: 

Results are very different with the present 
formulation with particulate pressure: there is a 
more important dispersion of the particles, with no 
peak at the edge (Fig. 9 and Fig 10):  

The shape of this new profile is similar to the 
shape of the lagrangian profile with drift velocity in 
Ref. 24.  

Shear Layer D=0,1µm
Comparison of particle and gas velocities at 25m
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Figure 6.  

Figure 7  

Shear Layer D=10µm   w/o Pp:    Cloud density profiles 

0,000

0,005

0,010

0,015

0,020

0,025

0,00 0,50 1,00 1,50 2,00 2,50 3,00 3,50 4,00

y(m)

K
g/

m
3

Rop (kg/m3) 25m w/o Pp Rop (kg/m3) 20m w/o Pp

Rop (kg/m3) 15m w/o Pp Rop (kg/m3) 10m w/o Pp

starting section
 

Figure 8.  

Shear Layer D=10µm with Pp & w/o Pp: Cloud density profiles 
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Figure 9.  

Figure 10  
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The contours of the gas turbulent kinetic energy are similar for the early formulation (Fig. 11)and the present 
one (Fig. 12) and are very close in level and shape to the result in Ref. 24. 

 
Figure 12  Figure 11  

However, due to the damping effect of particles on turbulence, the levels in Fig. 12 are slightly lower.   The gas 
velocity and the turbulent viscosity contours are represented in Fig. 13 and Fig. 14. Again they are comparable to 

results in Ref. 24.  
Figure 13  Figure 14  

Shear Layer D=10µm with Pp: Cloud density profile at x=15m 
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Figure 15.  

 
These new results are presented for the adapted 

Sanders & Prendergast numerical scheme. Results 
with the Roe scheme indicate a very small difference 
at the cloud boundary (Fig. 15). The ROE scheme has 
less numerical smearing. According to the very 
different approaches of the schemes, the comparison is 
satisfactory.  

Figure 16 compares the particulate turbulent 
energy kp with the turbulent kinetic energy kf of the 
gas. Now there is a difference with Fig. 5 (D=0.1µm): 
the level of kp is lower than kf, as a consequence of 
particle size. 

In Fig. 17, the velocities of gas and particles are 
presented together at different sections: the particles 

present almost no phase difference with the gas. 

Shear Layer D=10µm with Pp: profiles at x=15m 
 Gas and Particle turbulent kinetic energy 
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Figure 16.  

Shear Layer D=10µm with Pp 
Gas and Particle velocities profiles 
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Figure 17.
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High speed shear layer, d=10µm, w/o drift velocity: 
Here we show results with no drift velocity in Eq. (47). Figure 18 exhibits important peaks in the particle cloud 

density profiles, located at the inner boundary of turbulence. The inflexion of Fig. 9 is removed, but at the expense 
of particle accumulation. 

The accumulation is located at the sharp increase of turbulent kinetic energy (Fig. 19). And to correct this 
artefact, the drift velocity proposed by Bocksell and Loth23 is needed. The formulation is efficient because it is 
based on the gradient of kf. 

Note that the same kind of peak, is reported in Ref. 24 for lagrangian calculation without drift velocity. 

Shear Layer, d=10µm
Particle cloud density without drift velocity
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Figure 18.  

Shear Layer, d=10µm, x=10m
Particle cloud density,

 turbulent kinetic energy, without drift velocity
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Figure 19.  

 
Compressed jet, d=10µm: 
We propose this test case to describe axial accumulation and its resolution. The simulation does not represent 

any real or experimental case. We just increase the strength of stream 2. Stream 1 is a uniform round jet (1 meter 
radius) where 10µm particle are diluted (as in the previous case). The starting conditions are given in table 2: 

 
Variable Stream 1 Stream 2 
Mach 1.5 2.5 
T(K) 426 1000 
U(m/s) 617 1576 
P(Pa) 101325 101325 
ρp (kg/m3) 0.039 - 
Al2O3 

d(µm) 
10 - 

Table 2: compressed jet 
 

Figure 20  

Figure 20 shows the particle cloud density contours, 
for the early formulation without particulate pressure.  

Before 30m an axial accumulation occurs, and then 
increases to reach a dramatic factor 5 of the initial 
particle cloud density (and even more, downstream). The 
starting point is correlated with turbulence reaching the 
symmetry axis, as can be seen on Fig. 21.  

 
Figure 22  

With the present modelling with particulate pressure 
and drift velocity, the problem almost disappears (Fig. 
22) 

Also the gas turbulent kinetic energy is decreased in 
level (-10% compared to Fig. 21), in the region where 
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there are sufficient particles to act for turbulence damping 
(see Fig. 23 and Fig. 24). 

Figure 21 Figure 23  

Note in Fig. 25 the behaviour of the turbulent particulate kinetic energy, which drives the associated pressure Pp. 
Especially near the axis, it is closer to the gas turbulent kinetic energy. This, in conjunction with drift velocity, helps 
cancelling the numerical accumulation on the axis.  

At the outer boundary of the cloud there is still some trouble with kp. The interface with the no-particle domain 
has always been difficult, and work remains to be done on that problem.    

 

Compressed jet, d=10µm
Gas turbulent kinetic energy
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Figure 24.  

Compressed jet, d=10µm
Particle and Gas turbulent kinetic energy
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Figure 25.  

 
The profiles of the particle cloud density are shown in Fig. 26 and Fig. 27: The present new formulation is 

efficient, especially at x=30m and x=35m in Fig. 27. 

Implementation of the present particulate pressure model in a fully 3D NS code25 is under work.     

Compressed Jet, d=10µm
Particle cloud density profiles
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Figure 26.  

Compressed Jet, d=10µm
Particle cloud density profiles
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Figure 27.  
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VI. Conclusion 
Engineers have to carefully analyze their CFD results for problems dealing with particles and their interaction 

with turbulence: 
• The phenomenology is complex and contains multiple time scales. 
• The classical Eulerian formulation without particulate pressure admits singular solutions for convergent flows 

(accumulations) that are not realistic for a dispersed phase. This characteristic has to be cured by an additive 
modelization. 

•  In some real cases, physical accumulation of particle occurs (near walls…). 
This work shows some progress in the modeling and comparisons to others. The framework of the eulerian 

approach with particulate pressure and drift velocity, associated with a PNS space marching, allows rapid 
calculation with fine mesh, and solves unphysical accumulation problems in the free field. . It is believed that the 
unwanted accumulation is not related to the eulerian or the lagrangian solvers for particles. Also it is not related to 
the use of a specific numerical scheme for the Riemann problem, if it is well formulated. 

Since source terms are related to gradients and then to the space discretization, it can occur that they explode 
near discontinuities (like the usual k-ε model). So, special care to maintain a realizable stress tensor may help. It is 
included in the present work but not detailed in this paper. 

Additional study is necessary to explore remaining deficiencies and calibrate the model. Use of CFD for 
complex but real problems of gas/particle turbulent interaction is a challenge, which may be achievable.  

So far, these kinds of density peaks of particle cloud are not reported in experimental data, but accumulation 
exist in the physics. This is also challenging for the validation. There is a real need of experimental reference tests, 
including two-phase flows with particles interacting with turbulence, at a relatively high speed.     

Acknowledgments 
This work was sponsored by EADS Astrium-ST. The authors would like to acknowledge Michel POLLET, 

Laurent CARITEY of EADS Astrium-ST for their efficient support, and accurate revue and comments. Also the 
authors acknowledge François CORON, manager of Thermal Mechanical Engineering directorate, for encouraging 
this team work. 

References 
1J. Ferry, S. Balachandar, F. Najjar.  AIAA 2000-3569. Fundamental Two phase Modeling Efforts at CSAR 
2R. Saurel, E. Daniel, J.C. Loraud.  Treatment of symmetry boundary condition for two phase dilute flows. Two phase flow 

modelling and experimentation. 1995 Edizioni ETS 
3R. Saurel, R. Abgrall.  A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys, 

Vol. 150, p.425-467, 1999. 
4O. Simonin. Theoretical and experimental modelling of particulate flow, part I: Theoretical derivation of dispersed phase 

Eulerian modelling from probability density function kinetic equation. Lecture Series Programme 200-06, Von Karman Institute, 
2000 

5M. Simoes. Modélisation eulérienne de la phase dispersée dans les moteurs à propergol solide, avec prise en compte de la 
pression particulaire. PhD Thesis, INP Toulouse, 2006.  

6M. Simoes, P. Della Pieta, F. Godfroy, O. Simonin.  Continuum Modeling of the Dispersed Phase in Solid Rocket Motors.  
AIAA 2005-4698  

7M. Simoes, O. Simonin.  Modeling of particulate pressure in the frame of mesoscopic  Eulerian formalism for  compressive 
reactive two phase flows., 2006 Joint US European Fluids Engineering Summer Meeting July 17-20 MIAMI 

8B. Oesterlé. Ecoulements multiphasiques : des fondements aux méthodes d’ingénierie. Hermes Science Lavoisier 2006 
9L.D. Landau, E.M. Lifchitz. Fluid Mechanics.  Pergamon Press, London, 1959. 
10C. Hug. Formulation Navier Stokes Parabolisé à pression particulaire pour des écoulements diphasiques laminaires et 

turbulents en 2D axisymétrique (PNS code V16). Astrium ST, Internal report, October 2008. 
11F. Dubois. Un système hyperbolique pour un gaz de particules. Manuscript, 27 October 2008.  
12E. Godlewski, P.A. Raviart. Numerical approximation of hyperbolic systems of conservation laws. Springer, New York, 

509 p, 1996. 
13F. Dubois. Problème de Riemann pour le système de gaz de particules, Manuscript, 20~April  2009. 
14B. Després, F. Dubois. Systèmes hyperboliques de lois de conservation : Application à la dynamique des gaz, Editions de 

l'Ecole Polytechnique, 201 p., 2005. 
15S.K.  Godunov. A Difference Scheme for Numerical Solution of Discontinuous Solution of Hydrodynamic Equations. Math. 

Sbornik, 47, p.~271-306, 1959. Translated US Joint Publ. Res. Service, JPRS 7226, 1969.   
16P. Roe. Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys., 43, p.357-372, 1981. 
 

American Institute of Aeronautics and Astronautics 
 



 
 
 
 

 
American Institute of Aeronautics and Astronautics 

 

17

17R. Sanders. K. Prendergast. The possible relation of the three-kiloparsec arm to explosions in the galactic nucleus.  
Astrophys. J.,188, p. 489-500, 1974. 

18C. Hug, L. Fusade, M. Pollet, P. Brenner, JC. Astier, Jets de propulseurs et leurs signatures. 36ème Colloque 
d’Aérodynamique Appliquée AAAF, Orléans,  20-22 mars, 2000 

19O. Simonin.  Modélisation au second ordre du mouvement fluctuant des particules dans les écoulements diphasiques 
turbulents.  Rapport 93NB00010, EDF, 1993 

20D. C. Wilcox. Turbulence Modeling for CFD. 2nd edition 2004 
21C. M. Tchen.  Mean value and correlation problems connected with the motion of small particles suspended in turbulent 

fluid. PhD Thesis 1947 
22O. Simonin, Viollet P.-L. Modelling of turbulent two-phase jets loaded with discrete particle. Eds Phase-Interface 

Phenomena in Multiphase Flows, Hemisphere Publ. Corp., New York, p.259,269, 1990 
23T. L. Bocksell and E. Loth. Random Walk Models for Particles Diffusion in Free-Shear Flows. AIAA vol. 39., N° 6, June 

2001 
24J.L. Papp, B.J. York, N. Sinha and S.M. Dash. Progress in Modeling Particle Jets/Plumes. AIAA 2003-1284 
25M. Pollet, P. Brenner. Aerodynamics with Moving Bodies Applied to Solid Propulsion. AIAA paper 89-2779,1989 


