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A. Let G be a word-hyperbolic group with a quasiconvex hierarchy. We show that G has a finite
index subgroup G′ that is a quasiconvex subgroup of a right-angled Artin group. It follows that every
quasiconvex subgroup of G is a virtual retract, and is hence separable. The results are applied to certain
3-manifold and one-relator groups.
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F 1. A flow chart indicating main points of the paper and some topical constellations.
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1. I

This paper has several parts:
In the first part of the paper we develop a small-cancellation theory over cube complexes. When the

cube complex is 1-dimensional, we obtain the classical small-cancellation theory, as well as the closely
related Gromov graphical small-cancellation theory.

It is hard to say what the main result is in the first part, since it seems the definitions are more
important than the theorems. For this and the second part, the reader might wish to scan the table of
contents to get a feel for what is going on. We give the following sample result to give an idea of
the scope here. In ordinary small-cancellation theory, when W1, . . . ,Wr represent distinct conjugacy
classes, the presentation 〈a, b, . . . | Wn1

1 , . . . ,W
nr
r 〉 is “small-cancellation” for sufficiently large ni. In

analogy with this we have the following:

C6-Sample. Let X be a nonpositively curved cube complex. Let Yi → X be a compact local isometry
for 1 ≤ i ≤ r such that each π1Yi is malnormal, and π1Yi, π1Y j do not share any nontrivial conjugacy
classes. Then 〈X | Ŷ1, . . . , Ŷr〉 is a “small-cancellation” cubical presentation for sufficiently large
“girth” finite covers Ŷi → Yi.

Many other general small-cancellation theories have been propounded. For instance two such graded
theories directed especially towards Burnside groups were produced by Olshanskii and McCammond.
Stimulated by Gromov’s ideas of small-cancellation over word-hyperbolic groups, there have been later
important works of Olshanskii, followed by more recent theories “over relatively hyperbolic groups” by
Osin [Osi06] and Groves-Manning [GM08]. The theory we propose is decidedly more geometric, and
arguably favors explicitness over scope. However, although it may be more limited by presupposing
a nonpositively curved cube complex as a starting point, it has the advantage of not presupposing
(relative) hyperbolicity - yet some form of hyperbolicity must lurk inside for there to be any available
small-cancellation.

In the second part of the paper we impose additional conditions that lead to the existence of a
wallspace structure on the resulting small-cancellation complex. We can illustrate the nature of the
results with the following sample:

B6-Sample. Let G be an infinite word-hyperbolic group acting properly and cocompactly on a CAT(0)
cube complex. Let H1, . . . ,Hk be quasiconvex subgroups that are not commensurable with G. And sup-
pose that each Hi has separable hyperplane stabilizers. There exist finite index subgroups H′1, . . . ,H

′
k

such that the quotient G/〈〈H′1, . . . ,H
′
k〉〉 has a codimension-1 subgroup.

In the third part of the paper, we probe further and seek a virtually special cubulation.
We then prove the following:

Theorem A (Special Quotient Theorem). Let G be a word-hyperbolic group that is virtually the fun-
damental group of a compact special cube complex. Let H1, . . . ,Hr be quasiconvex subgroups of G.
Then there are finite index subgroups H′i ⊂ Hi such that: G/〈〈H′1,H

′
2, . . . ,H

′
r〉〉 is virtually special.

We then prove the following:

Theorem B (Quasiconvex Hierarchy⇒ Virtually Special). Let G be a word-hyperbolic group with a
quasiconvex hierarchy, in the sense that it can be decomposed into trivial groups by finitely many HNN
extensions and amalgamated free products along quasiconvex subgroups. Then G is virtually special.

There are two important applications of the virtual specialness of groups with a quasiconvex hi-
erarchy: It is applied to hyperbolic 3-manifolds with a geometrically finite incompressible surface to
reveal their virtually special structure. This resolves the subgroup separability problem for fundamental
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groups of such manifolds. It also completes a proof that Haken hyperbolic 3-manifolds are virtually
fibered. It is also applied to resolve Baumslag’s conjecture on the residual finiteness of one-relator
groups with torsion.

The fourth part of the paper deals with groups that are hyperbolic relative to virtually abelian sub-
groups. The results are not yet complete, but are aimed at proving similar structural results for such
groups that also have quasiconvex hierarchies.

The sections marked with ~ are not essential to the theory leading to the above applications.

2. CAT(0)  

2.1. Basic definitions. An n-cube is a copy of [−1, 1]n, and a 0-cube is a single point. We regard the
boundary of an n-cube as consisting of the union of lower dimensional cubes. A cube complex is a cell
complex formed from cubes, such that the attaching map of each cube is combinatorial in the sense that
it sends cubes homeomorphically to cubes by a map modeled on a combinatorial isometry of n-cubes.
The link of a 0-cube v is the complex whose 0-simplices correspond to ends of 1-cubes adjacent to v,
and these 0-simplices are joined up by n-simplices for each corner of an (n + 1)-cube adjacent to v.

A flag complex is a simplicial complex with the property that any finite pairwise-adjacent collection
of vertices spans a simplex. A cube complex C is nonpositively curved if link(v) is a flag complex for
each 0-cube v ∈ C0.

2.2. Right-angled Artin groups. Let Γ be a simplicial graph. The right-angled Artin group or graph
group G(Γ) associated to Γ is presented by:

〈 v : v ∈ vertices(Γ) | [u, v] : (u, v) ∈ edges(Γ) 〉

For our purposes, the most important example of a nonpositively curved cube complex arises from
a right-angled Artin group. This is the cube complex C(Γ) containing a torus T n for each copy of the
complete graph K(n) appearing in Γ [CD95, MV95]. Each added torus T n is isomorphic to the usual
product (S 1)n obtained by identifying opposite faces of an n-cube. Note that π1C(Γ) � G(Γ) since the
2-skeleton of C(Γ) is the standard 2-complex of the presentation above.

2.3. Hyperplanes in CAT(0) cube complexes. Simply-connected nonpositively curved cube com-
plexes are called CAT(0) cube complexes because they admit a CAT(0) metric where each n-cube is
isometric to [−1, 1]n ⊂ Rn; however we shall rarely use this metric.

The crucial characteristic properties of CAT(0) cube complexes are the separative qualities of their
hyperplanes: A midcube is the codimension-1 subspace of the n-cube [−1, 1]n obtained by restricting
exactly one coordinate to 0. A hyperplane is a connected nonempty subspace of C whose intersection
with each cube is either empty or consists of one of its midcubes. The 1-cells intersected by a hyper-
plane are dual to it. We will discuss immersed hyperplanes within a nonpositively curved cube complex
in Section 6.1.

Remark 2.1. Hyperplanes have several important properties [Sag95]:

(1) If D is a hyperplane of C then C − D has exactly two components.
(2) Each midcube of a cube of C lies in a unique hyperplane.
(3) Regarding each midcube as a cube, a hyperplane is itself a CAT(0) cube complex.
(4) The union of all cubes that D passes through, is the carrier of D and is a convex subcomplex

of C (see Section 2.4) that is isomorphic to D × I.
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F 2. Dual curves in a square complex disk diagram

F 3. A bigon, nongon, monogon, and oscugon.

2.4. Geodesics, local-isometries, and convexity. While elsewhere in this paper, 1-cubes will be re-
garded as copies of [−1, 1], to facilitate discussion of metric, we will regard each 1-cube as having
length 1, and we let In denote the interval [0, n] subdivided so that all integers are vertices. A length n
path from x to y in a cube complex X is a combinatorial map In → X where 0, n 7→ x, y ∈ X0. A path
is a geodesic if there is no shorter length path with the same endpoints. We emphasize that geodesics
are almost never unique when dim(X) ≥ 2, indeed there are n! distinct geodesics connecting vertices
at opposite corners of an n-cube. We define the distance between 0-cubes in a connected nonpositively
curved cube complex to be the length of the geodesic between them. As usual, this provides a genuine
metric on the 0-cells of the 1-skeleton. Moreover we are then able to declare the distance d(A, B) be-
tween subcomplexes as the minimal distance d(a, b) where a, b ∈ A0, B0. We also define the diameter
diameter(Y) of a connected complex to be the supremum of the lengths of geodesics in Y .

An immersion is a local injection. A map φ : Y → X between nonpositively curved cube complex
is a local-isometry if it is an immersion and for each y ∈ Y0, whenever u, v are ends of 1-cubes at y, if
φ(u), φ(v) form a corner of 2-cube in X at φ(y), then so do u, v. An embedding that is a local-isometry
is locally-convex. A connected locally-convex subcomplex of a CAT(0) cube complex is called convex,
and indeed, it can be deduced from the viewpoint in Section 2.5 that Y ⊂ X is convex if and only if, each
n-cube whose (n− 1)-skeleton lies in Y lies in Y , and for any geodesic path P→ X whose endpoints lie
in Y0, the path P lies in Y .

2.5. Properties of minimal area cubical disk diagrams. This section was motivated by lectures of
Andrew Casson from Univ. of Texas at Austin in the 80’s (apparently on generalized C(4)-T (4) pre-
sentations related to Heegaard decompositions). I am grateful to Yoav Moriah who shared his notes
with me and to Michah Sageev who encouraged me to take a look at this. 1 While the results are
easy to obtain, I had not previously considered the relevance of disk diagrams to cubical complexes of
dimension ≥ 3. The viewpoint here, and in particular Lemma 2.2, is due to Casson. We note that the
properties listed in Remark 2.1 can be deduced from this viewpoint.

Let D be a disk diagram whose 2-cells are squares. The dual curves in D are paths which are
concatenations of midcubes of squares of D. Note that when D → X̃ is a disk diagram in a CAT(0)
cube complex, each dual curve maps to a hyperplane of X̃.

The 1-cells crossed by a dual curve are dual to it. Note that each midcube lies in a unique maximal
dual curve (or cycle). One simply extends outwards uniquely across dual 1-cells. A bigon is a pair
of dual curves that cross at their first and last containing squares. A monogon is a single dual curve
that crosses itself at its first and last containing squares. An oscugon is a single dual curve that starts
and ends at distinct dual 1-cells that are adjacent but don’t bound the corner of a square. A nongon is
a single dual curve of length ≥ 1 that starts and ends on the same dual 1-cell, so it corresponds to an
immersed cycle of midcubes. We refer the reader to Figure 3.

1I learned in August 2011 that much of this material was already explained in Sageev’s thesis.[Sag95]



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 7

F 4. On the left is a smallest possible bigon. On the right is a monogon which must
contain a smaller bigon.

Lemma 2.2. Let D → X be a disk diagram in a nonpositively curved cube complex. If D contains a
bigon or nongon among its dual curves, or if there is a pair of adjacent 1-cells that are dual to the same
dual curve of length ≥ 1, then there is a new diagram D′ such that:

(1) D′ and D have the same boundary path, so ∂pD′ → X equals ∂pD→ X,
(2) Area(D′) ≤ Area(D) − 2 and
(3) pairs of edges on ∂pD′ that lie on the same dual curve of D′ are precisely the same as pairs of

edges on ∂pD that lie on the same dual curve of D.

Corollary 2.3. No disk diagram contains a monogon.
If D has minimal area among all diagrams with boundary path ∂pD, then D cannot contain a bigon,

a nongon, or an oscugon.

Proof. The second statement follows immediately from Lemma 2.2. Consider a minimal area coun-
terexample D to the first statement: So D is the union S ∪D′ where S is a rectangular strip [−1, 1]× In
consisting of n ≥ 1 squares, and carrying a dual curve σ at {0} × In, and D′ is a disk diagram, and ∂pD′

is identified with the path {−1} × In along one side of this strip. Then a dual curve λ that is dual to a
1-cube on ∂pD′ must cross σ in a second square. Let E denote the disk diagram bounded by λ ∪ σ
and containing the cubes they pass through. Apply Lemma 2.2 to replace E by E′, and obtain a smaller
area counterexample. Note that Corollary 2.3 holds when Area(D) = 0 since then each dual curve is
the midcube of a 1-cube, and no dual curves cross, as there are no squares. �

Proof of Lemma 2.2. Consider a smallest area monogon, nongon, oscugon, or bigon in D. We will
produce a new diagram D′ with the same boundary path such that either Area(D′) < Area(D) or D′

contains an even smaller such feature.
We first show that a nongon, monogon, or oscugon must contain a lower area bigon. Indeed, in each

case, the dual curve α has length ≥ 1 (since squares locally embed, we see that even for a monogon,
the dual curve must pass through at least one more square besides its self-crossing square). Thus, as
illustrated on the right in Figure 4, a second dual curve β crosses α and travels through the diagram be-
fore crossing α a second time. The pair α, β provides a lower area bigon. (It is actually conceivable that
β then itself forms a lower area oscugon (even without α), but of course we can repeat this procedure
further to decrease the area further and obtain a minimal area bigon.)

Now we will show by induction on the number of squares inside a bigon that any bigonal disk
diagram can be replaced by a disk diagram with smaller area.

Let α and β be the dual curves of the bigon, and let s1 and s2 denote their squares of intersection. We
will show that either there is a smaller bigon inside, and hence by induction that bigon can be replaced
by a disk diagram with at least 2 fewer squares. Or we will perform a slight modification to obtain a
disk diagram with the same boundary but containing a smaller bigon, and hence this disk diagram itself
can have its area reduced by 2.

The “base case”, occurs when a smallest bigon arises from two squares meeting along a corner as on
the left in Figure 4. Then these two squares map to the same square in X, and hence we can remove this
cancellable pair to decrease the area, by replacing the pair of squares by a pair of edges glued together
at a point.
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F 5. Some hexagon moves.

F 6.

F 7.

Now suppose that α, β do not together bound a region containing a lower area bigon. Then cannot
be a monogon, nongon, or oscugon, as above. Moreover, every dual curve passes through both α and
β, since otherwise there would be a smaller bigon.

The plan is to find a (certain type of) minimal triangle in the complement of the dual curves, then we
can perform a “hexagon move” to obtain a new disk diagram with a smaller bigon as in Figure 5. The
first type of minimal triangle has one side on α and one side on β and no dual curves passing through
it. The second type has its base on α, and neither of its two other sides are subsegments of β.

If the bigon contains no crossing pair of dual curves as on the left in Figure 6, then the first type of
triangle occurs, and so we can perform a hexagon move of the first type. If there is at least one crossing
pair of dual curves then we shall show below that the second type of triangle exists, and so we can
perform a hexagon move of the second type. Hence by induction, the new diagram can have its area
reduced by 2.

The collection of dual curves within our bigon forms a graph, and we make this into a directed graph
by orienting all dual curves upwards from α to β, and thus orienting each edge of the graph (see the left
of Figure 7). Observe that this directed graph has no directed cycle. Indeed, consider a simple directed
cycle, (and we can even assume that it bounds a complementary region of the graph, for otherwise
there would be a smaller area such directed cycle), and suppose that it travels counterclockwise - as
an analogous argument works in the clockwise case. Among the dual curves contributing edges to
the cycle, let σ denote the one having rightmost intersection with α. Let λ denote the dual curve
corresponding to the next edge in the cycle. Then λ would intersect α even further to the right which
is impossible (see the middle of Figure 7). Here we use that all dual curves intersect only once which
follows from the minimality assumption on the bigon.

Each vertex of the graph (not on α, β) is the “top” of a triangle whose base is on α. Choose a vertex
v that is minimal (excluding the leaf vertices on α) in the partial ordering induced by the cycle-free
directed graph. Then the corresponding triangle ∆ is our desired triangle of the second type. Indeed,
if any other dual curve crosses either leg of ∆ then there would be an even lower vertex u, which
contradicts the minimality of v (as on the right of Figure 7). �

Remark 2.4 (Shuffling disk diagrams). We shall later use the term shuffle to refer to an adjustment of
a disk diagram obtained through a finite sequence of hexagon moves.
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F 8.

F 9.

2.6. Splaying and Rectangles. We now describe several related properties concerning the dual curves
in minimal area cubical disk diagrams. We emphasize that our treatment focuses on subcomplexes
and exclusively considers paths that are combinatorial, as discussed in Section 2.4. In particular, a
subcomplex Y ⊂ X of a CAT(0) cube complex is convex if: for each cube c of X, if an entire corner of
c lies in Y then all of c lies in Y .

Lemma 2.5 (Splayed). Let Y ⊂ X be a convex subcomplex of the CAT(0) cube complex. Let P be a
path whose endpoints lie on Y, and let D be a disk diagram between P and Y, so there is a [geodesic]
path Q→ Y with the same endpoints as P and D is a diagram for PQ−1. Suppose D has minimal area
among all possible such choices fixing P and Y.

Let a and b be consecutive 1-cells in Q. Then the dual curves in D starting at a and b do not intersect.

The statement of Lemma 2.5 holds with Q allowed to vary either among all such paths, or among all
such geodesics. Indeed, the argument by contradiction given below provides a lower area diagram D
without effecting the length of Q.

Proof. Suppose a, b are parallel in D to 1-cells a′, b′ that meet at the corner of a square c′ in D. Since
X is CAT(0), the 1-cells a, b must also meet at a square c. Since Y is convex, we see that c ⊂ Y .

We can thus adjust the diagram D to obtain a new diagram D′ formed by attaching c to Q along a, b.
Now Area(D′) = Area(D) + 1. However, D′ contains a bigon, and therefore by Lemma 2.2, its area
can be reduced by two, to obtain a new diagram D′′ with Area(D′′) < Area(D). This would contradict
the minimality of D. See Figure 8. �

Corollary 2.6. Let X,Y,D,Q be as in Lemma 2.5. Then there is no intersection in D between dual
curves of distinct 1-cells of Q.

The dual curves are splayed as on the left in Figure 9 (but not as on the right).

Proof. Consider an innermost pair of 1-cells whose dual curves are either equal or intersect. These
1-cells cannot be adjacent by Lemma 2.5. But any 1-cell on Q between them, would give another dual
curve which either intersects one of these, or ends on another 1-cell of Q lying between them as in the
right in Figure 9. This contradicts our innermost assumption. �

Corollary 2.7. Let Y1,Y2 be convex subcomplexes of the CAT(0) cube complex X. Let P1, P2 be paths
joining points on Y1 and Y2. Let D be a diagram with boundary path P1Q1P2Q2 where Qi is a path in
Yi, and suppose D has minimal area among all such diagrams with Qi allowed to vary.
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F 10.

Let S 1 and S 2 be a pair of dual curves joining edges of Q1 to Q2. Then the subdiagram F bounded
by S 1, S 2 and the subtended portions Q′1,Q

′
2 of Q1,Q2 is a “flat rectangle” in the sense that pairs of

dual curves joining Q′1,Q
′
2 don’t cross.

Moreover, if we assume P1, P2 are geodesics, and that D has minimal area among disk diagrams
with boundary path P′1Q1P′2Q2 where P′i are geodesics with the same endpoints as Pi, then the dual
curves from P1 to P2 have the same property: No two cross each other.

We refer the reader to Figure 10. We note that dual curves can start on Qi and end on P j, as illustrated
on the first and second diagrams. The third diagram illustrates the second part of Corollary 2.7: Once
we also choose the geodesic paths such that the area of the diagram is minimized, then all dual curves
go from left to right, and from top to bottom. We obtain a genuine product rectangle in this case. The
reader can view geodesic paths along the top and bottom, from which there is crossing of dual curves,
and compare this to the paths P1, P2 that are pushed inwards somewhat.

Proof. We apply Corollary 2.6 twice: first from the point of view of Y1, and then from the point of view
of Y2.

The proof of the second statement is similar, except now we minimize the area of a diagram with P1
allowed to vary among paths P′1 in Y = X (or even the combinatorial convex hull of the endpoints of
P) but the path Q1P2Q2 remains fixed. The same argument applies mutatis mutandis for P2. �

Lemma 2.8 (Pushing beyond crossings). Let D→ X be a minimal area disk diagram. Let S be a dual
curve in D that starts and ends on 1-cells s1, s2 such that the boundary path of D is of the form s1Ps2Q.
There exists a new diagram D′ with the same boundary path and Area(D′) = Area(D) such that s1, s2
are still connected by a strip S ′ but the dual curves emanating from S ′ to P are splayed: No two cross
each other on the P side of S ′.

We refer to the left pair of diagrams in Figure 12 indicating the total transformation from D to D′.

Proof. This follows by repeatedly using hexagonal replacement moves. Consider an innermost pair of
a, b of edges along ∂S whose dual curves cross on the side bounded by P. If they are not adjacent, then
there is an even more innermost pair. Note that the two dual curves cannot equal each other, or there
would be a bigon with S , and thus the area can be reduced by Lemma 2.2.

Let c be the first square where the dual curves cross. Now add a cancellable pair of copies c′′, c′

of c along a, b. This increases the area by 2, and increases the area between S and P by 2. Perform a
hexagonal replacement along S and the contiguous copy c′ of c to obtain S ′, the area between P and S ′

is now one more than the area between P and S was. Finally the copy c′′ of c has a bigon with c. We are
able to reduce the area by 2. This area reduction is on the P side of S ′, and so the resulting diagram D′

has the property that the area between P and S ′ has been reduced by one. Performing this repeatedly
yields a new diagram whose wall has splayed strips on the P side, as claimed. See the sequence of
pictures in Figure 11 for the single transformation. �
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F 11.

F 12.

Remark 2.9. We can apply Lemma 2.8 to understand the potential behavior between strips in disk
diagrams. Let D be a diagram that has a pair of disjoint strips. Then we can replace it with a new
diagram with the same boundary and at most as much area, such that the strips are moved inwards
towards each other, but strips emanating from them are now splayed. See the transformation on the
right in Figure 12.

This is particularly relevant when we consider a diagram between two convex subspaces Y1,Y2, and
in particular, a diagram between a convex subspace and the carrier of a hyperplane. We are able to
reach the conclusion of a “flat rectangle” between the rectangular strips.

2.7. Annuli. This section can be postponed until annuli arise in Section 15 and more importantly
Section 5.15 and its sequels. “Generalized corners of squares” are introduced in Section 3.9.

Lemma 2.10 (Flat Annulus). Let B → X be an annular diagram. Suppose there are no generalized
squares with outerpath on either the inner or outer boundary path of B. Then each dual curve starting
on the inner boundary path ends on the outer boundary path (and vice-versa).

The first annulus in Figure 13 illustrates a simple but typical example of the type of annulus examined
in Lemma 2.10. This contrasts with the motivating case of a product, illustrated by the second annulus
in Figure 13. The reader can imagine more elaborate examples.

Proof. An “innermost” pair of initial parts of dual curves that cross each other (and are simple curves up
to that point) yields a generalized square. If two dual curves emanating from either the outer boundary
circle, or the inner boundary circle, cross each other, then between these (inclusive) one can find an
innermost pair of crossing dual curves (see the third annulus in Figure 13). The same holds for a
simple dual curve which starts and ends on the same bounding circle.

Let d be a dual curve that starts and ends on the outer boundary path (the fourth annulus in Figure 13
contains three such scenarios). If d doesn’t cross itself, then we consider the side of d not containing
the inner boundary path, and obtain a generalized square as above. If d crosses itself, then since it is
impossible for a dual curve to cross itself and bound a disk diagram inside, we see that some monogon
in the image of d must bound the inner boundary path (the fifth annulus in Figure 13 indicates a more
elaborate such scenario). The initial and terminal parts of d then provide a pair of dual curves starting
on the outer boundary path that cross each other. As described at the beginning of the argument, an
innermost such pair would yield a generalized square, which is impossible.
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F 13. Square annuli.

We note that we can assume that there are no bigons on the interior of B because reducing by
removing cancellable pairs corresponding to bigons doesn’t effect the boundary pairing of dual curves.

�

Remark 2.11. The other dual curves travel around B. When immersed hyperplanes of X do not cross
themselves, we can avoid situations as in Figure 13. However, while minimal area of the diagram can
help avoid some such self-crossing behavior, there is no way to avoid it in general, and we can only
conclude that the “horizontal” dual curves travel “around” B, possibly multiple times.

2.8. Rectangles and Superconvexity. This subsection requires the definition of superconvexity from
Section 8.1. We will use it later in Section 3.17 to produce examples.

Lemma 2.12. Suppose Y is cocompact and superconvex and X is 2-dimensional, then there exists n > 0
with the following property: Let F ⊂ X be a flat rectangle isomorphic to Im × In. If {0} × In lies in Y
then F lies in Y.

Proof. Consider a combinatorial rectangle F = Im × In in X. Suppose the base {0} × In of F connects
points that are quite far away, so dX

(
f (0, 0), f (m, 0)

)
> N. Let σ be a geodesic with the same endpoints

as the base, so |σ| > N. Then σ is parallel to the corresponding geodesic σ′ at the top of F, and
|σ′| > N.

By superconvexity we obtain a geodesic µ from the midpoint of σ to the midpoint of σ′ that is
contained in Y . The path µ is contained in a union of cubes stacked upon each other. Finally, parallelism
and convexity shows that all of F lies in Y . �

Lemma 2.13. Let Y be a convex and superconvex cocompact subcomplex of the CAT(0) cube complex
X. There exists D ≥ 0 such that the following holds: Let I × In → X be a combinatorial strip. Suppose
the base {0} × In of I × In lies in Y, and suppose that the distance between the endpoints of the base
exceeds D, that is, d

(
(0, 0), (0, n)

)
≥ D. Then I × In lies in Y.

Proof. By Lemma 8.6, the midpoint m at the top of the rectangle lies in Y . Now, each hyperplane
passing through the rectangle either cuts through the base of the rectangle and hence crosses Y , or
separates the top from the bottom, and hence separates m from a point in Y , and so crosses Y . It follows
by convexity that the rectangle lies in Y . �

3. S-    

The goal of this section is to describe a “small-cancellation theory” for cubical presentations gener-
alizing the usual small-cancellation theory for ordinary presentations.

3.1. Introduction. To orient the reader towards our eventual goals, we begin with parallel rough state-
ments of the main theorem about classical small-cancellation diagrams and corresponding main theo-
rem in cubical small-cancellation diagrams.

An i-shell in a disk diagram D is a 2-cell R with ∂pR = QS , where the outerpath Q is a subpath of
∂pD, and the innerpath S is internal to D except at its endpoints, and where S is the concatenation of
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F 14. On the left in clockwise order we have a: 2-shell, 3-shell, spur, 3-shell, 1-shell,
1-shell, and 0-shell. On the right is a ladder.

F 15. Two θ-shells, two generalized corners of squares, and a spur in a cubical small-
cancellation diagram on the left. A cubical small-cancellation ladder on the right.

exactly i maximal pieces. See Figure 14 for a diagram containing i-shells. Any reduced disk diagram
D→ X satisfies the C(6) condition provided that X is a C(6) complex.

Following the language in [MW02], the main theorem of the classical small-cancellation theory in
the C(6) case is summarized by:
Classical small-cancellation diagrams: Let D be a C(6) disk diagram. Then either D is a single 0-cell
or a single 2-cell, or D contains a total of at least 2π worth of the following types of positively curved
cells along its boundary:

π for spurs, 0-shells, and 1-shells
2π
3 for 2-shells
π
3 for 3-shells

Moreover, if there are exactly two such features of positive curvature, then the diagram is a ladder. See
Figure 14.

In our generalization, a disk diagram D is built from cone-cells together with 2-cubes, 1-cubes, and
0-cubes. The cone-cells play the role that 2-cells did in the classical case, but roughly speaking, the
squares are subsumed in a thickened 1-skeleton. The diagram D is “reduced” if it is locally minimal area
in a certain sense (no square bigons, no generalized corners of squares on cone-cells), and it is “small-
cancellation” if internal cone-cells are surrounded by many neighbors - generalizing the classical C(6)
condition that internal 2-cells have at least 6 sides.

The i-shells are replaced by positively curved cone-cells called θ-shells, where θ denotes the curva-
ture of the θ-shell - reversing the piece-focused terminology in [MW02]. Spurs continue to play the
same role, but there is now another source of positive curvature: “generalized corners of squares”. Our
main result is summarized by:
Cubical small-cancellation diagrams: Either D is a single 0-cell or cone-cell, or D contains at least
2π worth of positive curvature along its boundary of the form:

π for spurs
θ for θ-shells
π
2 for corners of generalized squares

Moreover, if there are exactly two features of positive curvature, then D is a ladder. See Figure 15.
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3.2. Cubical presentations. A cubical presentation 〈X | {Yi}〉 has “generators” consisting of a con-
nected nonpositively curved cube complex X, and “relators” consisting of a collection {Yi → X} of
local-isometries of connected nonpositively curved cube complexes. The group of a cubical presenta-
tion is a quotient group π1X/〈〈π1Yi〉〉 and is isomorphic to the fundamental group of a space X∗ that we
shall now discuss.

Associated to the cubical presentation 〈X | {φi : Yi → X}〉 is a coned-off space X∗ that is formed
from the mapping cylinder

(
X ∪ {Yi × [0, 1]}

)
/
{
(yi, 1) ∼ φi(yi)

}
by identifying each Yi × {0} to a single

cone-point ci. An application of the Seifert-Van Kampen lemma shows that the group of 〈X | {Yi}〉 is
isomorphic to π1X∗. The space X∗ has a natural cell structure consisting of cubes in X together with
“pyramids” consisting of cones of cubes. We refer to the image Ci of each Yi × [0, 1] as a cone of X∗.

An ordinary presentation 〈a1, . . . , as | R1, . . . ,Rt〉 whose relators are reduced and cyclically reduced
contains the data for a cubical presentation: Its generators correspond to the nonpositively curved cube
complex consisting of a bouquet of s circles, and its relators correspond to a collection of t immersed
cycles. The group of an ordinary presentation is the quotient of the free group on the generators of the
presentation modulo the normal subgroup generated by the relators, and this group is isomorphic to the
fundamental group of the standard 2-complex of the presentation. This standard 2-complex would be
isomorphic to the coned-off space if we subdivide the i-th 2-cell into |Ri| distinct 2-simplices meeting
around the cone-point which is a new 0-cell added at the center of the 2-cell.

Remark 3.1 (Language Abuse). We will use the pyramidal cells of the cones, or rather their 2-
simplices, to initially discuss disk diagrams, but we will rarely use them later in the paper. Instead
we will especially focus on the “data” of the cubical presentations. While we refer to the Yi as “cones”,
they really function as “attaching maps” Yi → X of the genuine cones C(Yi), and perhaps it would have
been more suitable to term each Yi as a “relator”.

When we refer to X̃∗, we sometimes have in mind only its underlying cube complex, which is the
intermediate cover X̃ → X̃∗ → X corresponding to the subgroup of π1X equal to 〈〈π1Yi〉〉. However,
sometimes we actually image X̃∗ equipped with the various lifted cones gYi, where g, i vary. Formally
〈X̃∗ | gYi : where g, i vary 〉 would give the data of another cubical presentation that covers X∗. We
emphasize that the underlying cube complex of X̃∗ plays the role of the 1-skeleton of the universal
cover of a 2-complex, whereas the various gYi play the role of the various 2-cells.

3.3. Pieces. Two 1-cubes u, v are parallel in the CAT(0) cube complex X̃ if they are dual to the
same hyperplane. Let U,V be subcomplexes of the CAT(0) cube complex X̃. The wall projection
WProjX̃(U → V) is a subcomplex of V defined as follows: The 1-skeleton of WProjX̃(U → V) con-
sists of the union of all closed 1-cubes of V that are parallel to 1-cubes of U. A cube of X̃ lies in
WProjX̃(U → V) if and only if its 1-skeleton lies in WProjX̃(U → V).

We declare cubes u, v (of the same dimension ≥ 2) to be parallel if there is a combinatorial map
c × In → X̃ where c × {0} 7→ u and c × {n} 7→ v. One can show that WProjX̃(U → V) is the union
of all closed cubes of V that are parallel to cubes of U. The notion is examined more carefully in
[HWa], where it is also defined for subcomplexes of a nonpositively curved cube complex that is not
simply-connected. We refer the reader to Figure 16.

Let 〈X | {Yi}〉 be a cubical presentation. Let A = Yi and B = Y j. An abstract cone-piece of B in A is
a nontrivial component P of WProjX̃(B̃ → Ã), where either i , j or i = j but B̃ , Ã. So either we are
dealing with two distinct translates of the lift of the universal cover of A, or we are dealing with a base
lift of Ã and an arbitrary lift of B̃ with i , j. Each abstract cone-piece P comes equipped with a map
P → A, and is “tagged” by data indicating the relative positions Ã, B̃. One way to indicate the data is
to choose a representative connecting strip. This is a rectangular strip S � I × In for some n ≥ 0 with
initial and terminal edges I × {0, n} mapping to 1-cells in the lifts of Ã, B̃ to X̃ that are associated with
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F 16. The above example illustrate a length 3 bold interval U whose wall projection
onto a bold complex V is the shaded subcomplex of V . The ambient complex is not simply-
connected.

F 17. Generalized Corners of Squares: The boundary of the diagram on the left has three
illustrated corners of generalized squares. The first is a genuine square with a corner on the
boundary. The second is a remote square which could obviously be pushed to the boundary.
The third is typical as the two rectangles from the square to the boundary bound a nontrivial
square subdiagram. The diagram on the right illustrates corners of generalized squares on
cone-cells and on a rectangle.

the piece. There is leeway in the choice of strip. Assuming the basepoints are chosen appropriately, S
corresponds to a double coset representative π1Agπ1B.

Continuing with the notation above, let A = Yi, but now let D̃ denote the carrier of some hyperplane
H in X̃ such that H is disjoint from the base copy of Ã. In parallel to the earlier definitions, an abstract
wall-piece of H in A is a nontrivial componentP of WProjX̃(D̃→ Ã). As above, there is some (possibly
trivial) connecting strip S between Ã and D̃. In parallel to the abstract cone-piece definitions, we note
that we could have let D denote the immersed carrier of some immersed hyperplane in X, and then
the “distinctness” condition between Ã and B̃ above, becomes a requirement that the lift of D̃ does not
intersect Ã in a dual 1-cube of the hyperplane.

Remark 3.2. Let us look ahead to see how pieces are related to diagrams (see Figure 21 and Section 3.5
for the notion of “cone-cell”.)

As suggested by Figure 18, we will bound sizes of wall-pieces by bounding sizes of contiguous
wall-pieces. Given a wall-piece arising within a diagram as in the second diagram in Figure 18, we
push corners of generalized squares (these are defined later, they arise from a square with emerging
rectangles emerging from adjacent edges, and terminating on something - see Figure 51) past the three
bounding rectangles, and we know there aren’t any absorbable into the cone-cell by minimal area. We
then arrive at a rectangular diagram (the third illustration) that is combinatorially a product, and one
side of this rectangle lies on our cone-cell along the wall-piece of interest. Now we see that the wall-
piece is also a wall-piece in a rectangle (in the fourth illustration) that is contiguous with the cone-cell.

This will enable us to produce examples by limiting the types of wall-pieces that must be examined
to those arising from rectangles “based” on Ã.

Moreover, by minimal area, we know that none of the squares in this contiguous rectangle can be
absorbed into the cone-cell. This explains why we can ignore hyperplanes H that cross Ã. Indeed,
a fundamental property of CAT(0) cube complexes is that a hyperplane cannot “interosculate” with a
convex subcomplex (see Lemma 3.10). Thus, if the hyperplane H of the dual curve of a contiguous
rectangle actually crossed Ã, then each of the squares in this contiguous rectangle would be contained
in Ã, and hence there would be squares absorbable into the cone-cell and a violation of the minimality
of area.
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F 18.

F 19.

A cone-piece of B in A is a path P → P in some abstract piece, where B = Y j for some j. Likewise
a wall-piece of H in A is a path P→ P in some abstract wall-piece. We will often refer to cone-pieces
in A to mean a P→ A without any reference to the various choices of B, S ,P, but there is always some
possibly variable choice, and similarly we refer to wall-pieces in A. We will almost always assume that
our pieces are nontrivial in the sense that they have length ≥ 1. We will sometimes use the word piece
to mean either a cone-piece or a wall-piece, and likewise for abstract piece.

3.4. Some small-cancellation conditions to bear in mind. The main hypothesis leading to a useful
theory is an appropriate bound on lengths of pieces in each Yi. There are various formulations: Let ||Yi||

denote the infimum of the lengths of essential closed paths in Yi. Let diameter(P) denote the diameter
of an abstract piece P. Let α > 0 be a real number. The absolute C′(α) condition requires that
diameter(P) < α||Yi|| for each abstract piece P in each Yi.

A more general (contextual) C′(α) condition requires that |P|Yi < α|Ri| whenever Ri is an essential
cycle in Yi that contains a piece P as a subpath. (Here we use |P|Yi to denote the distance in Ỹi between
the endpoints of P̃; thus the above inequality is implied by diameter(P) < α|Ri| when P → Yi factors
through P.) We will employ the absolute condition merely to verify the contextual condition. This
contextual condition differs from the absolute condition both by focusing on pieces (which are paths)
instead of abstract pieces, and by measuring pieces against cycles they occur in, instead of measuring
them against arbitrary cycles.

The combinatorial C(n) condition requires that no essential closed path in Yi is the concatenation of
fewer than n pieces.

Remark 3.3 (Graded Theory). We will develop a graded small-cancellation theory and associated
metric small-cancellation conditions later in Sections 3.19 and 3.20.

3.5. Disk diagrams and cancellable pair removal and absorption. Let P→ X be a closed path that
is nullhomotopic in X∗. Then we can consider various choices ψ : (D, P) → (X∗, X) of disk diagrams
in X∗ with boundary path P. Note that the 2-cells of D are either squares of X, or are triangles in some
cone Ci of X∗. Moreover, since P → X avoids cone-points, each 0-cell ai mapping to a cone-point ci
is internal to D, and hence the triangles adjacent to ai (which must map to Ci) are grouped in cyclic
collections meeting around ai to form a subspace Ai that is a cone on its bounding cycle. We refer to
each ai as a cone-point of D. Note that ∂Ai → X factors through Yi → X. We refer to Ai as a cone-cell
of D.

Remark 3.4. We caution the reader that ∂Ai might not embed, and moreover, Ai might not be an actual
(sub)disk diagram. See Figure 19. However, by performing a very simple reduction, we can assume
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F 20.

F 21. Cone-cells in D→ X∗

that the boundary path of Ai has no internal backtracks (see Figure 20). In the presence of adequate
small-cancellation conditions, and minimal complexity properties of D, this will be the case, but needs
some verification. We will pursue this later in Section 4.1. Without small-cancellation conditions on
X∗, this holds under the assumption of minimal square area of D unless a non boundary component of
D − Ai contains a cone-cell.

We can choose D to satisfy the following successive minimal complexity requirements, so that the
pair of numbers: (Conepoints(D),Squares(D)) is minimal in the lexicographical order.

(1) |ψ−1({ci})| is minimal among all possible disk diagrams with boundary path P,
(2) the number of squares in D is minimal among all possible choices with a minimal number of

cone-points.
An immediate consequence of the first condition is that each ∂Ai → X is essential (and equivalently,

each ∂Ai → Yi is essential) for otherwise we could find a square diagram A′i → X with the same
boundary path, and substitute A′i for Ai and thus decrease the number of cone-points in our disk diagram.

Remark 3.5 (Generalized cancellable pairs). A “classical” cancellable pair in a disk diagram consists
of a pair of 2-cells meeting along a 1-cell in a “mirror image” fashion. They are removed together with
an open arc where they meet, and this is “zipped up” so only a “surgical scar” is left behind. In our more
general situation, this is broken up more explicitly into two steps: Combining the two cone-cells to a
single cone-cell, and then possibly replacing this cone-cell by a square disk diagram. For a cancellable
pair, this disk diagram has zero area. In general, the new cone-cell might not be replaceable by a square
diagram since its boundary path might be essential in the cone. Moreover, even if it is replaceable,
it will usually require some squares. The boundary path of the new cone-cell arising in the classical
case is a nullhomotopic path in a circle. However in our generalization, even in the case where cones
are circles, we might combine two cone-cells wrapping around the same circle p and q times, so the
boundary of the new cone-cell might be essential as it wraps around (p − q) times.

We have illustrated these maneuvers in Figure 22. While a more general version of this is presented
in Lemma 3.6, this “contiguous combination of cone-cells” is the case that we are usually concerned
with.

Lemma 3.6. Suppose that Ai and A′i map to the same cone Yi, and suppose there is an embedded path
P → D whose endpoints are on ∂Ai and ∂A′i , such that P → X is homotopic in X to a path P′ → X
that factors through Yi. Then we can perform “surgery along P” to produce a lower complexity disk
diagram with the same boundary path.

Remark 3.7. While Lemma 3.6 still holds if P self-intersects around a square subdiagram as on the
right of Figure 23, it may fail if P self-intersects around a subdiagram containing other cone-cells, as
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F 22. A pair of cone-cells can sometimes be combined and then possibly replaced by a
square diagram.

F 23. The path P wraps around a cone-cell in the diagram on the left, so we cannot
combine A and A′. There is no problem on the right, as P wraps around a square diagram.

F 24. Combining Cones

in the diagram on the left. This second type of self-intersection cannot exist in a minimal complexity
disk diagram under the small-cancellation condition we will examine below.

Proof. Let K → X be a square disk diagram for the path homotopy between P and P′. (Note that a
path homotopy in X implies a path homotopy in Yi by π1-injectivity.) Now cut D along P, and insert
two copies of K doubled along P′. Consider the subdiagram B = Ai ∪ Pi ∪ A′i . Observe that we can cut
along ∂B, and substitute a cone from a single cone-point associated with Yi. We have thus reduced the
complexity. �

Remark 3.8 (Not square homotopic). When the path P of Lemma 3.6 is only homotopic into Y within
X∗, then the replacement provides new cone-cells in the new diagram as in Figure 25. We have drawn a
picture of a drum which is a thickened disc that has a square ladder around the outside, and disk diagram
with cones on either membrane. The new diagram is obtained from the old by placing the drum along
the connecting square diagram, and then pushing upwards through the drum. See Figure 25.

Assign a linear ranking to the cones Y1,Y2, . . . and let X∗r denote 〈X | Y1, . . . ,Yr〉. Suppose that any
(hyperplane) path P → X̃∗ that start and end on the same lift of some Yi is actually path homotopic
with a path P′ → Yi ⊂ X̃∗ where the path homotopy actually occurs in X∗i−1.

Under this hypothesis, we can use a ranked complexity on disk diagram that: assigns a rank of 0 to
each square; counts cone-cells according to the ranks of their cones; and uses the ordering where higher
rank cells have the greatest value. In this case, the replacement we have described actually decreases
complexity.
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F 25. Pushing across a drum to obtain a graded replacement.

F 26. Too large to be real pieces. The left case is similar to the classical small-
cancellation theory. It is a degenerate version of the middle case, which is itself covered by the
rightmost case.

F 27. Big rectangle-piece yields an adjacent hyperplane with big piece, which must then
cross Ỹi, and hence yields an absorbable square.

We can combine and possibly even remove “cancellable-pairs” of cone-cells that “meet” along an
impossibly long piece as in Figure 26. Indeed, even when these cone-cells are not contiguous, when
the piece between them is impossibly long, a rectangle joining them has a horizontal path homotopic
into Yi, and actually, the two cone-cells map to the same cone Yi and lift to the same translate of Ỹi.
We are thus able to apply Lemma 3.6, to reduce the number of cone-points which equals the number of
cone-cells. We shall also deal with a cone-cell that has an impossibly long piece with a hyperplane, as
on the right of Figure 26. In this case, some squares of this rectangle can be absorbed into the cone and
so, again, the complexity of the disk diagram can be reduced. We note that this latter situation does not
arise in the classical small-cancellation theory (since X is 1-dimensional).

While Lemma 3.6 can be used to reduce the complexity of a diagram whenever two cone-cells share
an impossibly big piece, we must use a somewhat different argument to reduce the complexity when
a cone-cell has an impossibly big wall-piece. In this case, we first rearrange the square part of the
diagram so that our original rectangle is pushed pass any corners of generalized squares that lie between
it and the cone-cell (this uses Lemma 2.8). We then find that the piece of our original rectangle actually
lies in a piece of some other rectangle whose dual curve is dual to a 1-cell adjacent to our cone-cell. It
is thus on such pieces that we place small-cancellation hypotheses. This discussion is described more
formally in the following:

Lemma 3.9 (Contiguous wall-pieces dominate). Let D be a diagram, and let A be a cone-cell in D,
and let S be a rectangular strip of D, let Q = q1q2 . . . qk be a path on ∂A, and suppose each rectangular
strip Ri starting at the edge qi of Q ends at a square of S , so that R1 ends at the first square, and Rk ends
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F 28. The subcomplex above interosculates with a hyperplane.

at the last square. Suppose that the squares of Ri,R j are distinct for i , j. Let E be the subdiagram
bounded by R1, Q, Rk, and S , and suppose E is a square diagram.

There exists a new diagram E′ with the same boundary path as E, such that E′ contains a rectangular
strip T ′ whose first square lies on q1, and such that each rectangular strip Q′i emerging from qi passes
through T ′.

Proof. See Figure 27. We push the strip across any crossing dual curves of E that cross S and the dual
curve of either Q1 or Qk. This is done in Lemma 2.8 where the path P (there) corresponds to a path
U1QUk where U1,Uk are external paths of R1,Rk.

This gives us a new diagram E′ and a new strip S ′. The strip T ′ emerging from the square adjacent
to q1 has the desired property. �

We thus see that any hyperplane is behind a hyperplane touching the cone-cell. Consequently, if
noncrossing hyperplanes have bounded projections, we get a bound on sizes of pieces unless there is a
square absorption.

The following result rules out the behavior in Figure 28. It is proven along the lines of Lemma 2.5:

Lemma 3.10 (No Interosculating Hyperplanes). Let Ỹ ⊂ X̃ be a convex subcomplex. Let U be a
hyperplane that osculates with Ỹ in the sense that it has a dual 1-cell with exactly one 0-cell in Ỹ. Then
U cannot also be dual to a 1-cell that is contained in Ỹ.

Consequently:

Lemma 3.11. Let A be a cone-cell of D that maps to the cone Y. Suppose that D contains a square S
with an edge e on ∂A, such that in a lift to X̃ of S with ẽ on ∂̃A, an adjacent 1-cell ẽ′ of ∂S̃ is dual to a
hyperplane U that is also dual to a 1-cell that lies in Ỹ. Then S̃ lies in Ỹ.

Consequently, the square S can be absorbed into A to reduce the complexity of D.

Remark 3.12 (Alternate domination). Let Ã, B̃ are convex subcomplexes of X̃. Let γ is a geodesic
between Ã, B̃ in the sense that it is a minimal length path whose endpoints are on Ã, B̃. For each 1-cell
e traversed by γ, let Ue be the hyperplane dual to e, and let Ne = N(Ue) denote the carrier of Ue. Then
Ue separates Ã, B̃. Moreover, WProjX̃(B̃ → Ã) is contained in WProjX̃(Ne → Ã). The second claim
from the first by noticing that each square ladder from B̃ to Ã must contain a 1-cell dual to Ue.

By choosing e to be a 1-cell of γ that has a 0-cell on Ã, we see again that contiguous wall-pieces
bound the noncontiguous rectangle-pieces and wall-pieces.

3.6. Rectified disk diagram to analyze the structure. Consider the disk diagram (D, P) → (X∗, X).
An open cone-cell A of D associated to some cone-point a is the union of open cells whose closures
intersect a. Accordingly, A is the union of a together with a sequence of open 1-simplices and 2-
simplices cyclically arranged about a. The external boundary of In × [−1, 1] is In × {±1}, and its
initial and terminal 1-cells are {0} × [−1, 1] and {n} × [−1, 1]. A rectangle of D is a combinatorial map
In × [−1, 1] → D that is injective except perhaps at the external boundary. We note that a rectangle
contains (part of) a dual curve of D at In × {0}, and that the above injectivity requirement implies
that this dual curve embeds. Unless specifically indicated, we shall always assume that a rectangle is
nondegenerate in the sense that n ≥ 1.
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We shall now assume that D is nontrivial in the sense that it doesn’t consist of a single 0-cell.
Thinking of D as embedded in S 2, we will regard the 2-cell at infinity A∞ as the cone-cell at infinity.

We now assume there is a linear ordering on the cone-cells of D, and we shall assume that A∞
is last, so for instance, we can label the cone-cells A1, . . . , Am, A∞. Any choice will be adequate for
our purposes, though distinct choices may lead to somewhat different rectified cell structures for D.
We will also choose a linear ordering on the 1-cells in the attaching map of each cone-cell. Again,
different choices will lead to slightly different results, but for instance, a first 1-cell together with a
counterclockwise ordering is adequate.

Combining these choices and using the lexicographical ordering, we obtain a linear ordering on the
set S of 1-cells in the attaching maps of all the cone-cells. (This is essentially an ordering on a subset
of the 1-cells of D except where both sides of a 1-cell lie on a cone-cell, in which case it will not
play an important role since it will only yield a degenerate rectangle below.) We use these orderings to
determine which rectangles of D are admitted: Beginning with the first 1-cell in our ordering, we apply
the following procedure to each 1-cell e as we proceed through the sequence. Traveling outwards from
e away from its cone-cell, there is a maximal rectangle consisting of a sequence of distinct squares.
This rectangle will either terminate at another 1-cell on the boundary of some cone-cell (possibly the
same cone-cell that contained its initial 1-cell e), or it will terminate on the external boundary of some
rectangle that was previously admitted, or it will terminate on its own external boundary, specifically,
on the boundary of one of its own squares that had appeared earlier in the sequence. Following
our ordering of 1-cells, we proceed in this way until each 1-cell in S lies in a (possibly degenerate)
rectangle. We note that a degenerate rectangle may arise when either our 1-cell appears in two ways
among the attaching maps (so it has a cone-cell on each side) or when it has a cone-cell on one side,
and a square belonging to a previously admitted rectangle on the other side. In this case, we do not add
any rectangle, but we will continue to refer to such a 1-cell as a degenerate rectangle. Each admitted
rectangle has a linear orientation directed from its initial 1-cell to its terminal 1-cell.

We now describe a rectified disk diagram D̄ that we will use to study D. Let In × (−1, 1) denote
the internal part of the (possibly degenerate) rectangle In × [−1, 1]. Let E denote the subspace of D
consisting of the union of each open cone-cell and the internal part of each admitted rectangle. Note
that the internal part of a degenerate rectangle is an open 1-cell.

Remark 3.13 (Back to the Future). Under sufficiently strong small-cancellation conditions which we
will later examine, we will be able to see that the components of D − E are disk diagrams. Specif-
ically, we must rule out the possibility that some component is not simply-connected. If there is a
non-simply-connected component then there is an innermost one, in the sense that it doesn’t separate
the boundary of the diagram from some even smaller component. This innermost component would
bound a rectified disk diagram D′ (containing at least one cone-point) with E′ as above, such that
D′ − E′ has simply-connected components. The boundary of D′ has a particularly restrictive nature.
Our assumption of minimal complexity of D (which implies minimal complexity of D′) together with
the small-cancellation conditions we will impose, will imply by Theorem 3.40 that D′ does not exist.

The subdiagram D′ has the property that it contains at least one cone-point, and since it is innermost,
D′ − E′ has simply-connected components, and so the construction (that we are in the midst of) can
proceed. However, the boundary of D′ consists entirely of subpaths of external boundaries of rectan-
gles. See Figure 29 for some possibilities. The conclusion of Theorem 3.40 proscribe this, since there
is neither a θ-shell, nor the outerpath of a generalized square.

For each trivial component (meaning a single 0-cell) of D − E we have a 0-cell in our rectified disk
diagram D̄. For each nontrivial component F of D−E we have a cycle in our rectified disk diagram that
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F 29. Two innermost non-simply-connected fragments on the left a fairly simple possi-
bility for D′ in the middle, and a partially illustrated more complicated possibility on the right.

F 30. Nontrivial singular diagrams of D − E “inflate” to the shard 2-cells of D̄.

F 31.

is an embedded copy of ∂pF. In a certain sense the “0-skeleton” of D̄ is the disjoint union of boundary
paths of components of D − E.

For each rectangle, its initial and terminal 1-cells are open 1-cells of D̄. These are identical for a
degenerate rectangle.

For each nontrivial component F of D − E we add an open 2-cell F̄ called a shard. The boundary
path of F is a combinatorial path in D, and we first add a corresponding circle consisting of new 0-cells
and 1-cells to D̄. We then attach an open 2-cell F̄ along this circle. Thus, an open 1-cell e of D (that is
not an initial or terminal 1-cell of an admitted rectangle) will contribute zero, one, or two open 1-cells
to D̄ according to the number of ways it lies along the external boundary of an admitted rectangle.
A 0-cell v of D will contribute d distinct 0-cells of D̄ provided that v lies in d ways on the external
boundaries of admitted rectangles. The process of inflating shards is illustrated in Figure 30.

We emphasize that the boundary path of each nontrivial shard is the concatenation of external sub-
paths of admitted rectangles.

We then add the admitted rectangles (in order of their admission) and then the cone-cells.
We note that there is a map D̄→ D that is combinatorial on the 1-skeleton, on the rectangles and on

the cone-cells (after subdivision), but is not combinatorial on the shards (since the image of a shard can
be a singular subdiagram of D).

We refer to Figure 31 for a diagram D, the complement D − E, the “0-skeleton” of D̄, and then its
“1-skeleton”, and “2-skeleton”.
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F 32. The rectified diagram: cone-cells in orange, rectangles in yellow, shards in blue.
Shards corresponding to components containing no squares are not indicated.

F 33. Some impossible configurations of admitted rectangles. The first diagram is im-
possible under the assumption that there are no cone-cells inside and this square diagram has
minimal area. The other diagrams are impossible because of the logic of admitted rectangles.

F 34. More impossible configurations of admitted rectangles and cone-cells. The first
diagram is missing some admitted rectangles. The second diagram is impossible assuming that
the bounded region is a shard and has minimal area.

We close this section by describing some configurations that cannot arise in a rectified diagram
D̄. Some impossible configurations are illustrated in Figure 33. The leftmost such configurations
excludes many other cases from consideration. The rightmost configurations are impossible because of
the recursive ordered way in which we admitted rectangles. Additional impossible configurations are
illustrated in Figure 34.

Remark 3.14 (Genus 0 shards). Our focus is on a situation where all shards are simply-connected,
and according to Remark 3.13 this is guaranteed in the setting of a minimal complexity diagram under
small-cancellation hypotheses. In general, it seems shards should be treated by adding a genus 0 surface
- which may of course have multiple boundary components. It is unclear whether further examination
might lead to utility.

3.7. Gauss-Bonnet Theorem. Let E be a combinatorial complex embedded in the sphere. Suppose
an angle consisting of a real number ^(c) is assigned to each corner of each 2-cell of E.

The curvature of a 0-cell v of E is defined to be

(1) κ(v) = 2π −
∑

c∈Corners(v)

^(c) − πχ(link(v)).

We note that when E is locally a surface without boundary at v then link(v) is a circle and so the final
correction term vanishes yielding κ(v) = 2π −

∑
c∈Corners(v) ^(c). Similarly, when E looks like a surface

with boundary at v, we have κ(v) = π−
∑

c∈Corners(v) ^(c). The curvature of a 2-cell f of E with | f | sides
is the sum of the angles of the corners of f minus the expected Euclidean angle sum for a Euclidean
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polygon with the same number of corners:

κ( f ) =
∑

c∈Corners( f )

^(c) − (| f | − 2)π

Alternately, letting defect(c) = defect(^(c)) = π − ^(c) we see that

(2) κ( f ) = 2π −
∑

c∈Corners( f )

defect(c).

A simple computation verifies the following well-known fact lying at the heart of small-cancellation
theory (see for instance [MW02]).

Theorem 3.15 (Combinatorial Gauss-Bonnet). Let E be a finite angled 2-complex embedded in the
sphere then:

2πχ(E) =
∑

v∈Vertices(E)

κ(v) +
∑

f∈2-cells(E)

κ( f )

3.8. Assigning the angles. We shall now assign angles to the corners of the 2-cells of D̄ aiming to
obtain nonpositive curvature at internal 0-cells, at rectangles, and at shards, and also at the cone-cells
provided that certain small-cancellation conditions are met. There are actually two main angle as-
signments we will discuss here: The first is the split-angling, where the angle assigned to a corner of
a cone-cell will depend upon the neighboring cells at that corner - its personality changes to suit its
surroundings. The second angle assignment is the grade-angling, where cone-cells are treated a bit
more like regular Euclidean polygons. In both cases, small-cancellation conditions we will examine
later will provide nonpositive curvature of cone-cells. However, whereas the shards are automatically
nonpositively curved in the split-angling, we will have to hypothesize this (later) for the grade-angling.

As we have just indicated, in the grade-angling the angle assignments depend upon a grading of the
cone-cells, but the reader should focus especially on the case where each cone-cell has grade 6 except
for the infinite cone-cell A∞ whose grade is ∞. The grading is a map from the set of cone-cells to
N ∪ {∞}, and in practice, this will be induced by a map from the set of generalized relators {Yi} to N.

The rectangles of D̄ have the usual Euclidean angles - we assign an angle of π
2 to each of their

constituent squares, and so the four corners at the initial and terminal 1-cells have angle π
2 and all other

corners have angle π.
The reader should think of the∞ cone-cell A∞ as having an angle of π at each of its corners.
Split-angling assignment to cone-cell corners: We now describe the split-angling. All internal

corners of cone-cells are assigned an angle of π
2 with several exceptions that we list and illustrate in

detail below. Though there might appear to be a dizzying array of cases, they are actually simple
degenerations and variations of several very natural choices modeled on familiar Euclidean scenarios,
and we refer the reader to Figure 35:

Consider a pair of adjacent 1-cells on the boundary of a cone-cell. We say the pair of associated
admitted rectangles end in parallel on an admitted rectangle, if the (possibly degenerate) subdiagram
bounded by these rectangles is a shard: In particular, there is no cone-cell inside it. (It is possible that
the terminal 1-cells of the rectangles are not adjacent but they will be in the following case.) The pair of
admitted rectangles end in parallel on a cone-cell if there is a shard bounded by these two rectangles,
and the edges they end on are adjacent to each other. This includes the degenerate case where one or
both rectangles are degenerate. The qualifier implicitly indicates a related situation where one of the
rectangles travels though a square that (at least locally) could have been the continuation of the target
rectangle (see Figure 37).

An angle of π
2 is assigned to cone-cell corners except for the following cases:
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F 35. Internal cone-angles for the split-angling are modeled by the four cases above: All
variants of the four cases above are provided in Figures 36, 37, 38, and 39.

F 36. Parallel rectangles ending on the same cone-cell give π angles at cone-cell corner.

F 37. Rectangles (implicitly) parallel to the same admitted rectangle have π angle at the
cone-cell corner.

F 38. Three adjacent cone-cells.

(1) π when the associated admitted rectangles end in parallel on the same cone-cell. (See Fig-
ure 36.)

(2) π when the associated admitted rectangles (implicitly) end in parallel on the same admitted
rectangle. (See Figure 37.)

(3) 2
3πwhen they end on a pair of finite cone-cells that are also adjacent along an admitted (possibly
degenerate) rectangle, such that these three bound a (possibly degenerate) triangular shard. (See
Figure 38.)

(4) 3
4π when they (implicitly) end on a rectangle-cone-cell combination (See Figure 39.)

(5) We emphasize that π
2 is assigned in the above two cases when either of the other cone-cells is

infinite. (See Figure 40.)
(6) 0 is assigned at a corner when the rectangles terminate at a singular vertex on C∞. (See Fig-

ure 41.)
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F 39. 3
4π is assigned to the internal angle between edges whose emerging rectangles end

in parallel on a cone-cell/rectangle pair.

F 40.

F 41. An angle of 0 is assigned to a corner facing a singular 0-cell.

F 42.

We note that the choice of a 0-angle at a singular vertex is not very critical - we could have allowed
π
2 here without much effect on the theory. In particular Theorem 3.20 would hold equally well with
a π

2 choice here. But the 0-angle permits more general coverage in the hypothesis of Theorem 3.36.
Curiously, the bigonal shard in this case takes angles of −π, π.

Remark 3.16 (The grade-angling variation). In the grade-angling for a grade g cone-cell, we place
internal angles of g−2

g π in place of the angles 2
3π and 3

4π listed above. Note that this gives an angle of π
when g = ∞.

In order to guarantee nonpositive curvature at vertices and at shards, we shall later be forced to make
certain hypotheses on the possible collections of graded cone-cells and square surrounding a shard.

3.9. Nonpositive curvature of shards. In this subsection we will use minimality properties of the
diagram D to conclude that shards have nonpositive curvature. In particular we will assume that there
are no bigons in the square subdiagrams, and we will assume that there are no corners of generalized
squares on cone-cells. By Corollary 2.3 and Lemma 2.5, this holds when D has minimal complexity.

The corners of a shard are of two types: dull corners which lie along a pair of edges on the ex-
ternal part of a single admitted rectangle, and otherwise sharp corners. The dull corners are not very
interesting and we simply assign to them an angle of π.
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F 43. Some simple bigonal shards The second diagram can occur with an infinite cone-
cell. The third and fourth diagrams are impossible.

F 44. Three additional squares/cone-cells at one corner, and one at the other.

The sharp corners of a shard will have an angle of π
2 except in a few special cases that we discuss:

Observe that there is no monogonal shard consisting of a nontrivial shard bounded by a single admitted
rectangle, for then (see Figure 42) either the shard contains no squares and then there would be a
backtrack along its boundary, or there would be some square inside the shard and hence a bigon of dual
curves in the nonrectified D, and this would permit a square area reduction by Lemma 2.2.

Consider a bigonal shard having exactly two sharp corners and hence exactly two admitted rectan-
gles with external edges along its boundary. The 0-cells at the sharp corners where these rectangles
meet already have at least two π

2 corners (from squares in these admitted rectangles, which have an
edge along the sharp corners). If each of these 0-cells has at least two additional “admitted squares”
(i.e. from within admitted rectangles) and/or cone-cells, then there is already a total angle sum of at
least 2π around each and so we can assign an angle of 0 to each sharp corner of our shard.

It is impossible for one of these corners to have no further cone-cell or admitted square alongside it,
for then the two admitted rectangles would be the same (they would continue around that corner), and
we would have a monogonal shard - which was excluded earlier.

Suppose each of these sharp corners has exactly one additional square/cone-cell around it. There
are essentially four possibilities illustrated in Figure 43, and the third and fourth are impossible. In the
first case, we can assign an angle of 0 to each sharp corner, since the corresponding internal corners of
the cone-cells are both π. The second case is the most interesting: For a finite cone, it is impossible
by minimal complexity of D. Indeed, each Yi → X is a local-isometry, and so in this case, we could
absorb a square into the cone (without changing the boundary path). In the case where it is an infinite
cone A∞, we assign angles of +π

2 at the corner opposite the square, and assign an angle of −π2 at the
corner opposite the cone-cell at infinity. The positive curvature at the latter corner will be important
later on, and the situation will be referred to as a corner of a generalized square.

Let us now consider the possibility where one sharp corner has exactly one further cone-cell/square,
and the other sharp corner has three or more. In this case, we put an angle of +π

2 on the corner with
one additional cone-cell/square, and we put an angle of −π2 on the corner with three or more. A non-
exhaustive selection of the possibilities is illustrated in Figure 44.

We now consider the possibility of one additional cone-cell/square at one sharp corner, and two
additional cone-cells/squares at the other. First let us suppose there is a single additional square at one
sharp corner. The various conceivable possibilities are illustrated in Figure 45, but some of these cannot
arise. In the (possible) cases we assign an angle of +π

2 at the left corner of the bigon and −π2 at the right
corner of the bigon. The bottom four cases do not actually exist: The leftmost three do not exist since
an admitted rectangle must have an initial 1-cell on a cone-cell. The rightmost bottom case does not
exist because there is no consistent way of ordering the initial 1-cells of these three rectangles. In the
top four cases, the internal angle of the corner of the cone-cell at our bigon is π since this is the case of
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F 45. Square at one sharp corner, two cells at other.

F 46. Cone-cell at one sharp corner, two additional cells at other.

two rectangles (implicitly) terminating on the same rectangle. We note however that the second case
above (from the left) cannot exist because it has a rectangle without an initial 1-cell on a cone-cell.

We now suppose there is a single additional cone-cell at one sharp corner, and two additional cone-
cells and/or squares at the other. The five possibilities that can arise are illustrated in Figure 46. In the
fourth and fifth cases an angle of 0 is assigned to each sharp corner, as these two cases correspond to
a π angle for the corner of the cone-cell since its rectangles (implicitly) terminate on another admitted
rectangle. For the split-angling, we assign 2

3π to each cone-cell corner in the first case and hence use
±π3 for the sharp bigon corners, and in the second and third cases we assign 3

4π to each cone-cell corner
and hence use ±π4 for the sharp bigon corners.

We emphasize that except for the cases discussed above, the corners of a shard receive a π
2 angle.

Remark 3.17 (Nonpositive shard for grade-angling). For the grade-angling, we assign an angle of
gi−2

gi
π to each grade gi cone-cell corner, and then assign complementary angles to the sharp corners so

that the 0-cells have zero-curvature, and hence there is a condition to check on the grades of the cells
around this shard which would imply that its curvature is nonpositive. In the first case the condition is
2
g1
π + 2

g2
π + 2

g3
π ≥ 2π. In the second and third cases, the condition is 2

g1
π + 2

g2
π + 2

4π ≥ 2π (as a square
has been substituted for a cone-cell).

We now consider a triangular shard which is bounded by three admitted rectangles. As in the
bigonal shard case, if one of its sharp corners has two additional cells, then we can assign an angle
of 0 to that sharp corner, and an angle of π

2 to the remaining two corners. (Note that there must be at
least one additional cell at each corner.) So, let us assume that each corner has only one additional cell.
There are four cases according to whether there are zero, one, two, or three cone-cells.

Case zero, where each of these additional cells are squares is easily seen to be impossible: up to
symmetry the locally possible situations are indicated in the first and second diagrams (counting from
the left) in Figure 47. In the first there is no possible consistent way of ordering the initial 1-cells
of the bounding admitted rectangles, and in the second there is a rectangle with no initial 1-cell on a
cone-cell.

The possibilities for the case where there is exactly one cone-cell are illustrated in the third, fourth,
and fifth diagrams (counting from the left) in Figure 47. The fifth diagram is impossible. The third and
fourth diagrams are cases where the rectangles emerging from adjacent edges of a cone-cell (implicitly)
end on the same rectangle. Thus the internal angle of this cone-cell is π, and we can assign an angle
of zero to the sharp corner of the shard at the cone-cell, and angles of π

2 to each of the other two sharp
corners.
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F 47. Locally possible configurations of triangular shards with a single additional cell at
each corner.

F 48. In most cases, when there is an infinite cone around a shard, then the shard (or
one of its boundary vertices) will have negative curvature depending on whether we use the
split-angling or the grade-angling.

F 49. Some cases requiring a − π2 angle . These figures should only be viewed by readers
who are 18 years or older.

The possibilities for the cases where there are two or three cone-cells are illustrated in the sixth and
seventh diagrams (from the left) in Figure 47. In the sixth case, in the split-angling, we use 3

4π for the
internal cone-cell corners and π

4 ,
π
4 ,

π
2 for the sharp triangular shard corners. In the seventh case, we use

2
3π for each internal cone-cell corner, and π

3 for each shard corner.

Remark 3.18. In the grade-angling, we use gi−2
gi
π angles for the cone-cells, and so use 2

gi
π for the

opposing sharp corner of the triangular shard. Accordingly, the condition on the grades resulting in
nonpositive for the shard is similar to the one given before.

Remark 3.19. There are a variety of shards with infinite cone-cells at the corners such that the natural
angle assignments lead to negative curvature of the shards and/or the vertices. Some of these are
described in Figure 48.

3.10. Tables of Small Shards. Roughly twenty cases arise in the table in Figure 50. These are or-
ganized as they are obtained from the four figures on the left by contracting one or three parts of the
rectangles around the triangle. Note that contracting two of these three sides results in rectangle around
a monogonal shard, and this is not possible in our minimal square area situation.

One of the two ways that a 0-cell on the boundary of the cone-cell at infinity can have positive
curvature is when it is the corner of a square. The other way is more interesting as it involves an
opposing bigon with angles ±π2 (see Figure 51). In a certain sense, the first case is a degenerate version
of the other case. Under the assumption of local convexity of the cone-cells (except for A∞) and the
assumption of minimal square area, neither of these configurations is possible along a cone-cell other
than A∞.
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F 50. Some more cases requiring a 0 or − π2 angle

F 51. Corners of generalized squares: The nontrivial shard on the left requires angles of
± π2 in the bigon. Both cases have curvature π

2 at the vertex on the boundary of A∞.

F 52.

3.11. Nonpositive curvature of cone-cells via small cancellation. We now discuss a metric small-
cancellation condition on cone-cells in D̄ that implies the nonpositive curvature of each of the cone-
cells. There are similar but more complex combinatorial conditions that are a bit more general. The
conditions are couched in terms of the “wall projections” (within a disk diagram) of cone-cells, rect-
angles and combinations of these onto a given cone-cell in D̄. We refer to these as cone-pieces and
rectangle-pieces in the boundary path of a cone-cell. Each such piece consists of a subpath of the
boundary path of the cone-cell, that is a concatenation of edges, all of whose rectangles end in parallel
on the same other cone-cell (respectively rectangle). That they end in parallel means that they bound a
shard (possibly together with the rectangle where they end).
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The curvature of a cone-cell with p sides is
∑p

i=1 ^i − (p − 2)π or alternatively, it is 2π −
∑

(π − ^i) =

2π −
∑

defect(^i).
The internal angle ^ between 1-cells of a cone-cell is related to the destination of the corresponding

rectangles. If they both (implicitly) end on the same rectangle, or on the same cone-cell, then the
internal angle is π so its defect is 0. We obtain positive deficiencies when there is a transition between
the ends of these rectangles in the sense that they don’t end in parallel on the same cone or implicitly
on the same rectangle. Note that in the split-angling, the internal cone-cell angles that are not equal to
π are 2

3π,
3
4π,

π
2 . In the grade-angling, they are g−2

g π, π2 .
Let us first establish a condition that leads to a quick conclusion:

Theorem 3.20. Suppose that each rectangle-piece Pw in the cone-cell C satisfies |Pw| ≤
1
12 |∂C| and

each cone-piece Pc satisfies |Pc| ≤
1

12 |∂C|. Under the split-angling, each internal cone-cell has non-
positive curvature. If the inequality is strict, then each internal cone-cell has negative curvature.

A cone-cell is internal if its boundary path does not pass through a 1-cell in the diagram’s boundary.

Remark 3.21. While the statement of Theorem 3.20 sets the correct tone, in practice we need the
more flexible requirement that ∇Y P < 1

12 ||∂C||Y for each cone-piece or wall-piece P on ∂C. Here ∇Y P
denotes the distance between the endpoints of the lift P̃ in Ỹ , or equivalently, the minimal length in the
path-homotopy class of P→ Y , where Y is the cone supporting the cone-cell C, and ||∂C||Y denotes the
length of the shortest closed path in the homotopy class of ∂C → Y .

The metric conditions we treat later in Section 3.20 are used under analogous flexible restatements.

Proof. Incorrect 1
8 : The idea of the proof is that to pick up some defect for each transition between

distinct pieces. This appears to lead to at least a π
4 defect for each transition, and hence nonpositive cur-

vature when all pieces have length ≤ 1
8 |∂C|. However, a subtle problem with this argument is that there

can be a 0 defect when the transition occurs between a cone-piece and rectangle-piece where rectangles
implicitly end on the same rectangle. We refer the reader to Corollary 3.32.(2), Theorem 3.33.(2), and
Problem 3.34. We remedy this argument below by grouping pieces together in a certain way to reach
the slightly weaker conclusion.

Quick 1
24 : According to Scheme 3.24, it suffices to prove the statement under the assumption that

internal cone-cells do not self-collide. In this case, there cannot be three consecutive transitions each
of which has defect 0. This follows by observing that there cannot be a defect 0 transition between an
incoming rectangle piece and another rectangle piece - for otherwise there would be a self-collision by
Lemma 3.25.

If we assume that |P| ≤ 1
24 |∂C|, then there must be at least 24 pieces and hence transitions. Grouping

these into triples, we see there are at least 8 such groups. The observation implies that each group has
at least one nonzero defect, and hence has total defect at least π

4 , which gives a total defect of ≥ 2π.
Proof 1

12 : The 1
24 argument employed a bound on lengths of cone-pieces and rectangle-pieces that

explicitly arise in the rectified diagram D̄. To obtain the 1
12 result we use a slightly stronger interpre-

tation of the hypothesis. Namely, there is a 1
12 |C| bound on all cone-pieces and rectangle-pieces on C

occurring in D itself. Such a piece would arise in some other rectification.
There is an orientation on each rectangle-piece determined by the orientation of the rectangle. By

Scheme 3.24, it suffices to prove the Lemma under the assumption that internal cone-cells do not self-
collide. Consequently we can assume the angle defect between successive rectangle-pieces is π

2 , for
otherwise Lemma 3.25 provides a self-collision.
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F 53. An explicit rectangle piece extends to include a cone piece.

F 54. Diagram D̄C obtained from the self-colliding cone-cell C.

The angle defect between an outgoing rectangle-piece and a cone-piece is ≥ π
4 . If the angle defect

between an incoming rectangle-piece and a cone-piece is 0, then the cone-piece must actually be con-
tained in the rectangle-piece, otherwise the angle defect is ≥ π

4 there as well. The angle defect between
consecutive cone-pieces is ≥ π

3 .
Accordingly, we associate π

6 to the outgoing vertex of each rectangle-piece. For a cone-piece, either
it contains angle defects of one of π

4 ,
π
2 ,

π
3 on each side and we associate π

12 to it from each side (the
most interesting case here is π

4 = π
6 + π

12 ), or it has an angle of 0 on one side, in which case it lies in
an extension of the incoming rectangle-piece on that side and we include it as part of that (extended
rectangle-piece). If this happens on each side of the cone-piece, then we include it on just one these
sides. We illustrate this extension in Figure 53.

Thus ∂C is the concatenation of rectangle-pieces with associated angle defects of π
6 , and cone-pieces

with associated angle defects of ≥ π
6 .

If each such piece has length ≤ 1
12 |C| then there are at least 12 such pieces, and hence a total defect

of ≥ 2π. The argument for negative curvature is similar, as there are at least 13 such pieces, and hence
a total defect of ≥ 13

6 π. �

Let now now consider the grade-angling: Observe that if a grade g , ∞ cone-cell has at least g
transitions, then the defect sum is ≥ 2π and it has nonpositive curvature.

Proposition 3.22. Consider the grade-angling on D̄. Suppose that for each g1, g2, g3 grade cells meet-
ing around a vertex, bigonal shard, or triangular shard, we have 1

g1
+ 1

g2
+ 1

g3
≤ 1 (where g3 = 4 for a

square). Then each 0-cell has nonpositive curvature.
Suppose that |W | ≤ 1

g |C| for each rectangle-piece on the cone-cell C and |C′| ≤ 1
g |C| for each cone-

cell piece on the cone-cell C. Then each cone-cell has nonpositive curvature.

We note that the first hypothesis in Proposition 3.22 holds when each grade is ≥ 8.

3.12. Internal cone-cells that do not self-collide.

Definition 3.23 (Self-collision). Let C be a cone-cell in a rectified diagram D̄. We say C self-collides if
there are admitted rectangles having initial or terminal 1-cells on ∂C such that one ends on the external
boundary of the other. That C does not self-collision generalizes the idea of 2-cells in a disk diagram
having embedded boundary paths.

We refer the reader to Figure 54, were we also include the case of a rectangle starting and ending on
C, and a rectangle of C that collides with itself. All these self-collisions are excluded by the following:

Scheme 3.24. Consider a rectified disk diagram D̄ arising from a diagram D with no bigonal square
subdiagrams, and no corners of generalized squares on its cone-cells. Suppose angles have been as-
signed to the corners of D̄ so that: all rectangle corners have angle π

2 , nontrivial shards (and internal
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0-cells) have nonpositive curvature, cone-cell angles are nonnegative, and singly-external corners have
angle π

2 .
Then all internal cone-cells of D̄ have nonpositive curvature if and only if this holds for non-self-

colliding internal cone-cells.
If the internal cone-cells of D̄ that do not self-collide have nonpositive curvature, then no cone-cell

of D̄ self-collides.

Note that the closure of an internal cone-cell could contain 0-cells of ∂D.

Proof. An internal cone-cell C of D̄ that self-collides determines a diagram D̄C obtained from the
immersed subdiagram subtended by C together with the two emerging colliding rectangles. The angle
assignment on D̄C is induced from the assignment on D̄.

We will prove that there is no such C, by considering an example where D̄C contains a minimal
number of cone-cells. The minimality implies that, with the possible exception of C itself, no cone-
cells of D̄C self-collides. Indeed, if B is a cone-cell in D̄C that is not strongly-embedded then this
provides a smaller diagram D̄B, since C is not contained in D̄B. In each case the colliding rectangles
of B are unable to encircle C. This is often obvious since C is an external cone-cell of D̄C , but an
interesting case to consider here is the 4th diagram in Figure 55.

However, we note that there must be some other cone-cell within D̄C , for otherwise there would be a
generalized corner of a square on C within D̄C and hence within D̄, or in the 5th diagram, there would
be a self-crossing hyperplane in a square subdiagram.

In the 2nd diagram, κ(C) ≤ π and actually < π, as the cone-cell B guarantees at least one transition,
and there is exactly one corner of generalized square at the opposite side, giving a π

2 curvature.
In the 3rd diagram, κ(C) < π likewise, and there is actually also a vertex on the boundary with

κ = −π2 .
In the 4th diagram, κ(C) ≤ 2π, and moreover, since there is at least one transition around C, we have

κ(C) < 2π. Moreover, there are no other positively curved cells, and actually one boundary vertex with
curvature −π2 .

In the 5th diagram, κ(C) = π and there is also a vertex with curvature −π2 .
In conclusion, even without having verified that there was an internal cone-cell which gives us the

strictness of κ(C) in the 2nd, 3rd, and 4th cases, we find that the total amount of identified curvature
is < 2π. As all other cells of the diagram have nonpositive curvature, this yields a contradiction to
Theorem 3.15. �

Lemma 3.25 (Cone-cell ordered rectified diagrams). Let D̄ be a rectified diagram induced from an
ordering on the bounding 1-cells of cone-cells of D that arises from an ordering of the cone-cells with
C∞ last.

If the 1st subdiagram of Figure 55 is contained in D̄, then it can only arise from the 2nd or 3rd
subdiagrams of Figure 55, or their degenerate versions in the 4th and 5th subdiagrams.

Note that we do not require the cone-cell boundary ordering of Lemma 3.25 to also be consistent
with a cyclic ordering of the 1-cells around each cone-cell.

Proof. This follows from the logic of the rectified diagram construction of Section 3.6. �

Corollary 3.26. If a sequence of consecutively adjacent outgoing rectangles implicitly end on the same
rectangle, then they explicitly end on the same rectangle. See Figure 56.

We use the notation introduced in Definition 3.28 for the following:

Remark 3.27.
←−
W0
←−
W and

−→
W0
←−
W, and

−→
W0
−→
W, and

−→
W0Ĉ, and Ĉ0

←−
W0 cannot arise because of Corol-

lary 3.26.
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F 55. Limiting consecutive wall-pieces around internal cone-cell.

F 56. Using the argument of Lemma 3.29, if the middle diagram existed, then the hyper-
plane would be forced to also emerge from the cone as on the right. However, in applications,
this is impossible by Scheme 3.24, so all the rectangles end explicitly on the same rectangle.

←−
W0
−→
W cannot arise since rectangles initiate on a cone-cell, not on another rectangle.

←−
W π

4
Ĉ and Ĉ π

4

−→
W cannot arise following the proof of Corollary 3.26.

3.13. ~ More general small-cancellation conditions and involved justification. The goal of this
section is to give a generalization of Theorem 3.20. This generalization, stated in Theorem 3.31 will
not be used in the sequel and serves primarily as an experiment. The statement of the theorem involves
notation which we will not use later.

Definition 3.28 (Destination Notation). Consider the sequence of cone-cells and rectangles around a
cone-cell. We combine together emerging rectangles with similar destination, and use the following
notation CWCCCWWWW for a sequence of cone-cell and rectangle destinations around our cone-
cell. We will abuse the notation in the following way: Each C or W will also denote a path in the
boundary of our cone-cell that is the concatenation of the initial or terminal edges of rectangles that
start or end on the cone-cell C or rectangle W. We can refine this further by using notation Ĉ and Č
to mean that the rectangles are oriented from our cone-cell upwards, or from the destination cone-cell
towards our cone-cell. We refine this notation further by using C̄ to mean that the rectangles between
are degenerate trivial, and use C̃ to denote the cone-cell at infinity. We also use C ~W to mean that ~W
emerges from C, and likewise

←−
WC to mean that it emerges from the left. Finally, we put numbers

between terms: C π
3
C and C π

2
W and W π

2
W and so forth, to indicate the defect of the angle in our cone-

cell at the corresponding internal corner where there is a destination transition. We refer to Figure 57
for an example of this notation.

Lemma 3.29. Suppose that the rectified diagram D̄ was constructed using an ordering of the bounding
edges of cone-cells that is induced by an ordering of the cone-cells followed by a cyclical order of the
1-cells on their boundary paths.

Let e1, e3 be adjacent 1-cells on the boundary of some cone-cell C, and their rectangles R1,R3 are
both oriented outwards from C. Suppose that R3 ends on a rectangle R2 which implicitly crosses R1.
Then e1 is the first 1-cell of ∂C and e3 is the last.

Consequently, in general there can be at most one such configuration for each cone-cell C. However,
we shall reach stronger conclusions below under the assumption of small-cancellation conditions.

We refer the reader to Figure 55 which indicates the hypothesis situation on the left diagram, and
the two (essentially the same) outcomes in the second and third diagrams - and their two subsequent
degenerate cases. The last three diagrams indicate configurations that are consequently impossible.
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F 57. Clockwise from the yellow rectangle edge we have:
Č π

4
Č π

4

←−
W π

2

−→
W π

4
Č π

4

−→
W π

4
Ĉ π

4
C̄ π

3
C̄ π

2
C̃ π

2

←−
W π

4
Č π

4

−→
W0

F 58. A diagram limiting generalizations of Theorem 3.31.

Proof. Let e2 denote the initial 1-cell of R2, and observe that e1 < e2 < e3. Consequently, by our
hypothesis on the structure of the ordering of 1-cells on boundaries of cone-cells, we see that e2 lies
on ∂C. Moreover, the cyclical orientation is then determined, and hence since e1, e3 are adjacent with
e1 < e3 and the ordering increasing in the other direction from e3, we see that e1 is first as illustrated. �

Continuing with the constraints indicated in Remark 3.27, we now provide a table with minimal
defects:

Table 3.30. (1) C̃ π
2
C

(2)
←−
W π

2
Ĉ and Ĉ π

2

−→
W

(3) W π
2
W

(4) C π
3
C

(5) C π
4

←−
W and

−→
W π

4
C

(6) Č0
←−
W and

−→
W0Č.

We note that the sums of adjacent subscripted angle defects is ≤ the actual angled defects. To obtain
the nonpositive curvature of the cone-cells, it is therefore sufficient to show that there is a total of at
least 2π after grouping. This is supplied by the following:

Theorem 3.31. Assign the split-angling to D̄ and suppose the following conditions hold for each cone-
cell C. Then each internal finite cone-cell in D̄ has nonpositive curvature:

(1) |
−→
W | ≤ 1

8 |C|.
(2) |π6C̄ π

6 | ≤
1
6 |C|.

(3) |C′π
4

−→
W | ≤ 3

16 |C| and |
←−
W π

4
C′| ≤ 3

16 |C|.

(4) |
←−
W π

4
C′π

4

−→
W | ≤ 1

4 |C|.
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Proof. Consider a cone-cell C. We decompose the destination rectangles using the following “grouping
rules” taken in order:

(1) Any C π
3
C π

3
C is decomposed into C π

6

)(
π
6
C π

6

)(
π
6
C.

(2) Č0
←−
W and

−→
W0Č are grouped together. In case of

−→
W0Č0

←−
W we make an arbitrary choice to group

only C0
←−
W.

(3) We group C0
←−
W π

4
C π

4

−→
W0C as well as variations of this omitting one or more noncentral terms:

C0
←−
W π

4
C π

4

−→
W ;

←−
W π

4
C π

4

−→
W ;

←−
W π

4
C π

4

−→
W0C ; C0

←−
W π

4
C π

4
; C π

4
C π

4

−→
W0C ; C0

←−
W π

4
C π

4
C ; etc. Note that

when a
←−
W or

−→
W term is omitted, there is still such a rectangle which is initiated from the central

C term, and terminates on a rectangle with destination the left or right C term. However, this
connecting rectangle is not visible from our cone-cell.

(4) Each singly grouped W is treated as ( π
4

−→
W) or (

←−
W π

4
).

(5) If C is not grouped with anything on one side - or doesn’t have a broken π
6 on one side from

( π
6
C π

6
)( π

6
C) - then it obtains a π

4 on that side. Each singly grouped C is treated as ( π
8
C π

8
).

Observe that the minimal square area of D implies that: |C′π
4

−→
W0C| lies behind C′π

4

−→
W (if we extend the

rectangle
−→
W) and likewise |C0

←−
W π

4
C| lies behind

←−
W π

4
C, and consequently, bounds on the length of the

wall projection of the latter give bounds on the former.
Similarly, C0

←−
W0C′π

4

−→
W0C lies behind

←−
W0C′π

4

−→
W0.

We reach the conclusion, that the minimal defect provided by a grouped piece P exceeds 2π |P|
|C| .

This proves nonpositive curvature for cone-cells that are internal. �

The following indicates consequences of the inequalities of Theorem 3.31. Corollary 3.32.(1) gen-
eralizes the classical C′( 1

6 ) condition, and Corollary 3.32.(3) recovers Theorem 3.20.

Corollary 3.32. If any of the following inequalities hold then internal 2-cells have nonpositive curva-
ture (and negative curvature if the inequalities are strict).

(1) |C| ≤ 1
6 and |W | ≤ 1

48 .
(2) |C| ≤ 1

8 and |W | ≤ 1
16 .

(3) |C| ≤ 1
12 and |W | ≤ 1

12 .

The following result slightly strengthens Corollary 3.32.(1), and the same method of proof recovers
Corollary 3.32.(2).

Theorem 3.33. Assign the split-angling to D̄ and suppose the following conditions hold for each cone-
cell C. Then each internal finite cone-cell in D̄ has nonpositive curvature, and if the inequalities are
strict then each has negative curvature.

(1) Each (contiguous) cone-piece is ≤ 1
6 and each wall-piece is ≤ 1

24 .
(2) Each (contiguous) cone-piece is ≤ 1

8 and each wall-piece is ≤ 1
16 .

Moreover, if dim(X) = 2, then one obtains nonpositive curvature (respectively negative) if either:
(3) Each contiguous cone-piece is ≤ 1

6 and each wall-piece is ≤ 1
12 .

(4) Each contiguous cone-piece is ≤ 1
8 and each wall-piece is ≤ 1

8 .

Proof. We will focus on the case where |C| ≤ 1
6 , and dim(X) is arbitrary. The case where |C| ≤ 1

8 is
very similar and will use a π

8 angle instead of π
6 angle etc. The case where dim(X) = 2 uses that a single

wall-piece dominates the concatenation of pieces we focus on later in the proof. This is illustrated on
the right in Figure 59.
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F 59. The concatenation of three pieces within C π
4
W0C0W π

4
C is dominated by the con-

catenation of two wall-pieces. When dim(X) = 2, it is dominated by a single wall-piece.

For each piece around an internal cone-cell, if it is a (contiguous) cone-piece there is an associated
defect of ≥ 2π

6 and if it is a wall-piece then there is an associated defect of ≥ 2π
12 . There are several

cases where the defect at the transition between pieces is 0 that must be treated with special care. In
particular, in the main exceptional case we will use that three pieces are dominated by two (crossing)
wall-pieces, and our defect sharing system provides π

12 on each side. It is here that we require |W | < 1
24

since a 2π
12 defect is proportionate to 1

24 + 1
24 of the circumference. It is also here that the bound improves

when dim(X) = 2, as since there is then only one dominating wall-piece it suffices to have |W | < 1
12

here too.
In most of the cases outlined in Table 3.30, we distribute the defect evenly between the consecutive

pieces: e.g. C π
3
C π

3
C decomposes into C π

6

)(
π
6
C π

6

)(
π
6
C, and

−→
W π

2

−→
W π

2

←−
W decomposes into

−→
W π

4
)( π

4

−→
W π

4
)( π

4

←−
W.

The exception to this rule involving a defect of 0 or π
4 , when we will use an alternate distribution. In

the case of a 0 defect, the critical observation is that the piece is dominated by one or two wall-pieces
respectively. In the case of a π

4 defect, we will distribute this as π
6 + π

12 towards the cone-piece and
wall-piece respectively.

We use the following groupings:

(1) π
4

−→
W0Č0

←−
W π

4
lies behind the following configuration: π

6
( π

12

−→
W
×←−
W π

12
) π

6
as in Figure 59.

(2) π
4
Č0
←−
W and

−→
W0Č π

4
lie behind: π

6
)( π

12

←−
W π

12
)(? and ?)( π

12

−→
W π

12
)( π

6
(3) C π

4
W and W π

4
C are grouped as: C π

6
) π

12
W and W π

12
( π

6
C. �

Problem 3.34. Does nonpositive curvature (negative if <) hold in the following two cases:
(1) Each contiguous cone-piece is ≤ 1

8 and each wall-piece is ≤ 1
8 .

(2) Each contiguous cone-piece is ≤ 1
6 and each wall-piece is ≤ 1

12 .

The 4, 8, 8 Euclidean tiling, and the tiling obtained by subdividing its square’s edges, suggest that
each statement in Problem 3.34 is sharp if true. The 4, 6, 6 spherical tiling has |C| < 1

6 and |W | < 1
6 .

3.14. The ladder theorem.

Definition 3.35 (Ladder). A ladder is a disk diagram D with the property that there is a sequence
of n ≥ 2 closed cone-cells and/or vertices. C1,C2, . . . ,Cn that are ordered so that C j separates Ci
from Ck when i < j < k. The diagram D is an alternating union of cone-cells (or vertices) and
“pseudorectangles” Ri (possibly trivial or degenerate) in the following sense:

(1) ∂pD is a concatenation P1P−1
2 where the initial and terminal points of P1 lie on C1 and Cn

respectively.
(2) P1 = α1ρ1α2ρ2 . . . αn and P2 = γ1%1γ2%2 . . . γn.
(3) ∂pCi = µiαiν

−1
i β−1

i for each i where µ1 and νn are trivial paths.
(4) ∂pRi = νiρiµ

−1
i+1%

−1
i for each i < n.

(5) For each Ri, each dual curve starting on νi ends on µi+1 and vice-versa.
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F 60. Ladder Definition Notation

F 61. Some ladders.

F 62. Singular doubly-external, doubly-external, singly-external, and nil-external corners.

(6) Moreover, a pair of dual curves in Ri cannot cross unless one (or both) start (and hence end) on
ρi, %i.

There are two degenerate cases for Ri that should be noted: Firstly, it is possible that Ri is a vertical arc,
and that νi = µi+1. Secondly, it is possible that Ri is a horizontal arc, in which case ρi = %i.

We refer to Figure 60 for help with the notation, and to Figure 61 for pictures of various ladders. A
ladder is nonsingular if it has no cut-vertex, spur, or isolated 1-cell.

We regard a disk diagram consisting of a single 0-cell or cone-cell as a trivial ladder.

We emphasize that a cone-cell is external or internal according to whether or not its boundary
contains a 1-cell in ∂D.

Theorem 3.36. [Ladder Theorem] Suppose that the rectified diagram D̄ was created using an ordering
of 1-cells induced by an order of cone-cells (with C∞ last), and suppose the angle assignment on D̄ has
the properties listed below. If D̄ has exactly two positively curved cells then D̄ is a ladder.

(1) Each internal cone-cell, shard, and internal vertex has nonpositive curvature.
(2) The rectangles have the usual angles: π

2 at the four corners, and π elsewhere.
(3) 0 ≤ ^ ≤ π for each ^ in a cone-cell.
(4) When adjacent rectangles have distinct (even implicit) destinations the internal angle at the

corner of the cone-cell at the corresponding vertex has nonzero defect.
(5) The angle at a corner of a cone-cell at a vertex on ∂p equals 0 when it is doubly-external

but at a singular vertex, equals π when it is nonsingular doubly-external, equals π
2 when it is

singly-external, and is > 0 when it is nil-external.

The four types of external corners of a cone-cell are illustrated in Figure 62.

Proof. As there are exactly two positively curved cells, each has curvature exactly π. Indeed using
Equation (1), the 0 ≤ ^ hypothesis implies that the curvature of a boundary 0-cell v is 2π−πχ(link(v))−∑
^ ≤ π −

∑
^ ≤ π. Applying Equation (2), the hypotheses on external corner angles together with
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F 63. It must be a ladder.

F 64. Woof Woof.

the ^ ≤ π hypothesis implies that the curvature of an external cone-cell is ≤ π. Here each nontrivial
boundary arc provides a defect of π from the two π

2 singly-external corners, and all other angles have
nonpositive defect since ^ ≤ π. To justify this count, the π-defect at the corner at a singular doubly-
external vertex, is shared between the (locally) two external boundary paths ending there.

A case of interest is when the boundary path of a 2-cell consists entirely of two external boundary
paths - in which case both corners are singular doubly-external with angle defect π.

The only π curvature 0-cell arises from a spur. The π-curvature cone-cells arise when the external
cone-cell has a single external boundary path with a defect of π

2 on each end and a nontrivial innerpath
whose internal corners have angle π, or when the external boundary path is the entire boundary path
and the innerpath is trivial, in which case there is a defect of π at the singular doubly-external corner
where the boundary path starts and ends.

Since each other cell has nonpositive curvature, Theorem 3.15 implies that each other cell has zero
curvature.

Let us assume the diagram is nonsingular, otherwise an inductive argument would allow us to string
together (possibly trivial) ladders to obtain a new ladder.

Consider a positively curved cell C1. Either it is a 0-cell at the tip of a spur, or it is a cone-cell. Let
us consider the latter case. Let e1, e2 denote the 1-cells on either side of ∂C1 just outside of ∂C1 ∩ ∂D̄.
Let R1,R2 denote the rectangles at e1, e2. (It is possible that e1 = e2 and hence R1 = R2.) Traveling
along R1 ∩ ∂D̄ (see Figure 63 for various scenarios) we see that ∂D̄ proceeds along the entire (possibly
degenerate) external path on one side of R1 until it ends on a rectangle or cone-cell. Indeed, another
incoming (possibly degenerate and thus including another cone-cell) rectangle would give us a 0-cell
on ∂D̄ with negative curvature. The same reasoning holds for R2.

By hypothesis, a transition in destination would give a positive defect along the interior path of C1.
Consequently, R1 and R2 both either have rectangle destinations or cone-cell destinations. Moreover,
if they both have cone-cell destinations, then these cone-cells are the same, and likewise if they both
have rectangle destinations, then they end implicitly on the same rectangle. We will now rule out the
possibility that they have rectangle destinations (that are implicitly the same). Indeed, if R1 ends on
a rectangle, then its final boundary corner has exactly two squares along it as at the top of the third
diagram in Figure 63 and no cone-cells. Indeed, further corners of squares would provide π

2 angles,
and the last cone-cell or square as we go around this boundary vertex would provide another π

2 angle.
All other angles are nonnegative, so the total angle sum would be ≥ 3π

2 . The simplest possible such
scenario is illustrated at the bottom right of Figure 64.
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F 65. If 0-angles are assigned to nil-external corners, ladders could have cone-cells that
intersect the boundary along trivial arcs.

We emphasize that the only way a shard could have a sharp corner at a boundary vertex, is if the
rectangles on either side terminated at a pair of consecutive edges there. This is impossible in our case,
for one of these boundary edges is an external edge of R1. We therefore do not have to worry about
negative angles coming from sharp corners of shards that occur at this vertex, and so the angle sum is
≥ 3π

2 .
We thus find that the rectangle ends immediately on C∞ at the square where R1 meets it. Thus one

end of this rectangle lies on C∞. Now, if both ends of this rectangle lie on C∞ then the ordering of
initial 1-cells of rectangles is violated - since 1-cells on C∞ come last. If one end lies on C∞ and the
other end lies on an external edge of R2 then we get a similar contradiction.

We now find that we have reached some cone-cell C2, and that all the rectangles leaving C1 are
parallel to each other and end on C2. If κ(C2) = π then we are done, as the same reasoning applies in
the reverse direction.

Otherwise κ(C2) = 0. Note that ∂C2 ∩ ∂p(D̄) has exactly two components, for otherwise using
Equation (2), our hypothesis that ^ ≤ π yields a total curvature ≤ −π. Indeed, our hypothesis of π

2 at
singly-external corners and ≥ 0 at degenerately-external corners, implies a total defect of −π for each
component of ∂C2 ∩ ∂p(D̄).

Observe that the 0-cells on ∂D̄ where R1 and R2 intersect C2 have curvature 0, as each has exactly
two π

2 angles (one from Ri and one from the final cone-cell or square as we travel through the sequence
of corners of cells until we get to the next singly-external corner of a cell). Various possibilities are
illustrated in Figure 64, where the top diagrams are allowable and the bottom diagrams are impossible.
The vertex has curvature 0, and after removing C1 and the sequence of (possibly degenerate) rectangles
between R1 and R2, we see that C2 now intersects the new ∂p(D̄) in exactly one component, and we
proceed by repeating the above argument on the subdiagram (where two angles of C2 might be redefined
if they went from being nil-external to singly-external).

Thus far we have obtained a ladder in the more general sense described in Remark 3.37, where
cone-cells might intersect ∂pD̄ in trivial subpaths. This only used that nil-external corners have ^ ≥ 0.

We now explain the consequence of our strengthened assumption that nil-external corners of cone-
cells have ^ > 0. Any such corner provides a defect that is strictly > π. Consequently, if κ(C2) = 0 then
under this stricter ^ > 0 hypothesis, ∂C2 ∩ ∂p(D̄) contains exactly two nontrivial arcs.

Using similar reasoning, we note that in the strict case, the edges e1, e2 cannot intersect on the outside
of ∂C1 on ∂p(D̄). Indeed, then ∂C1 ∩ ∂p(D̄) consists of a single point. And if the corner at this point
has ^ > 0 then κ(C1) = 2π − π − ^ < π.

Without the ^ > 0 hypothesis, it is possible to have strings of cone-cells (looking like bigons and
triangles in the middle, and possibly monogons at the end) having 0-angles along the boundary as in
Figure 65. �

Remark 3.37. The hypothesis of ^ > 0 at nil-external corners of cone-cells forces cone-cells in a
ladder to intersect the boundary in nontrivial subpaths. See Figure 65.

Remark 3.38 (Effect of positive angles at singular doubly-external corners). A version of Theo-
rem 3.36 holds under the hypothesis that a singular doubly-external corner has angle > 0. Indeed,
a sensible reinterpretation of the split-angling could assign a π

2 angle here, since the two (degenerate)
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rectangles do not end in parallel on the cone-cell at infinity. Another tempting interpretation of the
split-angling would assign an angle of π, and a version of Theorem 3.36 would still hold.

When a positive angle is assigned to singular doubly-external corners, we must assume that the
diagram is nonsingular to reach our initial enabling observation that each feature of positive curvature
must have curvature exactly π, as a dumbbell consisting of two cone-cells connected by a (possibly
trivial) arc of edges provides a counterexample to this. It appears that these dumbbells, possibly with
spurs at their ends, are the only nonsingular ladders with exactly two positively curved cells. On the
other hand, there are many singular ladders with alternating sequences of positively curved cone-cells
and negatively curved 0-cells, and this suggests that the 0-angle assignment is more elegant.

Remark 3.39. There are similar results for annular diagrams obtained in Section 5.16. Note that an
annular diagram is treated so that it has two cone-cells at infinity, and these both occur at the end in the
ordering that is used to choose rectangles. The angle assignments are done in the same way.

The main difference is that in order to obtain an annulus that is as thin as a ladder, we must assume
that internal cone-cells have negative curvature, and that (hard to obtain) the external cone-cells cannot
have nonpositive curvature unless they touch both the inner and outer infinite-cones. Otherwise we
obtain a thickness 2 situation that is hard to control.

3.15. Positive curvature along boundary. The possible positively curved cells are:
(1) A single isolated 0-cell has curvature 2π
(2) A single isolated cone-cell has curvature 2π
(3) The 0-cell at the end of a spur has curvature π
(4) The 0-cell at the center of the outerpath of a generalized square corner has curvature π

2
(5) A shell C is a positively curved external cone-cell. Its boundary path is a concatenation QS

where the outerpath Q is a subpath of the boundary path of the diagram, and the innerpath S
has all open 1-cells in the interior of the diagram. The curvature of C equals the sum of the
defects of the angles along interior(S ).

Theorem 3.40 (Positive curvature cells). Suppose D̄ is a rectified disk diagram with an angle assign-
ment satisfying the conditions enumerated in Theorem 3.36. Then one of the following hold:

(1) D̄ consists of a single 0-cell or a single closed cone-cell.
(2) D̄ is a ladder.
(3) D̄ has at least three shells and/or spurs and/or generalized corners of squares along ∂D̄.

Proof. This follows from Theorem 3.15 since curvatures are ≤ π except for the two degenerate cases,
and curvatures of internal cells and shards are nonpositive by hypothesis/construction. The case where
there are only two positively curved cells was treated in Theorem 3.36. �

Definition 3.41 (Small-cancellation complex). Consider a cubical presentation 〈X | Yi〉 with an angle-
assignment method such that in any reduced rectified diagram we have: internal 2-cells, internal
0-cells, and shards have nonpositive curvature. We will refer to 〈X | Yi〉 as being a cubical small-
cancellation complex.

3.16. Examples.
(1) Ordinary C′( 1

6 ) small-cancellation theory where the cube complex is a graph and the relators
are circles.

(2) Graphical Small-Cancellation theory. This was apparently first noticed in [RS87] but was re-
discovered subsequently by Gromov [Gro03, Oll06].

(3) A C′( 1
12 ) Cubical presentation.

(4) Large Dehn filling of Dehn complex of prime alternating link. See Subsection ??.
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(5) Small-cancellation theory over right-angled Artin groups with ordinary relators. (This gives a
variety of simple examples that don’t utilize relative hyperbolicity of π1X. But one must be
careful about the cores.)

Specifically, a small-cancellation set of words alternating substantially around the genera-
tors. Pieces correspond to subwords that equal each other (after shuffling).

(6) Many Artin groups (almost all?). See Section 20. Every Artin group associated to a Coxeter
group with no exponent of degree 2. More generally, this appears to work if there is no triangle
of type: (2, 2, n) or (2, 3, 3) or (2, 3, 4), or (2, 3, 5).

It appears we can allow degree 2 if we exclude degree 3, but this requires complicated
generalized relators that are centralizers, and perhaps a relative version of the theory.

We start with the right-angled Artin group. Then we add the relators. The small-cancellation con-
ditions aren’t satisfied if we just cone off the cycles. So instead, we cone off by the immersed graph
associated to the normal closure of each relator in its two generator free subgroup. (This is just the
Cayley graph of a 2-generator Artin group.) This gives us an immersed cube complex corresponding
to the 1-skeleton of the universal cover of the standard 2-complex of the 2-generator Artin group.

Pieces correspond to an j
i paths, if they are pieces between two generalized relators of different types.

The pieces correspond are arbitrary if they arrive from two distinct conjugates of the same generalized
relator, where conjugation is by a path centralizing its two generators. In this case, we can cut and
paste (or push around) to combine the two cone-cells in the disk diagram - and thus reduce area. We
can therefore assume there are no such pieces.

Example 3.42. An interesting example arises from the 4-string braid group B4. The kernel of its
homomorphism to the underlying Coxeter group S 4 is called the 4-string pure braid group P4. It is
shown in [DLS91] that P4 � G × Z where G is the following quotient of a right angled Artin group:

〈a1, . . . , a5 | [ai, ai+1]〉 / 〈〈a1a−1
2 a3a−1

4 a5a−1
1 a2a−1

3 a4a−1
5 〉〉.

This appears to satisfy small-cancellation conditions, with a bit of care.

Higher degree examples (e.g. n ≥ 6) work much better.

Example 3.43. Consider the presentation 〈a, b, c | (ab)2, (bc)2, (ca)2, (aaabbbccc)2〉 which differs
slightly from a lovely presentation for an index 3 subgroup of PS L(2,Z[ 1

2 ]) discovered by Cameron
Gordon. (His presentation has a3b3c3 not raised to a power.)

There is an obvious homomorphism to Z3
2 in which the obvious torsion elements survive, and we

can then collapse pairs of 2-cells corresponding to the relators. The result is a cubical presentation 〈X |
Y1,Y2,Y3,Y4〉 where X is an orientable genus 3 surface built from squares with 6 meeting around each
0-cell, and each Yi is built from a lift of (a3b3c3)2 by adding six squares at the corners corresponding
to the transitions ab, bc, ca, ab, bc, ca. It appears that all maximal cone-pieces are either of the form
aa, bb, cc or are one of the added squares. Besides the wall-pieces consisting of single 1-cells, there are
wall-pieces of the form cb−1, ba−1, and ac−1.

It thus seems that the C(6) condition is satisfied with the split-angling. There is an obvious (an-
tipodal) wallspace structure on each Yi, and it appears that together with it the B(6) conditions (and
probably B(8) conditions) hold as well.

3.17. Examples arising from special cube complexes. The work here was motivated by the obser-
vation made in [Wis03] that for any finite immersed graph Λ → Γ, there is a finite cover Λ̂ such that
〈Γ | Λ̂〉 satisfies Gromov’s graphical 1

6 small-cancellation theory (see [RS87]).

Theorem 3.44. Let X be a compact nonpositively curved cube complex. Let H1, . . . ,Hk be residually
finite subgroups of π1X, and for each i, let Yi → X be a compact immersed complex with π1Yi � Hi.
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Suppose each Ỹi ⊂ X̃ is superconvex. Suppose that there is an upper bound on the diameters of
intersections between distinct translates of Ỹi, Ỹ j in X̃ (we allow i = j here).

Then for each α > 0 there are finite covers Ŷi such that 〈X | Ŷ1, . . . , Ŷk〉 is C′(α).

Proof. By Lemma 2.13, let D be a uniform upper bound on the diameter of a flat strip that stands on
Yi. (This will also bound lengths of pieces between noncontiguous Ỹi, Ỹ j).

Let E be a uniform upper bound on the diameters of intersections between translates of Ỹi, Ỹ j (of
course we exclude the overlap between identical translates of Ỹi).

Note that by possibly passing to a finite index supergroup of each Hi, we can assume that each
Hi = Stab(Ỹi).

By residual finiteness, for each i, we can choose a finite regular cover Ŷi → Yi such that ||Yi|| >
1
α max(D, E). �

Corollary 3.45. Let X be a compact virtually special cube complex. Suppose π1X is word-hyperbolic.
Let H1, . . . ,Hk be quasiconvex subgroups of π1X that form a malnormal collection. Then for each
α > 0 there are finite index subgroups H′i ⊂ Hi and represented by compact local isometries Ŷi → X
such that 〈X | Ŷ1, . . . , Ŷk〉 satisfies C′(α).

Proof. By Lemma 8.5, there is an Hi-cocompact superconvex subcomplex Ỹi ⊂ X̃ for each i. There is
an upper bound on the overlap between translates of Ỹi and Ỹ j by the malnormality assumption.

Hi is residually finite for each i since π1X is virtually special.
We can thus apply Theorem 3.44. �

Lemma 3.46. [Malnormal Controls Overlap] Let X be a compact nonpositively curved cube complex
(with π1X word-hyperbolic). For 1 ≤ i ≤ r, let Yi → X be a local-isometry with Yi compact, and
assume the collection {π1Y1, . . . , π1Yr} is malnormal. Then there is a uniform upper bound D on the
diameters of intersections gỸi ∩ hỸ j between distinct π1X-translates of their universal covers in X̃.

Lemma 3.46 can be interpreted as saying that there is an upper bound on diameters of contiguous
cone-pieces in 〈X | Y1, . . . ,Yr〉. In practice, one applies Lemma 3.46 under the assumption that π1X
is word-hyperbolic for this enables the existence of compact cores Yi for quasiconvex subgroups. A
deeper investigation of Lemma 3.46 in the quasiconvex-malnormal and hyperbolic situation, shows
that there is a uniform upper bound on the sizes of all cone-pieces - not just the contiguous ones.
This relationship between malnormality and pieces is concealed by the noncontiguous cone-pieces
which can sometimes be ignored in the small-cancellation theory since they are hidden behind and thus
controlled by hyperplanes in a superconvex situation.

One way to prove Lemma 3.46 is to consider the nondiagonal components of (tYi) ⊗X (tYi). Each
of these is contractible by malnormality, and of finite diameter since the finitely many Yi are compact.
We refer the reader to Section 8.2.

Proof. If hỸi ∩ gỸ j has infinite diameter then applying the pigeon-hole principle, there is an infinite
periodic path lying in both hỸi and gỸ j. This yields an infinite order element in both π1Yh

i and π1Yg
j ,

thus violating malnormality unless i = j and gh−1 ∈ π1Yi. �

3.18. Informal discussion of the limits of the theory. The C(6) condition is sufficient when dim(X) =

1 but we cannot expect C(6) to suffice in general. Indeed, consider the snub octahedron: it is a tiling
of the sphere where each vertex is surrounded by a square and two hexagons. In any reasonable sense,
each hexagon is not the concatenation of fewer than 6 pieces. The complement of a square does not
seem to have any 3-shell.
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F 66. There are two grade-1 cones, and one grade-2 cone. All nonabsorbable pieces are
between the grade-2 cone and itself. The example doesn’t satisfy C(p) for very large p, but
suggests a plethora of further examples along similar lines. For a presentation of the form
〈b, c | bm, cn,W〉, one can attach copies of bm and cn to a copy of W along its syllables. When
m = 2 and n = 3, one needs |W | quite large before typical words give graded small-cancellation
presentations.

Another example to bear in mind is the snub icosahedron, which has hexagons surrounding pen-
tagons, and is otherwise similar.

The snub-(4, 4) tiling of the plane, consisting of squares surrounding by octagons has nonpositive
curvature, and seems like a reasonable limit here. An obvious grade-angling works fine for it, and
(assuming the squares are already in X) the split-angling appears to work no matter how the admitted
rectangles are oriented.

3.19. Graded small-cancellation. Thus far we have emphasized the version of cubical small-cancellation
theory where cone-pieces between cones are small unless the associated cones in X̃ are equal. We will
now turn to a generalization which insists that cone-pieces are small unless one cone is contained in
the other in X̃.

This form of cubical small-cancellation theory provides the language for crucial to the (actual) proof
of Theorem 13.1. Some simple examples are illustrated in Figures 66, 67, 68, and 69. Small-
cancellation theory persists in this situation. Pieces that look large in the universal cover project to
pieces that are small in the cone itself. Thus if there aren’t enough pieces around a cone-cell, then
the boundary path is already homotopic using the lower grade cone-cells. In a most general setting,
we can replace a higher grade cone-cell by a diagram with lower grade cone-cells and squares. It is
thus appropriate to use a minimal graded complexity which counts the number of cone-cells of each
grade (followed by the number of squares). A lexicographical ordering is used here so (3, 3, 2, 6, 5) >
(3, 3, 2, 5, 17) etc.

Our main tools: Greendlinger’s Lemma (in the weakened form of Theorem 3.40) and the Ladder
Theorem, are about diagrams so they continue to hold in our context, as a reduced diagram will satisfy
the small-cancellation conditions (with some angle assignment rule). The notion of no missing θ-
shells, and maps A∗ → X∗, and a presentation A∗ induced from X∗ and a local isometry A → X
proceed unchanged.

Gromov Polyhedra: Haglund’s theory of “Gromov Polyhedra” fits nicely into this category. These
are CAT(0) 2-complexes whose 2-cells are p-gons and whose vertex links are complete graphs Kr.
Haglund shows how to produce many such examples with a proper cocompact group action. For
instance, Haglund begins with a free product A ∗ B of finite groups, with generators consisting of the
full set of nontrivial elements {A − 1}, {B − 1}. He then adds relators R1, . . . ,Rk with the property that
each generator a ∈ {A − 1} or b ∈ {B − 1} appears exactly once, with the extra symmetry condition that
if u and u−1 both appear in Ri then there is an automorphism of Ri sending one occurrence to the other.
If r = |A| = |B| then each link will be isomorphic to Kr, and if p is the syllabic length of each relator,
then each 2-cell will have p sides. For instance, Haglund provides the following example where u, u−1

never recur: 〈a, b | a17, b17, ab4a2b5a12b6a9b7, a3b16a4b2a6b14a10b9 〉.
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F 67. Haglund’s group acting properly and cocompactly on a (6, 10) Gromov polyhedron.

F 68. The 2-3-4 triangle group: A Coxeter group yields a graded presentation. Its gener-
ators are the usual generators. Its grade i relators are Cayley graphs of the i-generator Coxeter
subgroups. For a relator Y of grade ≥ 3, the induced cubical presentation Y∗ is already simply-
connected so ||Y∗|| = ∞.

F 69. Substituting: Let 〈B | C〉 denote a graphical presentation where B is a bouquet of
circles u, v, and C → B is an immersed theta-graph. Let X be a new bouquet of circles x, y, and
let U,V denote immersed circles, and “substitute” copies of U,V for edges labelled by u, v in C
and then fold to obtain a graph Y . Even preserving “orientation”, there are many ways of doing
this, and one could choose basepoints, or just do it randomly. When 〈B | C〉 and 〈X | U,V〉 are
sufficiently small-cancellation, then so will the cubical presentation 〈X | U,V,Y〉 where U,V
have grade 1 and Y has grade 2.

Haglund’s examples naturally lead to cubical presentations that are graded, where X is a wedge on a
bouquet of circles for the generators (optionally wedged along a new edge) and the grade 1 relators are
the Cayley graphs Γ(A),Γ(B) of A, B, and the grade 2 relators are copies of the circles corresponding
to the Ri, but with copies of Γ(A),Γ(B) attached along each generator. Haglund’s symmetry condition
implies that the maximal pieces only occur between these grade 1 relators, and are merely copies of
Γ(A),Γ(B).

Figure 67 illustrates one of the simplest of Haglund’s examples: 〈a, b | a6, b6, b4a5b5a2b3a4bab2a3〉.
We used a single generator for each A, B � Z6, but the reader can redraw with a wedge of two bouquets
of 5 circles, grade 1 relators isomorphic to 6-simplices, and a grade 2 relator that looks like a string of
6-simplices glued around a decagon.

3.20. Metric Small-Cancellation and Quasiconvexity. This section can be skipped on a first reading.
It is used prominently in Section 15. Corollary 3.50 is used very briefly in the proof of Theorem 12.1
and Theorem 13.1. The material could probably be used to give a simplified treatment of parts of
Section 5.

For a path S → Y in a cone of X∗, we let ∇Y (S ) denote the distance in Ỹ between the endpoints of a
lift S̃ . For a graded cubical presentation 〈X | Yi j〉 and a path S → Yi j, we define ∇Yi j(S ) to equal the
distance between the endpoints of a lift of S to (̃Yi j)

∗
where (Yi j)∗ is the cubical presentation induced

from X∗i−1 by Yi j → X, where X∗i−1 = 〈X | Yk j : k < i〉.
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Definition 3.47 (Metric Small-Cancellation). 〈X | Yi〉 satisfies C′(α) if for each piece P between giỸi

and g jỸ j either ∇Yi(P) < α||Y∗i || and ∇Y j(P) < α||Y∗j ||, or Grade(Yi) ≤ Grade(Y j) and giỸi ⊂ g jỸ j or

Grade(Y j) ≤ Grade(Yi) and giỸi ⊃ g jỸ j (In fact, the above inclusions can be replaced by giỸi ⊂ g jỸ j

in X̃∗m (and vice-versa). See Remark 3.8.)
It is a separate matter to use that∇Yi(P) < α||Y∗i || for each piece in order to conclude small-cancellation.

It seems we need adjacent outside rectangles to also have some bound: for instance a base path of any
such rectangle in X̃ along Ỹi satisfies ∇Yi(P) < α||Y∗i ||.

The most important consequence of appropriate C′(α) (and respectively C\(α)) is that a small-
cancellation complex has short innerpaths which means that for each essential θ-shell S Q → Y in
a diagram D→ X∗ with ΩY (S ) < π, we have ∇Y (S ) < |Q|.

There is a related condition C\(α) requiring only that ∇Yi(P) ≤ α||Y∗i ||. In this case medium innerpaths
is used to mean that ∇Yi(S ) ≤ |Q|.

Lemma 3.48. There exists α such that if 〈X | Yi〉 is C′(α) then it has short innerpaths under the
split-angling.

The proof of Theorem 3.20 should show that C′( 1
12 ) suffices. Instead, we give a simplified proof of

the same statement under the stronger condition of C′( 1
24 ).

Proof in C′( 1
24 ) case. In the split-angling, the largest concatenation of pieces without defect contribu-

tions from the transitions between pieces, consists of a (wall-piece)-(cone-piece)-(wall-piece). And the
smallest defect contribution in the split-angling is π

4 . Any path S → Yi with ΩYi(S ) ≤ π is thus the
concatenation of at most 15 pieces. To see that ΩYi(S ) < π implies at most 12 pieces, observe that with
n pieces, the minimal number of positive defect transitions is b n−1

3 c, and this is at least 4 when n > 12.
Thus when ∇Yi(P) < 1

24 ||Yi|| for each piece P then ΩYi(S ) < π implies that ∇Yi(S ) < 1
2 ||Yi||. �

Theorem 3.49. Suppose the cubical presentation 〈X | Yi〉 has an angling system making it into a
small-cancellation complex with short innerpaths.

Let 〈A | B j〉 be another cubical presentation, and suppose the map A∗ → X∗ has no missing θ-shells.
Let p, q ∈ Ã∗, (not cone points) and let p̄, q̄ be their images in X̃∗. Let γ′ be an arbitrary geodesic

joining p̄, q̄. then there exists a geodesic γ homotopic to γ′ in X (not X̃∗). And there is a path σ → Ã∗

between p, q such that the image σ̄ of σ in X̃∗ has the following property: σ̄γ−1 is the boundary path
of a ladder L → X̃∗. If the ladder doesn’t consist of a single cone-cell or vertex, then p, q lie in the
interior of the outerpath of the first and last cone-cells and/or spurs of L on each end.

Proof. Let D be a minimal complexity diagram between paths σ and γ, where σ varies among paths in
Ã∗ with endpoints p, q, and where γ varies among all geodesics in X̃ path homotopic to γ′ (so we aren’t
varying among geodesics in X̃∗).

Observe that D has no corners of generalized squares along γ, or along σ.
Likewise D has no outerpaths of positively curved θ-shells along either. None along σ for such a

θ-shell would map to Ã∗ and thus σ could be passed through it. None along γ for such a θ-shell would
violate that γ and hence γ′ is a geodesic by the short innerpaths hypothesis.

There are thus only two positively curved cells: A spur or cone-cell at p̄ and a spur or cone-cell at
q̄. �

Corollary 3.50. Let A∗ → X∗ be as in Theorem 3.49 with A∗, X∗ compact. Then Ã∗ → X̃∗ is a quasi-
isometry.

Suppose moreover that X̃ is δ-hyperbolic. And the maximal diameter of a cone Yi is κ. Then Ã∗ → X̃∗

is (δ + κ)-quasiconvex.
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Proof. Consider a minimal complexity ladder as in Theorem 3.49.
For the first statement, we show that the lengths of γ and σ are proportional since each cone-cell

has at most µ edges on σ and at least one edge on γ, and the intermediate parts can be assumed to be
rectangles, and thus have the same length. Let µ denote an upper bound on the total number of vertices
in a cone. Thus if a subpath σ′ of σ lying in some cone Yi has length exceeding µ then we see that it
has a subpath mapping to a closed path of Yi. If this closed path is essential, then it lifts to a closed path
in a cone of A∗, and if it is not essential then it bounds a square diagram in Ã. Either way, we could
reduce the complexity to get a smaller diagram between γ and σ.

For the second statement, note that cone-pieces have diameter < κ. The point is that a rectangle
between successive cones in the ladder has a bounded height because if it is too tall, then an inner part
of it can be replaced by a bounded part. Thus the geodesic γ′ lies in the δ neighborhood of γ which lies
on one side of a ladder L, with a path σ → Ã∗ on the other side. But then γ lies in the κ neighborhood
of σ. �

Remark 3.51. The condition in Theorem 3.49 can be replaced by medium innerpaths: ∇(S ) ≤ |Q|, but
we must then allow γ to vary in X̃∗ and not just in X̃. So we conclude that γ exists, and still have a
quasi-isometric embedding conclusion.

Lemma 3.52 (Convexity). Let us add the following hypotheses to the situation described in Theo-
rem 3.49. Let 2α + β = 1

2 where α, β > 0 (we have in mind α = 1
8 and β = 1

4 ).
Suppose that cone-pieces in X∗ are small in the sense that ∇Yi(P) < α||Y∗i || whenever P is a cone-piece

of a translate of Ỹ j in a translate of Ỹi (and one is not contained in the other).
Suppose that overlaps between cones Yi and A are small in the sense that for any path P in the

intersection of translates Ỹi, Ã in X̃, either ∇Yi(P) < β||Yi|| or Ỹi ⊂ Ã.
Then A∗ → X∗ is a local isometry, in the sense that Ã∗ → X̃∗ is a convex subcomplex.

Proof. Let γ be a geodesic in X̃∗ whose endpoints lie on Ã∗. Consider a minimal complexity diagram
D between γ and a variable path σ in Ã∗.

If D has no cone-cells then D must be trivial in the sense that γ = σ.
There is a geodesic path γ′ in D with the same endpoints as γ such that γ′, γ together bound a

maximal square subdiagram of D. Let E denote the subdiagram of D bounded by σ, γ′. Observe that
E cannot have any corners of generalized squares along σ or γ′. The former is impossible since σ is
allowed to vary in Ã∗, so a generalized square can be pushed through it. The latter is impossible since
we could again push past the square to make E smaller.

There are no outerpaths of positively curved θ-shells along either γ′ or σ. The latter is excluded
since A∗ → X∗ has no missing θ-shells by hypothesis. The former is excluded by our hypothesis that
X∗ has short innerpaths, so if such a θ-shell existed it would contradict our hypothesis that γ′ and hence
γ is a geodesic. We conclude that there at most two features of positive curvature in E, so E is either a
single cone-cell or 0-cell or ladder by Theorem 3.36.

In fact we seek to conclude that γ′ = σ so E is a subdivided interval. And we now apply our
strengthened α, β hypothesis to reach this conclusion.

Consider a cone-cell C in E that maps to the cone Y . The path ∂pC is the concatenation wxyz where
w, y are either trivial (when C is an initial or terminal cone-cell in the ladder) or are cone-pieces, and w
is a path between C̃ and Ã, and z is a subpath of γ′. By our hypotheses, |wxy| < α||Y ||+β||Y ||+α||Y || < 1

2 ||Y ||.
The diagram D and hence E is reduced, so wxyz is essential and hence |wxyz| ≥ ||Y ||. Thus since
|wxy| < 1

2 ||Y || we see that |z| > 1
2 ||Y || which contradicts that γ′ is a geodesic. �

Here is a further variation and strengthening of the previous result:
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F 70. We glue a phony Yi-cone-cell with boundary path P along the outerpath of a dia-
gram to reach a contradiction.

Lemma 3.53 (Persistence of Superconvexity). Suppose X∗ is small-cancellation with internal cone-
cells having negative curvature.

Suppose A∗i satisfy a strong form of no missing θ-shells excluding those with θ ≤ π.
Then (conjugates of) intersections of conjugates of π1A∗i and π1A∗j in π1X∗ are represented by com-

ponents of the fiber-product Ai ⊗X A j.
Suppose moreover that X∗ has short innerpaths, then Ã∗i is superconvex.

4. T

4.1. Cones Embed.

Theorem 4.1. Suppose the cubical presentation 〈X | {Yi}〉 has an angling system so that the conditions
of Theorem 3.36 are satisfied for each minimal complexity diagram D → X∗, and such that Condi-
tion 3.36.(5) is strengthened so that nil-external corners have ^ ≥ π

2 . Then each Yi embeds in X̃∗.

The requirement that nil-external corners have ^ ≥ π
2 will ensure that an outerpath of a positively

curved θ-shell is not a cone-piece. This property is at the heart of the proof. We note that such angles
are exactly π

2 for the split-angling system.

Proof. Consider a minimal area disk diagram D whose boundary path P is an essential non-closed
path in Yi, and suppose the complexity of D is minimal among all diagrams whose boundary path is
path-homotopic to P in Yi.

By Theorem 3.40, D̄ either consists of a single 0-cell or single cone-cell, or D̄ contains a spur or
generalized square with outerpath on ∂pD, or D̄ contains a positively curved shell.

The first two possibilities lead to an immediate contradiction: If D̄ is a single 0-cell then P = ∂pD is
a trivial path and hence closed in Yi, and if D̄ is a single cone-cell then this cone-cell must actually lie
in Yi, and hence again, P is closed in Yi.

Since Yi → X is an immersion, we can pass to a path P′ → Yi with backtracks removed (or we could
have assumed P had no backtracks to begin with), so we can assume D̄ has at most one spur - at the
very basepoint of P.

We now consider the main case where D̄ contains a shell or the corner of a generalized square. In
the square case, since Yi → X is a local isometry, we could push across this generalized square and
obtain a new diagram with smaller area. In the shell case we find that it is either replaceable by a square
diagram or it can be absorbed into Yi (and hence in either case, D is not minimal). Indeed, the outerpath
Q of a θ-shell R cannot be a cone-piece, for then, as in Figure 70, we can attach a cone-cell E → Yi
to D along Q there would be a disk diagram with an internal positively curved cone-cell, and likewise,
when D is a single cone-cell, we can surround D by two such cone-cells E1, E2.

There is a technicality here: To argue in terms of disk diagrams we need a closed path P′ → Yi for
∂pE (and likewise P′i for Ei). When Yi is not CAT(0) then we can always extend any path in Yi to an
essential closed path. When Yi is CAT(0) we would have to use an inessential path like PP−1 which is
thus replaceable and unsatisfactory, or we could use phony cone-cells - and we refer to Lemma 5.27
for more on this approach. �
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4.2. Torsion.

Theorem 4.2. Let 〈X | {Yi}〉 be a cubical presentation with the following properties: Then each torsion
element in π1X∗ is conjugate to an element represented by a closed path γ such that γn is a closed path
in some Yi.

(1) Each element γ of π1X has a locally convex core C = C(γ) with the property that any ball of
radius r disconnects C̃ for some r = r(X).

(2) For any essential positively curved θ-shell with outerpath Q and innerpath S , we have |Q| − |S |
exceeds twice the maximum length of a piece.

Remark 4.3. We note that Hypothesis (1) holds when X is compact and X̃ is δ-hyperbolic, and that
r = r(dim(X), δ(X)) in this case.

We suspect that Theorem 4.2 holds for cubical presentations satisfying more general small-cancellation
conditions. Perhaps one can proceed by proving an asphericity result, and then showing that a torsion
element would fix a cone-point.

Proof. Let us first prove the Theorem when X is 1-dimensional, for then the constant r = 0, and things
are simplified.

Let g be a torsion element in X̂∗. Let γ be a shortest combinatorial path in X representing g. Thus γn

is nullhomotopic in X∗ for some n ≥ 2.
Consider a minimal area disk diagram D for γn. Note that D cannot be a diagram in X, for then

γ would be a torsion element in π1X in which case γ is trivial. In particular, we assume that D is
nontrivial.

By Theorem 3.40, either D consists of a single cone-cell, and we have verified our conclusion, or D
contains two or more positively curved shells.

If the outerpath of the shell lies in the concatenation of a cyclic permutation of γ with a path α

whose endpoints are at distance (in X̃) bounded by the length of a maximal piece, then a geodesic for α
concatenated with the innerpath provides a shorter representative for g. So we can assume this doesn’t
happen.

Thus the outerpath is the concatenation of a cyclic permutation of γ followed by a long path β whose
endpoints in X̃ are at distance exceeding the length of a maximal piece. Now we can attach n copies of
this shell to γn using the Zn action. Successive copies overlap along β. But β cannot be a piece, and so
successive copies of this shell map to the same cone Y j. Consequently, the path γn maps to Y j.

The idea for the case where X is d-dimensional is similar. We require that |Q| − |S | − 2r exceeds
twice the longest piece.

Now, either there is a way to shorten our representative for (a cyclic permutation of) γ by replacing
some subpath of γ by a shorter path that runs along some some initial part of γ and then jumps across
the annulus at the beginning and the end and then uses the innerpath S , or we find that there is an
impossibly long piece at the continuation, and then we find that all the cone-cells map to the same cone
as above. �

Corollary 4.4. Let X̂ → X be a regular cover, such that Yi → X lifts to an embedding in X̂. Suppose
the cubical presentation 〈X | {Yi}〉 is small-cancellation. Then π1X∗ is virtually torsion-free.

Proof. Consider the cover of X∗ induced by X̂. A torsion element of π1X∗ is conjugate to a closed path
γ such that γn is a closed path in some cone Yi. Suppose n ≥ 2 is minimal with this property, so that
γ is not a closed path in Yi (and is thus a nontrivial torsion element of π1X∗). Since Yi → X lifts to an
embedding Yi → X̂, we see that γ does not lift to a closed path in X̂ and so γ does not represent an
element of π1X̂∗. �
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F 71.

F 72. Torsion in cones in higher dimensions

Remark 4.5. Note that Corollary 4.4 holds under various more general hypotheses: For instance when
each π1Yi → π1X̂ is malnormal.

4.3. Relative Hyperbolicity of Quotient.

Theorem 4.6. Suppose the nonpositively curved cube complex X is compact, and that π1X is word-
hyperbolic. Let X∗ be the complex associated to the cubical presentation 〈X | Yi〉.

Suppose that essential cone-cells in reduced diagrams D→ X∗ have negative curvature. Then π1X∗

is hyperbolic relative to the images of π1Yi → π1X.

Remark 4.7. When outerpaths of shells are < 1
2 as in Condition 5.4, then one actually obtains a Dehn’s

algorithm, and so the conclusion is fairly immediate using Osin’s criterion [Osi06] of a relative linear
isoperimetric function, and is thus immediate when each Yi is compact and there are finitely many Yi.

Proof. This follows as in [Ger87] by applying Theorem 3.15. A variant of his proof utilizing an upper
bound on the radius of a zero-curvature ball must be employed. �

5. N    B(6) 

5.1. Introduction. In this section, we impose further hypotheses on the cones Yi in a cubical presen-
tation X∗ = 〈X | Yi〉. The main hypotheses is that each Yi is a wallspace whose walls are collections of
hyperplanes, and furthermore, the walls in Yi have certain “convexity” properties - in the sense that any
path in Yi that starts and ends on the same wall, is either homotopic into that wall, or is “long” from
a piece-count viewpoint. The wallspace cones and their properties allow us to define walls in X̃∗, and
these walls are the central focus of the section.

We define a notion of “length” of a path in a cone in Section 5.2 and then describe the B(6) wallspace
structure on cones in Section 5.3. The construction of walls in X̃∗ and quasiconvexity properties of these
walls in X̃∗ are examined in Sections 5.5, 5.6 and 5.9. Conditions that imply that the set of walls is
sufficiently rich to “fill” X̃∗ are examined in Sections 5.11 and 5.12. Malnormality properties of the
wall stabilizers are treated in Sections 5.14, 5.15, 5.16, and 5.17.
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F 73. The total defect Ωi(P) of the path P→ Yi on the right is ≤ π
3 + π

2 + π
3 + π

4 .

5.2. Total defects of paths in cones. In classical C(6) small-cancellation theory, a quick measure of
the extent to which a path P → ∂R travels around R is the inifimal number n where P = P1 . . . Pn is
an expression of P as the concatenation of pieces between other relators and our relator R. This can be
thought of concretely in terms of a reduced diagram as on the left of Figure 73. If we assign 2π

3 angles
at the internal corners of R along P, then we obtain a total defect of (n − 1)π3 . We shall now generalize
the “piece length of P in R by focusing on the “total defect”.

Consider the cubical presentation 〈X | Yi〉, and suppose we have chosen a fixed method of assigning
angles (for instance, the split-angling, or the grade-angling) on rectified disk diagrams in X∗.

Consider a path P → Yi. The defect of P in Yi which we denote by Ωi(P) is the infimum of the
sum of defects of angles along the path P in a cone-cell Ci mapping to Yi within angled rectified
diagrams D̄ that have P as an internal path on the boundary of Ci. Of course, we also assume that the
original diagram D has minimal complexity (or as usual, it has no cancellable pairs of cone-cells, and
no removable bigons or squares that are absorbable into cone-cells). See Figure 73.

It may be that P doesn’t occur as an internal path along the boundary of a cone-cell mapping to Yi.
This could be remedied with a trick, by using a cone-cell with boundary path P−1P, however P−1P is
null-homotopic so the cone-cell can be removed (so we wouldn’t have minimal complexity) without
affecting the boundary path. A rigorous alternative (leading to the same result), is to add a new 1-cell to
Yi for each pair of vertices in Yi, and to attach a copy of this new 1-cell to X along the images of these
vertices. (We refer the reader to Lemma 5.27 where a similar approach is used to force 1-cells dual to
the same wall to lie on the boundary path of a (newly added) essential cone-cell.) Doing so yields a
new cubical presentation with the property that each such path P could now arise as the boundary of a
(genuine) cone-cell that couldn’t be compressed onto the boundary path of its containing disc-diagram
and removed. We note that the new cubical presentation deformation retracts onto the original in a
reasonable sense.

It may be that some edge e of P → Yi cannot arise within the interior of a diagram D. Indeed, let
ē denote the image of this edge in X, then this happens precisely if ē is not the image of some edge of
Y j or some other edge of Yi, and that Yi → X is a local surjection at e so each square along ē lifts to Yi
(thus e does not arise within a wall-piece). In this case the infimum of defects along P as it arises in
such diagrams, is the infimum of the empty set. Thus Ωi(P) = +∞.

For 1-cells e, e′ in Yi, we define Ωi(e, e′) to be inf(Ωi(P)) where P→ Yi is a path whose first and last
1-cells are e, e′. We define Ωi(v, v′) similarly for 0-cells v, v′ in Yi. For hyperplanes E, E′ of Yi, we
define Ωi(E, E′) to equal inf(Ωi(e, e′)) where e, e′ vary among 1-cells dual to E, E′.

5.3. Generalization of the B(6) condition. We will now add more elaborate structure to generalize
other aspects of the classical C′( 1

6 )-T (3) and C′( 1
4 )-T (4) metric small-cancellation theories, to higher

dimensions along the lines of the B(6)-T (3) and B(4)-T (4) theories we considered in [Wis04].

Definition 5.1. [Generalized B(6)]
We say 〈X | {Yi}〉 satisfies the generalized B(6) condition provided the following conditions hold:
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F 74. Hyperplane-convexity vs. wall-convexity in cones

(1) [Cubical Rel.Pres.] X is a nonpositively curved cube complex, and each Yi → X is a local
isometry of cube complexes.

(2) [NPC] X satisfies the nonpositive [negative] curvature condition for rectified diagrams: So
Ωi(P) ≥ 2π [respectively Ωi(P) > 2π] for each essential closed path P→ Yi. And each internal
0-cell and shard in each rectified reduced diagram has nonpositive curvature.

(3) [Wallspace Cones] Each Yi is a wallspace (see Definition 7.1) where each wall in Yi is the
union of a collection of disjoint embedded hyperplanes, each of which maps to an immersed
hyperplane in X. Each such collection separates Yi. Each hyperplane in Yi lies in a unique
wall.

(4) [Hyperplane Convexity] If P→ Yi is a path that starts and ends on vertices on 1-cells dual to a
hyperplane H of Yi and Ωi(P) < π then P is path-homotopic into its carrier N(H) in Yi.

(5) [Wall Convexity] Let S be a path in Y that starts and ends with 1-cells dual to the same wall
of Y . If ΩY (S ) < π then S is homotopic into that wall (and hence into the carrier of one of its
hyperplanes).

(6) [Equivariance] For each Y the wallspace structure on Y is preserved by AutX(Y).

We note that Condition (4) is not implied by Condition (5) since the latter requires that the path start
and end with dual 1-cells, and not merely start and end at endpoints of dual 1-cells (see Figure 74).

Definition 5.2. We define AutX(Y) to equal the group of automorphisms φ : Y → Y such that we

have a commutative diagram:
Y φ

→
Y

↘ ↓

X
. Note that AutX(Ỹ) equals Stabπ1X(Ỹ), and that AutX(Y) �

NormalizerAutX(Ỹ)
(
π1Y

)
/ π1Y . In practice, this situation is simplified since we choose Y so that π1Y is

normal in AutX(Ỹ).
We emphasize that in the definition of “piece”, we must treat two lifts of Ỹ as identical if they differ

by an element of Stabπ1X(Ỹ). This generalizes the way relators that are proper powers are treated in the
classical case.

For instance, sticking a spur on to a relator Y can drastically destroy the small-cancellation proper-
ties, since it can artificially decrease the size of AutX(Y). Indeed, two lifts P→ Y that originally differ
by an automorphism of Y will not form a piece, however after adding the spur to Y , the automorphism
will no longer exist.

Remark 5.3. Definition 5.1.(6) is required to make the wall equivalence relation (defined below) on
hyperplanes in X̃∗ agree locally with wall structure on each Y . If some cone Y ⊂ X̃∗ doesn’t have this
property, then the decomposition of the hyperplanes of X̃∗ into equivalence classes of walls, would
provide a coarser decomposition of the hyperplanes of Y than the actual wallspace of Y .

It is natural but apparently unnecessary to impose the global requirement that gW ∩ Y = W ∩ Y
for any wall W of X̃∗ that crosses Y and any Y in X̃∗. It is conceivable that gW hits Y accidentally
within some hyperplane (so g−1Y plays the role of an inessential cone for W). However Condition (6)
keeps things OK in the case that g−1Y is an essential cone of W, since the small-cancellation forces two
essential cones meeting along distinct hyperplanes in the same wall of W to be equal to each other.

We impose another related condition later in Hypothesis (3) of Theorem 5.64.
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Definition 5.4 (Short innerpaths). An essential property of the classical C′( 1
6 ) theory is generalized by

the following “metric small-cancellation” condition, and we refer the reader to Definition 3.47 where
this notion is treated in depth. The cubical presentation 〈X | Yi〉 has short innerpaths if the following
holds for each cone Yi:

If Ωi(S ) < π then for any local geodesic S ′ → Yi that is path-homotopic to S , and for any path
Q→ Yi such that the concatenation S Q is an essential closed path, we have |S ′| < |Q|.

5.4. Cyclic Quotients and the B(6) condition (to be developed). Cyclic quotients are especially
accessible to the B(6) small-cancellation theory because a wallspace structure on the cones is then
often readily achievable.

(Another case to consider are relators with large abelian automorphism groups. We’ve begun treating
this in Section ??.)

One subdivides the cube complex X, so that the local-isometry Y → X (representing a cone associ-
ated to the cyclic subgroup to quotient) has twice the number of separating hyperplanes. Now hyper-
planes (that don’t already separate) can be paired in a manner respecting almost all small-cancellation
conditions provided a girth condition is satisfied.

Note:
1) While the B(6) condition is easily satisfied here, hierarchical conditions might not be attainable

without some sort of evenness assumptions at various levels.
2) An interesting example is a twisted product Y = B o S where B is a CAT(0) ball and S is a

subdivided circle (this is just a B-bundle over S .) Presumably Bo S is a product when X is special, but
in general, it is possible to have some hyperplanes that wrap multiply around the circle basespace.

For Dehn fillings, it is natural to use the entire infinite cylinder as the relator.
Relative hyperbolicity gives an upper bound on diameters of pieces between planes. This gives an

upper bound on diameters between (distinct) cylinders. A Dehn filling corresponding to an element
that is long enough relative to these pieces and the walls gives us a small-cancellation quotient, and
should be virtually special because of the subdivision and paired splicing.

3) These ideas can be generalized to abelian quotients.

5.5. Embedding properties of the cones and hyperplane carriers. The aim of this subsection is to
show that certain very short circuits of cones and hyperplane carriers do not exist in X∗. We are using
the split-angling, though similar statements hold in most cases for the grade-angling.

The following is a restatement of Theorem 4.1.

Lemma 5.5 (Cones embed again). Let 〈 X | {Yi} 〉 satisfy Condition 5.1.(2) and the short innerpath
condition of Definition 5.4. Then each Yi embeds in X̃∗.

Proof. Consider a path P′ → Yi that lifts to a closed path in X̃∗. Consider a disk diagram D →
X∗ that has minimal area among all diagrams whose boundary path P is path-homotopic to P′ in Yi.
Specifically, the number of cone-cells in D is minimal, and the number of squares is minimal as well,
for this fixed number of cone-cells.

By Theorem 3.40, D̄ is either trivial in the sense that it is a single 0-cell or cone-cell, or else D̄ has
two or more generalized square corners, spurs, or shells on its boundary. Moreover, the outerpaths of
these features of positive curvature have disjoint interiors.

If D̄ is trivial then D̄ cannot be a single 0-cell, or P→ Yi is closed. Since corners and spurs in D̄ could
be absorbed into Yi making D̄ even smaller, we can assume that D̄ has shells. Now apply Condition 5.4
to the outerpath of a shell whose interior is disjoint from the endpoints of P. Its innerpath has angle
sum < π and its outerpath must have angle sum < π which is impossible. We thus reach the conclusion
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that this shell must have been in Yi itself, and we obtain a smaller complexity diagram - with fewer
cone-cells, and this contradicts our choice of D.

Eventually we reach a contradiction. �

Lemma 5.6. Suppose that 〈X | Yi〉 is a small-cancellation complex, and that no essential path in a
cone-cell is the concatenation of three pieces. Then the intersection of two cones in X̃∗ is connected.

Definition 5.7 (No acute corners). An angling system has no acute corners if the defect of each cone-
cell angle is ≤ π

2 .
We note that the split-angling has no acute corners, as does the grade-angling provided that each

grade is ≥ 4.

Remark 5.8. The three piece hypothesis in Lemma 5.6 holds when the small-cancellation complex
〈X | Yi〉 has no acute corners.

Indeed, suppose P1P2P3 is an essential path in the cone Y that is the concatenation of three pieces.
Let A be a 2-cell with ∂pA = P1P2P3 and form a disk diagram D by surrounding A by three rect-
angles and/or cone-cells according to whether Pi are wall-pieces, non-contiguous cone-pieces and/or
contiguous cone-pieces. Since X∗ is small-cancellation, the angles on the diagram D yield nonposi-
tively curved internal cone-cells. However, as X∗ has no acute corners, each internal angle of A has
defect ≥ π, so κ(A) ≥ π

2 . The analogous reasoning holds for fewer than 3 pieces.

Proof of Lemma 5.6. Suppose that Y1 ∩ Y2 is not connected. Let D be a minimal area disk diagram
between paths γ1, γ2 that start and end on points p, q in distinct components of Y1 ∩Y2. In particular, D
is minimal complexity among all such possibilities where p, q are allowed to vary within two specific
components of Y1 ∩ Y2, and where the paths γ1, γ2 are allowed to vary among paths in Y1,Y2 starting
and ending on p, q.

Since our aim is to show that D is a square diagram, and thus lies in both Y1 and Y2 by local
convexity, we can assume without loss of generality that D is spurless. Likewise, we can assume that D
has no outerpath of a generalized square in either γ1 or γ2, for then we could find a smaller square area
diagram. Observe that D has no positively curved θ-shell with an outerpath in γi for then it could be
absorbed into Yi or replaced by a square subdiagram thus leading to a lower complexity diagram. Thus
D has at most two locations for an outerpath of a positively curved cell. Consequently D is a ladder or
a single cone-cell or a single vertex by Theorem 3.36.

A single vertex would imply that p = q, which is impossible. A single cone-cell is impossible
because if its boundary path is the concatenation of two pieces, then its curvature is < 2π since the
defect at the two transitions is < π. Thus it can either be replaced by a square diagram, or it is absorbable
into one of the two cones, and so either way, there is a smaller area complexity diagram.

If D is a ladder, then as above, there are no spurs, so there are 0-shells at each end. then a θ-shell at
one end is bounded by the concatenation of three pieces. We now use the hypothesis that no essential
path in a cone-cell is the concatenation of three pieces. �

Lemma 5.9 (Intersections of Cones). Let 〈X | Yi〉 be as in Lemma 5.6. The intersection between distinct
cones in X̃∗ is CAT(0).

Proof. Any path P in the intersection Yi ∩ Y j of cones has the property that Ωi(P) = 0 = Ω j(P).
Consequently, any such closed path P must bound a cubical diagram D in Yi by Condition 5.1.(2).
Then by local convexity, D is a diagram in Y j as well so D ⊂ Yi ∩ Y j in X̃∗. Now, Yi ∩ Y j is locally-
convex and hence nonpositively curved since both Yi and Y j are. Thus, Yi ∩ Y j is CAT(0) since it is
simply-connected and nonpositively curved. �
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F 75. A self-crossing hyperplane

Definition 5.10 (Embedding Properties of Hyperplanes in Cones). In many cases, the following condi-
tions follow from Condition 5.1.(5) because single edges tend to be pieces, but simple examples show
that in general these conditions must be hypothesized to achieve some of our desired conclusions.

(1) [2-sided] Each hyperplane of each Yi is 2-sided, in the sense that its dual 1-cubes can be oriented
so that dual 1-cubes that are opposite sides of a 2-cube are oriented the same way.

(2) [No self-intersection] No hyperplane H in Yi is dual to all 1-cubes on the boundary of a 2-cube
in Yi.

(3) [No self-osculation] No hyperplane H in Yi is dual to two distinct 1-cubes that share a 0-cube.
(By nonpositive curvature, this implies Condition (2).)

Remark 5.11. Condition 5.10.(3) is a consequence of Definition 5.1.(4) by letting P denote the trivial
path. We note that the same would hold if we restricted Definition 5.1.(4) to paths P starting and ending
on the same side (in the 2-sided case). Accordingly, Condition 5.10.(2) holds as well.

Example 5.12 (A self-crossing hyperplane). In Figure 75 we illustrate a 2-dimensional cubical presen-
tation 〈X | Y1, . . . ,Y8〉. X∗ is C(6) and all cones are embedded and have well-behaved hyperplanes, and
X̃∗ = X∗, but there is a hyperplane in X̃∗ that self-crosses. By subdividing along the outside, one can
arrange that C′(α) be satisfied for arbitrary α > 0.

Reformulated appropriately, the following is a special case of Theorem 12.16.

Lemma 5.13 (Embedding Hyperplane Carriers). Let 〈X | Yi〉 be a small-cancellation with no acute
corners, and suppose Conditions 5.1.(4) and 5.1.(2) hold. Let H be an immersed hyperplane in the
nonpositively curved cube complex of X̃∗.

(1) If Condition 5.10.(1) is satisfied then H is 2-sided.
(2) If Condition 5.10.(2) is satisfied then H does not self-intersect.
(3) If Condition 5.10.(3) then H does not self-osculate.

In conclusion, if all three conditions are satisfied, then N(H) → X̃∗ is an embedding and N(H) �
H × [−1, 1].

Note that we define the carrier of an immersed hyperplane Y → Z to be the union of copies of cubes
of Z whose midcubes are the cubes of Y . These copies of cubes are glued together along subcubes
in N(H) as they are in Z. The result is a (possibly twisted) I-bundle over Y . We note that N(H) is
nonpositively curved, and that N(H)→ Z is a local-isometry.

Example 5.14. When the immersed hyperplanes of X are not 2-sided, in general, H might not be 2-
sided so N(H) � H×I. For instance, let X be a moebius strip obtained by identifying opposite sides of a
square with a twist, and let Yn denote a connected n-fold cover of X. Then 〈X | Yn〉 is small-cancellation
for sufficiently large n. But the cube complex of X̃∗ is still a moebius strip for odd n.

Similar examples can be concocted to illustrate how N(H)→ Y can fail to be an embedding.

Proof of Lemma 5.13. We will concentrate on establishing the conclusion where all three conditions
are satisfied.

Consider two points p, q ∈ N(H) that map to the same point of X̃∗. Let D→ X∗ be a disk diagram of
minimal complexity among all diagrams whose boundary path P→ N(H) starts and ends on p, q. If D



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 56

has a corner of a generalized square, then since N(H) → X is a local-isometry, we see that this square
could be absorbed into N(H) and a lower complexity diagram could be produced.

Suppose that D has a θ-shell C with boundary path QS , with innerpath S and outerpath Q and such
that C maps to the cone Y . First consider the case where Q → N(H) does not pass through any dual
1-cell of H → N(H). Then either Q is a wall-piece in the cone Y or the square ladder of Y containing
Q along its external boundary maps into Y . In the former case, since there are no acute corners, we see
that Ω(QS ) ≤ Ω(Q) + π

2 + Ω(S ) + π
2 ≤ 0 + π

2 + θ + π
2 < 2π, which implies by Condition 5.1.(2) that

∂pC = QS → Y is null-homotopic, so C can be replaced by a square-diagram and we can reduce the
complexity of D. In the latter case, Condition 5.1.(4) likewise implies that QS → Y is null-homotopic
so C can be replaced by a square-diagram and we can reduce the complexity of D.

We next consider the case where Q passes through a dual 1-cell of H. Then there exists L → N(H)
where L � In × I is a square-ladder that is dual to H, and Q → N(H) factors as Q → L → N(H), and
by the local convexity of the cone Y , we have L → X̃∗ actually factors as L → Y → X̃∗. Therefore
Condition 5.1.(4) again implies that C can be replaced by a square diagram, to reduce the complexity
as above.

We emphasize that in the special case of the above situation where S is trivial and Q is a wall-piece
in Y , and C is replaced by a square diagram, we see that the endpoints p′, q′ of Q in N(H) are actually
equal to each other, and moreover, following Lemma 2.2, the 1-cubes dual to H at p′ = q′ must be equal
to each other as well. In the case where Q is not a wall-piece (this also includes the situation where Q
passes through a dual 1-cell) we see that Q lies on a square-ladder L dual to H such that L→ C. It is in
this case that we must employ Condition 5.10.(3) to see that the 1-cubes dual to H at p′, q′ are actually
equal in C (as L maps to a cylinder in C) and so these 1-cubes are equal in X̃∗ and hence in H itself.

In particular, we are able to remove C,Q from D, P to obtain a lower complexity diagram D′, P′ such
that P′ has the same endpoints as P in N(H).

We now focus on the 2-sidedness of H to see that N(H) � H × [−1, 1]. Consider a minimal com-
plexity diagram D whose boundary path P is a path on N(H) that passes through an odd number of dual
1-cubes of H. The additional presence of Condition 5.10.(1), implies that for any hyperplane Hi of Yi,
any closed path in N(Hi) passes through dual 1-cubes of Hi an even number of times. Therefore, when
QS is the boundary path of a cone-cell C in Yi that lies in N(Hi), we see that Q and S pass through dual
cubes of H the same number of times (where Hi is a component of H ∩Yi). In particular, when S is the
trivial path, then the smaller complexity diagram D′, P′ that we obtained above has the property that P
and P′ have the same parity.

We note that in the case where D is a square-diagram, it is clear that P passes through an even
number of dual 1-cubes of H, since the dual curves in D provides a pairing of such dual 1-cubes. �

The following result will play a fundamental role in understanding the walls of X̃∗ by revealing
cancellable pairs of cone-cells in certain disk diagrams.

Lemma 5.15. Each hyperplane H in X̃∗ has connected intersection with each cone Y ⊂ X̃∗.
Moreover N(H) ∩ Y = M(H ∩ Y), where M(K) denotes the carrier in Y of a hyperplane K of Y.

Remark 5.16. When each Yi is a pseudograph (see Definition 5.46) in the sense that its hyperplanes
are CAT(0), one can reach the following stronger result:

Any path Ph → N(H) whose endpoints lie on Y , is path-homotopic through a square diagram in X̃
to a path Py → Y . This can be used to simplify some of the proofs below.

However there are simple examples showing that such a square-diagram might not exists in general.
For instance, the square ladder at the top of Figure 76 cannot be pushed towards the cone at the bot-
tom without passing through three essential cone-cells. The reader can think of the light intermediate
diagram as being made of squares.
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F 76.

F 77. The four diagrams on the left illustrate how a hyperplane can be pushed across a
cone-cell whose outerpath is not a real wall-piece. The right two figures illustrate the situation
when the innerpath is trivial.

Proof. Let p, q be points in N(H) ∩ Y and let D → X∗ be a diagram between paths Ph → N(H) and
Py → Y from p to q, and suppose that d has minimal complexity among all such diagrams and paths
joining p, q.

Observe that D has no corner of a generalized square along Ph or Py, for then, by local-convexity,
we could absorb the square to produce a lower complexity diagram. Likewise, observe that D has no
outerpath of a θ-shell along Py, for then it could either be absorbed into Y or replaced by a square
diagram by Condition 2, thus decreasing the complexity. Similarly, D cannot have an outerpath of a
θ-shell C along Ph, where C maps to Yi. Indeed, suppose ∂pC = QS , where Q is the outerpath and S is
the innerpath. Then Ωi(S ) ≤ θ < π.

If Q is a wall-piece of H in Yi, then Ω(QS ) ≤ θ + π ≤ 2π which contradicts Condition 2. Thus we
can assume that the ladder in N(H) containing Q lies in Yi.

Thus Condition 5.1.(4) implies that S is square homotopic in X to path Q′ on N(H∩Y). Let C′ denote
a square diagram whose boundary path is S Q′. Letting Ph = P1QP2, we observe that P′h = P1Q′P2 is
still a path in N(H). This uses Hypothesis 3 to see that Q and Q′ are external boundary paths of square
ladders whose initial and terminal 1-cubes are identical. Finally, by replacing the path Q with the
path Q′, and replacing the cone-cell C with the square diagram C′, we obtain a new diagram D′ → X∗

between Py and P′h of lower complexity. We refer the reader to Figure 77. Note, that this procedure
can be followed whenever an innerpath S of a cone-cell C, is homotopic into N(H) (and we shall need
to consider it again below). We also note that this procedure is meaningful even in the case where S is
a trivial path. In that case, Condition 3 allows us to immediately short-cut Ph and replace Q by S itself
to remove C and reduce the complexity.

We have shown that the outerpath of a positively curved cell must contain an endpoint p, q of Py, Ph.
Thus D is a ladder by Theorem 3.36, or it is a single cone-cell or 0-cell.

As we aim to show that Ph is actually also a path in Y , so p, q lie in the same component of N(H)∩Y ,
we can assume that there is no spur on D (for otherwise, we can vary our choices of p, q and remove
the spurs.
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F 78. A nonembedded wall in X̃∗.

Let us now consider the first cone-cell C at one side of D (the reasoning will also dispense with the
case that D is a single cone-cell). The boundary path ∂pC is the concatenation UyUcUh where Uy is a
cone-piece from Y , and Uh is a wall-piece from H, and Uc is a (possibly trivial) cone-piece from the
next cone, or just a trivial path when D is a single 2-cell.

Since ∂pC cannot be the concatenation of fewer than four pieces (which holds as in Remark 5.8), we
see that one of these pieces is fraudulent. It cannot be Uc, for otherwise their would be an absorbable
pair of cone-cells in the diagram, and we would be in a simpler situation. If it is Uy, then we can absorb
C into Y to obtain a smaller complexity diagram, and otherwise Uh is not a genuine wall-piece, and so
using that Ω(UyUc) ≤ π

2 < π , we see by Condition 5.1.(4) that UyUc is square homotopic into a path J
in N(H ∩ Y) and so we can perform the replacement we performed above to decrease the complexity.

This reasoning holds for the first cone-cell in D (so there was no reason to first remove spurs). We
thus reach the conclusion that D has no cone-cells and is thus a (possibly trivial) arc of 1-cells, and
hence Ph = Py is a path in Y , and p, q lie in the same component of N(H) ∩ Y . �

5.6. Defining immersed walls in X∗. We now work under the hypothesis that Condition 5.1.(3) holds.
We define an equivalence relation on hyperplanes in X̃∗, which is generated by A ∼ B provided that

for some translate of some cone Yi in X̃∗, we have A ∩ Yi and B ∩ Yi lie in the same wall of Yi.
The walls of X̃∗ are defined to be collections of hyperplanes of X̃∗ corresponding to equivalence

classes. Our main goal will be to show that these walls do indeed “embed” and separate.

Example 5.17. The simply-connected complex in Figure 78 whose five 2-cells are all wallspaces,
indicates that some small-cancellation hypothesis will be necessary to ensure that walls embed.

Definition 5.18. The structure graph ΓW of a wall W is a bipartite graph whose 0-cells Γ0
W are in two

classes Γh and Γc where Γh
W consists of hyperplane vertices corresponding precisely to the hyperplanes

in W, and Γc
W consists of cone vertices corresponding precisely to the cones that are intersected by

some hyperplane of W. Two vertices of ΓW are connected by an edge precisely when the corresponding
spaces have a nonempty intersection H ∩ Y .

A combination of various results proven below will show that:

Theorem 5.19. (1) ΓW is a tree.
(2) If u , v ∈ Γh

W then the corresponding spaces are disjoint.
(3) If u , v ∈ Γc

W then the corresponding spaces U,V are disjoint unless u, v are both adjacent to
some h ∈ Γh

W corresponding to a hyperplane H and U ∩ V contains a 1-cell dual to H.
(4) u ∈ Γc

W and h ∈ Γh
W then the corresponding spaces U,H are disjoint unless u, h are adjacent,

and U contains a 1-cell dual to H.

The final three statements in Theorem 5.19 follow from the following:

Theorem 5.20. Let W be a wall.
At most one midcube of a square (and hence of a cube) can lie in a hyperplane of W.
If H1,H2 are hyperplanes in W, and Y is a cone, then H1 ∩ Y and H2 ∩ Y lie in the same wall of Y.
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F 79.

Proof. Suppose that there is an alternating sequence H0,Y1,H1,Y2,H2 . . . ,Yr,Hr of hyperplanes and
cones such that Hi−1,Hi belong to the same wall of Yi for 1 ≤ i ≤ r but H0,Hr are distinct hyperplanes
that pass through the same (cube and hence) square or cone Z of X̃∗. (We note that we permit back-
tracking here, so it is possible that Hi = Hi+1 for many i. This facilitates the proof, which hinges upon
minimal area instead of minimal length.)

Let P be a closed path that travels along the corresponding hyperplane carriers and cones, and starts
and ends on this cube or cone Z. Let D → X∗ be a diagram for P, and assume that D, P is minimal
in the sense that D has minimal complexity among all such alternating sequences, and paths P, and
diagrams for P.

Our argument has two stages: In the first stage we show that if D has minimal complexity, then D
can be augmented to form a “collared diagram” E which is obtained by wrapping an annular ladder
A around D such that A contains a self-intersecting path of W. In the second stage we show that
removing and absorbing cancellable pairs preserves this collar structure, and so by passing to a minimal
complexity collared diagram of this type, we see that it cannot exist.

Observe that P is a concatenation of (possibly trivial) paths Ph
0Py

1Ph
1Py

2 . . . P
y
r Ph

r Pz where each Py
i →

Yi is path in a cone, and each Ph
i → N(Hi) is a path in the carrier of a hyperplane, and Pz → Z is a

path in the square or cone Z that W crosses in two locally inequivalent ways. We note that when Z is a
square dual to H0,Hr, it actually lies in N(H0) ∩ N(Hr). We can therefore assume that Pz is trivial in
this case, by possibly absorbing it into Ph

0 (or into Ph
r ).

We will show that P cannot contain a 1-cell e dual to some hyperplane in W in the sense that Ph
i does

not pass through any 1-cell dual to Hi, and Py
i does not pass through any 1-cell dual to the wall of W

containing the hyperplanes Yi ∩ Hi−1 and Yi ∩ Hi. However, we do not impose any restrictions on Pz.
Indeed, if this were the case, then we would be able to produce a lower complexity counterexample.

For the 1-cell e would be dual in D to a curve w of the wall W. Indeed, there is an immersed ladder L
in D that is the concatenation of squares and cone-cells, such that L jumps across opposite 1-cells of a
square, and L jumps across opposite 1-cells of a cone-cell in the sense that they are dual to the same
wall of the ambient cone.

We note that since each cone-cell and each square contains an even number of 1-cells dual to W,
there is really a dual graph, (as in Figure 79) whose vertices internal to D have even valence, and so
there must be an even number of vertices on the boundary, and hence some dual curve starts and ends
on ∂pD.

There are several cases to consider, each leading to a lower complexity counterexample. We refer
the reader to Figure 80.

Suppose w crosses itself within D by passing though the same square in two ways, or by passing
through the same cone-cell in two 1-cells that don’t map to 1-cells in the same wall of its ambient cone.
Then a minimal such self-crossing dual curve is contained in a subdiagram of D, and hence provides a
lower complexity counterexample: It bounds a path P′ which bounds a subdiagram D′ of D.
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F 80.

Otherwise, we can choose w to simply start and end on boundary 1-cells of ∂D, and we obtain a
lower complexity counterexample in one of the following ways:

If w ends on a 1-cell on Py
i that is dual to the wall of Yi containing Hi−1 ∩ Yi and Hi ∩ Yi then w ∪ P

bounds a lower complexity counterexample on the side of D − w containing Pz. Similarly, if w ends
on a 1-cell on Ph

i that is dual to the hyperplane Hi in N(Hi), then w ∪ P bounds a lower complexity
counterexample on the side of D − w containing Pz. In the above two cases, we have the same self-
intersection, and are merely taking a shortcut through the diagram.

If w ends on a 1-cell on Py
i that is not dual to the wall of Yi containing Hi−1 ∩ Yi and Hi ∩ Yi, then

w ∪ P bounds a lower complexity counterexample on the side of D − w not containing Pz. In this case
the self-intersection is new and is at the cone Yi.

Similarly, if w ends on a 1-cell on Ph
i that is not dual to the hyperplane Hi in N(Hi), then w∪P bounds

a lower complexity counterexample on the side of D−w containing Pz. In this case the self-intersection
is new and is at the square in N(Hi) corresponding to the end of w and 1-cubes dual to Hi.

The final possibility is that w ends on a 1-cell f of Pz. (Note that because of our absorption conven-
tion above, this means that Z is a cone and not a square.) In this case, f is distinct from one of the two
(or more) walls at Z corresponding to H0 ∩ Z and Hr ∩ Z. If it is distinct from H0 ∩ Z, then the initial
part of P together with w bound a smaller complexity counterexample. if it is distinct from Hr∩Z, then
the terminal part of P together with w bounds a smaller complexity counterexample.

We have shown that by minimal complexity of D, the path P cannot pass through a dual 1-cell of W
in the sense above. The next step of the proof is to “augment” D by adding an annular ladder A along
P to obtain a new diagram E = D ∪P A. We refer the reader to Figure 81.

Construction 5.21 (Collaring).

The annulus A is a concatenation of square-ladders Li → N(Hi) and cone-cells Ci → Yi and a cone-
cell or square z → Z. Each Li is the unique (possibly degenerate) ladder in N(Hi) that contains Ph

i as
a (possibly trivial) external arc. Each Ci is chosen so that ∂pCi extends the path Py

i so that it starts and
ends on the terminal and initial 1-cells of Li−1 and Li that are dual to Hi−1∩Yi and Hi∩Yi respectively.

We refer to E as a collared diagram in the sense that it has a single dual curve of a wall passing all
the way around along its external 2-cells, except for one corner 2-cell where there is a transition, as
the two hyperplanes do not belong to the same wall. More generally, we will later consider collared
diagrams with k-corners in the sense that they have exactly k such corners. We note that when the dual
curves braid with each other along the outside, there might be multiple ways of specifying the corners.
The diagram E is a collared diagram with 1-corner. These ideas were treated in a simpler setup earlier
in [OW11]. See Figure 82.

When Z is a square, we simply let z be a copy of Z, and when Z is a cone we let z be a cone-cell
such that ∂pz contains the path e0Pzer where e0 is the initial 1-cell of L0 and er is the terminal 1-cell of
Lr (oriented appropriately).

The cone-cells satisfying the above prescriptions exist (after auxiliary extensions) by Lemma 5.27.
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F 81.

F 82.

F 83.

We now verify that Pz → Z cannot pass through any 1-cell dual to W as above. Indeed, we follow the
above argument, to produce a dual curve w leaving Z along some 1-cell of Pz. The details are similar.

Reductions Preserve Collar Structure: Having obtained the 1-corner collared diagram E, we reach
the next stage of the argument which is to obtain a reduced 1-corner collared diagram. The idea is to
show that if E is not reduced then, one can obtain a lower complexity 1-collared diagram E′. The
essential thing to verify is that the collar structure is preserved. We refer the reader to Figure 83.

Reductions not involving an external 2-cell have no effect on the collared structure.
Absorption of an internal square into an external cone-cell.
Absorption of an external square into an adjacent external cone-cell.
Absorption of internal cone-cell with external cone-cell
Absorption of adjacent external cone-cells along a path on the boundary.
Absorption of internal squares from a fake wall-piece into an external cone-cell.
Absorption of external squares from a fake wall-piece into an internal cone-cell.
For the most part, absorptions into cone-cells have little effect, since they do not effect the diagram

much. Even the combining of a cancellable pair of cone-cells has little effect: it just adds two small
square subdiagrams, and then redraws the cone-cells boundaries.

Replacement of a cone-cell by a square diagram. In this case, if the cone-cell was external, then we
might have to shave off one side of the square ladder containing the dual curve corresponding to the
wall on the collar. See Figure 84.
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F 84.

F 85. If there is a cancellable pair of cone-cells as on the first diagram, then there is a
smaller complexity counterexample as shaded in the second or third. The second diagram is the
case where the two walls in the cancellable pair are distinct, and the third where the two walls
are the same. The fourth diagram indicates a fake wall-piece, which is absorbed analogously
in the fifth and sixth diagrams.

F 86.

An interesting case consists of the removal of a cancellable pair of squares where one is external and
the other is not. In this case, one actually passes to substantially different diagram. There are several
cases. If the ladder dual to the 1-cell of the internal square self-intersects (not illustrated) then there is
an obvious lower complexity example. Otherwise, it either closes with itself, or ends on the boundary.
Consideration of the various possibilities leads to a lower complexity diagram (after some gluing).

Absorption between external cells that shortcut the boundary is another interesting case that can lead
to a substantially different diagram. We refer the reader to Figure 85.

Curvature along ∂E: We refer the reader to Figure 86. There are no spurs. Pushing past a corner
of a generalized square provides lower complexity example.

A cone-cell C of positive curvature has innerpath S homotopic to the carrier of a hyperplane by
Condition 5.1.(5). Therefore, letting ∂pC = QS we can replace C by a square diagram with boundary
path e1S e2Q′ such that Q′ lies along the boundary of the hyperplane carrier in the cone Y .

We thus conclude that only the corner 2-cells can support positive curvature. If the transition at a
corner is a square, then there is a 0-cell with curvature π

2 , and if the transition is a cone-cell, then there
is a curvature of ≤ π

2 unless the two collars are braided together there. If so, we can crop off some
ladder, until we obtain a more genuine transition and a curvature of ≤ π

2 .
By Theorem 3.40, we see that there are at least three corners, unless the diagram is a ladder or a

single cone-cell. Our 1-collared diagram cannot be any of these. �

We now prove the first statement listed in Theorem 5.19.

Theorem 5.22. Let W be a wall, then ΓW is a tree.

Proof. This is similar to the proof of Theorem 5.20 but also uses its conclusion.
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F 87.

Let P be the concatenation of an alternating sequence of paths Py
1Ph

1 . . . P
h
r , where each Py

i → Yi is a
cone path and each Ph

i → N(Hi) is a path in a hyperplane carrier, and the hyperplane Hi intersects Yi−1
and Yi in dual 1-cells, and each Hi belongs to W. By adjusting the starting point, we can assume that
the first subpath is a cone path, and that the last subpath is a hyperplane path whose hyperplane Hr is
dual to a 1-cell of the initial cone Y1.

The path P determines a closed path P̄→ ΓW whose vertices correspond to the subpaths and whose
edges are transitions between these subpaths. Conversely, given a closed path P̄→ ΓW , we can choose
a path P as above that projects to P̄ in this sense.

We aim to show that any such path P̄ is null-homotopic in ΓW . We argue by contradiction to see
that no such path exists. Consider a minimal complexity diagram D whose boundary path P induces an
essential path P̄→ ΓW .

Observe that P cannot pass through a 1-cell e that is dual to W in the sense that e either lies in Py
i

and is dual to a hyperplane in a wall of Hi ∩ Yi or Hi+1 ∩ Yi, or e lies in Ph
i and e is dual to Hi ⊂ N(Hi).

Indeed if such a 1-cell existed, then as in the proof of Theorem 5.20, we consider its dual graph in D,
and find that we can choose a dual curve w of a path in W that is carried by a ladder in D, such that w
does not cross itself. Note that while it is possible for the dual graph to have high even valence where
it might bifurcate at cone-cells, Theorem 5.20 shows that it cannot cross itself, and in particular, if it
some path in the dual graph comes back to the same cone-cell then it returns along a hyperplane in the
same wall of that cone.

We are therefore able to choose a simple curve in this dual graph that starts on e and ends on a 1-cell
e′ on P. Moreover, this curve is carried by a ladder within D.

If e′ has the same property as e, then (after cyclically permuting) this decomposes the path P as ho-
motopic to the concatenation of two paths P1P2, and consequently P̄ is homotopic to the concatenation
P̄1P̄2, and at least one of P̄1, P̄2 must be essential in ΓW since P̄ is essential. However, the diagrams
D1,D2 for P1, P2 are lower complexity than D, so this is impossible. We refer the reader to Figure 87.

If e′ does not share the same property as e, so it corresponds to a different wall in Yi or corresponds
to a different hyperplane crossing Hi in N(Hi), then we obtain a self-crossing wall, which violates
Theorem 5.20.

Since P does not pass through a 1-cell dual to W as above, we see that the diagram D can be
augmented as in Construction 5.21 to form a collared diagram E no zero corners as in the first diagram
in Figure 82.

As we did earlier, we can then choose a collared diagram E with no corners and of minimal com-
plexity, so that it is reduced and has no θ-shells or corners of generalized squares along its boundary.
However, such a collared diagram cannot exist by Theorem 3.40. �

We define the carrier of the wall W as follows: First let B denote the disjoint union of the carriers
N(Hi) of its constituent hyperplanes together with the cones intersected by these. We then form a
quotient of B by identifying pairs of subspaces N(H) and Y along their intersection N(H) ∩ Y in X̃∗,
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and identifying Yi and Y j along their intersection in X̃∗ provided that Yi and Y j share a 1-cell dual to
some hyperplane H in W. Note that these intersections were proven to be connected in Lemma 5.6
and Lemma 5.15. We let N(W) denote the resulting quotient. We note that there is an induced map
N(W)→ X̃∗.

Theorem 5.23 (Carriers Embed). For each wall W, the map N(W)→ X̃∗ is an embedding.

Proof. This is again a variant of the proof of Theorem 5.20.
Suppose there is a nonclosed path P → N(W) that maps to a closed path in X̃∗. We choose such a

path whose diagram D has minimal complexity in X∗.
We verify as above that P cannot pass through a dual 1-cell of one of the hyperplanes of W, for then

there would either be a self-intersection which is precluded by Theorem 5.20, or we could cleave off

part of D to obtain a new path P′ with the same endpoints in N(H) (by Theorem 5.22) such that P′ had
a smaller complexity diagram D′.

We then augment D by Construction 5.21 to obtain a collared diagram with one collar and two
corners.

By passing to a minimal complexity such diagram, we can assume it is reduced and has no other
features of positive curvature. The key point to verify here is that the collar structure is preserved when
cancellable pairs are removed or absorbed. When there is a fake wall-piece or cone-piece from a square
ladder or cone-cell in the collar on another side of the diagram (as in Figure 85) the absorbed wall from
within the collar is the same as the wall in the absorbing cone, for otherwise we would contradict
Theorem 5.20. Therefore we are merely able to cleave off a closed dual curve in the wall, and this
merely provides a new path P′ with the same endpoints as P, so the structure (and the original distinct
pair of points in the carrier) are preserved. Other cases are treated similarly.

Note that the first diagram in Figure 83 provides a new path P′ → N(H) with the same endpoints,
but with lower complexity diagram. However, the second diagram in Figure 83 cannot occur, since it
would yield a self-crossing which was ruled out in Theorem 5.20. Some variants of this are indicated
in Figure 89. The first diagram explains how a cancellable pair of squares yields a new path P′ with
a lower complexity diagram, the second and third yield self-crossing contradictions, and the fourth
diagram indicates that, no inner edge of the collar is dual to our wall, or there would have been a new
path P′ with a lower complexity diagram.

We then conclude that it must be a ladder by Theorem 3.36, and so the two corners must be adjacent
cone-cells corresponding to cones that share a 1-cell dual to W. Indeed, they are already adjacent in the
diagram. We emphasize that, as concluded in the Theorem 3.36, since a square corner only provides a
curvature of π

2 , both of these positively curved cells must be cone-cells, and so the first and third figures
in Figure 88 are excluded.

�
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Remark 5.24 (2-sidedness). Since hyperplanes are 2-sided in their carriers by Lemma 5.13, and
carriers of walls in cones are 2-sided by hypothesis, and each carrier is a tree union of cones and
hyperplane carriers by Theorem 5.22, we see that each wall W is 2-sided in and hence separates N(W).

Since N(W) embeds in X̃∗ by Theorem 5.23, we see that W is locally 2-sided in X̃∗ and actually
locally separates X̃∗ since N(W)→ X̃∗ is a local isomorphism along W by construction.

Now the 2-sidedness of the walls in X̃∗ follows from their embeddedness, local 2-sidedness in N(W)
which embeds, and the simple-connectivity and hence 1-acyclicity of X̃∗.

5.7. No Inversions. Even when each wall W of X̃∗ is 2-sided, it might be that Stab(W) does not also
stabilize each of the half spaces. We rectify this as follows:

Lemma 5.25 (No inversions). Suppose that 〈X | Yi〉 satisfies the B(6) conditions as well as the following
condition. Then for each wall W, its stabilizer Stab(W) acts without inversions in the sense that it
stabilizes each component of N(W) −W.

(1) [No inversions] The hyperplanes in X are 2-sided, and there is a choice of positive and negative
side of each hyperplane, and a choice of positive and negative side of each wall in each Y, and
these two notions are globally consistent, in the sense that the positive side of each hyperplane
H equals the positive side of each wall represented by H ∩ Y.

Moreover AutX(Y) acts on the wallspace without inverting the sides of any wall.

Proof. �

5.8. Phony Cone Cells.

Definition 5.26. 〈X | Yi〉 has the cycle property if for each immersed path P → Yi which starts and
ends on 1-cubes dual to distinct hyperplanes in the same wall of Yi, there exists a path Q with the same
endpoints as P such that QP is essential.

Lemma 5.27. Let 〈X | Yi〉 be a cubical presentation. There exists a deformation retraction embedding
〈X | Yi〉 ⊂ 〈X′ | Y ′i 〉 such that 〈X′ | Y ′i 〉 has the cycle property, and such that all properties listed in
Definition 5.1 are preserved.

Proof. For each geodesic path P → Yi with 1-cells not dual to the same hyperplane but dual to the
same wall, and not connectable by a different path, we add an arc P′′ of the same length as P′ where
P = e1P′e2, to both Yi and to X. The new hyperplanes are simply barycenters of new 1-cubes. We
assign them to walls of Yi according to the antipodal relation in the cycle P′′e1P′e2. By concatenating
cycles, and reducing or folding, one sees that being either dual to the same hyperplane or having a
common local geodesic cycle is an equivalence relation. Hence no new classes are added when we add
the arcs. �

Remark 5.28. We will implicitly assume that the construction of Lemma 5.27 has been implemented
to support the collaring procedure that is especially used in the proof of Theorem 5.32. The pictures
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supporting the proof rely on the intuitive idea that pairs of 1-cells dual to distinct hyperplanes in the
same wall of a cone actually lie opposite each other on some essential cone-cell.

5.9. Carriers and Quasiconvexity.

Definition 5.29 (Carrier of wall). A wall W crosses a cone C if W ∩ C is nonempty. The carrier of a
wall W of X̃∗ is the union of all hyperplane carriers containing its hyperplanes, together with all cones
that it crosses.

The most important cones in a carrier are those cones C crossed essentially by W in the sense
that W ∩ C consists of two or more hyperplanes of C. Many of the properties of walls and carriers are
explainable for the essential carrier which only includes essentially crossed cones, but we have decided
to retain the point of view including all crossed cones instead of the essential ones. The essential carrier
is a bit less “bumpy” then the carrier. In the “classical case” of B(6) complexes, all crossed cones are
essential.

Note that the essential cones correspond to non-leaves in the tree ΓW . The deeply essential cones
correspond to deep vertices in the tree which have the property that some bi-infinite geodesic passes
through them.

It is a consequence of Theorem 5.20 that the carrier deformation retracts to the wall (if we add
geometric walls in each cone in an appropriate fashion that we shall later explore) and that the carrier
is simply-connected and is separated by the wall.

Definition 5.30 (Cubical ladders and consecutive cones). Two cones in the carrier of W are consecutive
if there is a hyperplane in W that has nonempty intersection with each of them. A cubical ladder in a
cube complex X is a local isometry In × [0,m] → X where n ≥ 1. If In × {0} lies in the cone Yi and
In × {1} lies in the cone Y j then we say it is a cubical ladder joining Yi and Y j.

Definition 5.31 (Thickened and Extended Carrier). The thickened carrier T (W) of W is the union of
the carrier N(W) together with each flat rectangle R = In × Im whose left and right boundary paths
{0, n}× Im lie on cones Y1,Y2 of N(W), and such that for some 0 ≤ k < m the square ladder In× [k, k +1]
is dual to a hyperplane in W.

The extended carrier E(W) is the cubical local convex thickening of the thickened carrier T (W). It
is obtained by repeatedly adding any cube with an entire corner already present.

We refer to Figure 90 for heuristic illustrations of N(W), T (W), and E(W) when X is 2-dimensional.

We will use the term cladder for the carrier of a wall within a disk diagram. We will later introduce
the term W-ladder for the case when the corresponding dual curve is associated to a specific wall W in
X̃∗ (see Definition 5.57).

Theorem 5.32 (Thickened Carrier Isometric Embedding). Assume X∗ satisfies the B(6) condition. The
thickened carrier of a wall isometrically embeds in X̃∗.

Proof. We can assume without loss of generality that γ is disjoint from T and in particular from N
except at its endpoints. We refer the reader to Figure 92 for a guide to the notation used in the proof.

Step 1: Setting up the diagram: We first show that there exists a disk diagram E which contains
(generalized) ladders LN ⊂ LT at the top, and our geodesic γ at the bottom. This is something we have
done routinely when γ starts and ends on N.

We begin by extending γ to γ+ = γ0γγt where each γi is a minimal length path in T from an endpoint
of γ whose outermost 1-cell is dual to W. We emphasize that this path can be chosen so that it travels
through a sequence of 1-cells that are in T and are dual to hyperplanes joining (the same) pair of cones
in X̃∗. When the endpoint of γ lies on a cone of N(W) then we choose γi to be a path in this cone to a
dual 1-cell of W.
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F 90. A carrier, a thickened carrier, and an extended carrier

F 91. It seems harmless to include squares in T whose entire 1-skeleton lies in T .

F 92.

For each of i = 0 and i = t, there is a rectangle Ri containing γi on one side and bounded by a square
ladder mapping to a hyperplane of W on one side and ending on a path in a cone-cell of N(W) on a
third side. When γi lies on a cone (because the corresponding endpoint of γ lies on that cone), then Ri
is degenerate, and is simply a copy of γi. Likewise, when γi is a single 1-cell (since γ ended on the
carrier of a hyperplane of N) then we just let Ri be a copy of γi.

There is then a sequence of cones and square ladders in N(W) that start and end at the initial and
terminal 1-cells of γ+. We choose the first and last such ladders to be those already lying in R0 and Rt.
Let Vi be the external boundary arc of our ladders (and initial and terminal rectangles). For each cone
Yi, we choose a path Ui that travels around Yi from one dual 1-cell to another. (We choose the paths
Vi,Ui to start and end on the same side of W as γ.) We consider the concatenation V0U0V1U1 · · ·Vt.
We then consider a disk diagram D between γ and the above path. Adding on the above sequence of
ladders, as well as cone-cells supporting the Ui paths, we can augment D to obtain the collared diagram
E.
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Step 2: Estimating the distance: The ladder LT in E contains the sequence of rectangles, square
ladders, and cone-cells, and along the top of LT is the ladder LN mapping to N(W). Let τ be the path
on D that “opposes” γ, so that τ is also a path along the “bottom” of LT .

Having shown above that one such diagram exists, we now assume that we have chosen D, E with
the property that its complexity, Comp, is minimized where Comp(D, E) =

(
#c(D), #c(E), |τ|

)
where

#c(X) denotes the number of cone-cells in X. We emphasize that #c(D) equals the number of cone-cells
in E that are not also in LN (or equivalently in LT ). Note that we are not assuming that E is reduced
or has minimal complexity in the usual sense. However, the minimality of Comp guarantees that no
cone-cell in E can be replaced by a square diagram, and adjacent cone-cells cannot be combined. We
are also not assuming that τ is the shortest possible path in some E,D, but rather, that it is shortest
possible among all such paths arising from E,D with minimal numbers of cone-cells.

We claim that for each edge e in τ, the dual curve to e in D is a graph that ends on e in τ, and whose
remaining endpoints all lie on γ. Since there are an odd number of such remaining endpoints, we see
that |γ| ≥ |τ|, and since τ lies in T , our claim is proven.

Step 3: Choosing a minimal counterexample: Suppose that the dual graph ends at another edge
e′ in τ for some E,D with Comp minimal as above. Let K be the cladder in D carrying a dual curve
that starts and ends on the edges e, e′ of τ. Let τ′ be the subpath of τ whose initial and terminal edges
are e, e′. Let κ be the path on K with the same endpoints as τ′ but doesn’t pass through the dual curve
of K, and in particular doesn’t pass through e, e′. We extend the cladder K in D carrying a dual curve
that starts and ends on τ, to a cladder K′ that starts and ends on squares and/or cones of LN ⊂ LT . Let
L′ denote the subladder of LN that begins and ends at the intersections with K′. See the diagram on the
left of Figure 94. Let B be the subdiagram that is bicollared by K′, L′. See Figure 93.

Among all minimal Comp examples for a given γ (or even a geodesic with the same endpoints as γ)
exhibiting the contradictory feature represented by K, let us choose a contradiction with the additional
property that B has ordinary minimal usual area complexity (#c(B), #s(B)) =

(
Conecells(A),Squares(A)

)
.

We will now show by contradiction that such a minimal counterexample cannot exist.
Note that in the degenerate case where e = e′ illustrated on the right of Figure 94, there is automati-

cally a smaller choice of B corresponding to an innermost backtracking cladder.
Step 4: Minimality of B implies square diagram:
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We now focus on the subdiagram B that is bicollared by K′, L′ - we emphasize that K′, L′ ⊂ B.
We shall show that any cone-cell in B actually lies in L′. Note that we cannot immediately apply
Theorem 3.36 as we don’t know that B is reduced along L′ and has no θ-shells along L′.

The minimality of B implies that there are no corners of generalized squares on cone-cells within B,
for they can be absorbed. There is also no corner of generalized square within B whose outerpath lies on
∂B except perhaps at the two corners of B where L′,K′ meet. Indeed, if a square in B has a generalized
corner on a square ladder in K′, then we can push K′ upwards across this square while decreasing the
area in B. Similarly, if there is a square in B with a generalized corner with outerpath along the top of
L′, then we can push the square upwards through L′ (and hence LT ) until it is outside of E, and reduce
the area of B. Neither of these moves affects Comp, |τ|. See Figure 95 for a trickier-than-usual pushing
of a generalized corner of square.

Suppose that B contains a cone-cell C that does not lie in L′. Let us examine what happens to it as
we perform a sequence of reductions to B. Note that we can assume from the outset that L′ is reduced.
It is impossible for any cone-cell C to be combined with another cone-cell by minimality of Comp
and likewise impossible for C to eventually work its way into L′. Suppose after some sequence of
reductions B 7→ B̄, a cone-cell C becomes a θ-shell C̄ with outerpath Q along κ̄ = κ, and innerpath
S . Let Y be the supporting cone, so ΩY (S ) < π. And note that S = U f S ′ f ′U′ has a subpath f S ′ f ′

where f , f ′ are 1-cells on ∂C̄ that are dual to the dual curve of K, and also lie on the previous and
next cells of K respectively. It is important to note that f , f ′ must be oriented in the same way with
respect to this hyperplane, otherwise the path S ′ would contain another edge dual to this hyperplane,
and following the associated cladder in D, we would be able to construct a backtracking cladder K0
bounding a subdiagram B0 of B. By Condition (5), the path f S ′ f ′ of C̄ is homotopic in Y to a path
in the carrier of the hyperplane of Y dual to f , f ′, and hence S ′ is homotopic to a local geodesic J
in this carrier. Let V denote the square diagram given the homotopy from S ′ to J. Let J′ denote the
corresponding local geodesic on the other side, so J, J′ together form the side of a ladder M in the
carrier with initial and final 1-cells f , f ′. We refer the reader to Figure 96.

The path U′QUJ′ bounds a cone-cell C′, and we replace C̄ by the union C′ ∪J′ M ∪J V . This has
the effect of substituting the square ladder M for C̄ in K̄, and hence decreases the number of cone-cells
in the resulting bicollared diagram replacing B̄. This violates our minimality assumption on B.

Consequently, since after reducing, there are no θ-shells along κ̄, and likewise, none along the part
of B̄ collared by L̄′ (since all those cone-cells are essential), we see that there are at most two positively
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curved cells at the corners of B̄, and so B̄ is a ladder by Theorem 3.36. In particular, B̄ has no internal
cone-cells either, so all cone-cells of B have been accounted for as arising in L′. We conclude that there
are only squares in B outside of L′, and in particular K is a square ladder.

Step 5: Minimality implies that B is very thin: Let A be the part of B between κ and τ′, so K ⊂ A.
We will show that A = K.

The minimality of B implies that it has no bigon of dual curves inside. Indeed, by Lemma 2.2,
removing such a bigon decreases the area by two. In particular, a bigon with the dual curve of K
itself can likewise be pushed through K, so that the important properties of the resulting diagram are
preserved.

Each dual curve in A that starts on τ′ − {e, e′} ends on a 1-cell on κ. Indeed, if such a dual curve
ended on another edge of τ′, then its corresponding cladder could be used instead of K, and would
provide a lower complexity counterexample violating the minimality of B. Moreover, each dual curve
in A starting on κ must end on τ′ for otherwise there would be a bigon, and this was excluded earlier.
In summary, each dual curve in A travels between τ′ and κ, except for the dual curve within K itself.
Hence |κ| = |τ′| − 2.

Suppose that A contains a square s that doesn’t lie in K. Then each dual curve of s has one end
on κ and the other end on τ′. Thus some corner of s has a pair of dual curves on κ. This contradicts
Lemma 2.5.

Step 6: Reducing |τ′| and hence |τ|: If L′ contains only squares then τ′ can be replaced by the
shorter path κ and K′ can be pushed through L′ (using several bigon removals). This reduces the length
of τ′ and hence violates the minimality of τ.

If L′ contains cone-cells, then we can assume it is already reduced without affecting any of our
minimized quantities. Let R′ denote the part of LT that is subtended by K, so R′ is the union of L′ and
various additional rectangles in LT . We then observe that the ladder K′ wraps around L′.

We refer to Figure 97 on the left, as well as the resulting absorptions on the right.
Suppose the first square of K has one edge on a square of LT and one edge on a cone-cell C of LT . If

the rectangle of K alongside C cannot be absorbed into C, then the innerpath S of C is the concatenation
of two pieces: a rectangle-piece associated with an initial part of K′ followed by a cone-piece. (If C
is the unique cone-cell, then S is a single rectangle-piece). Letting Y denote the cone supporting C
we have ΩY (S ) < π. This leads to a contradiction, because Condition (5) would then imply that S is
homotopic into the carrier of a hyperplane associated to the wall of LT ∩Y , which would imply that the
cone-cell C could be replaced by a square diagram, violating the minimality of #c(E).

Thus the contiguous rectangle is absorbable into C, and this includes the entire initial rectangle of
K′.
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We can thus assume that K starts and ends on cone-cells. But then the ladder theorem implies
that B becomes a ladder after reducing, and hence each rectangle in K contiguous with a cone-cell of
LT is absorbed into that cone-cell upon reducing. The path τ′ can thus be replaced by κ, yielding a
shorter counterexample. Note that in the degenerate case where LT consists of a single cone-cell C it is
immediate that all of K absorbs into C since there are corners of generalized squares in K on C (one at
each side). �

Theorem 5.33 (Extended Carrier Convexity). For any geodesic γ → X̃∗, if the endpoints of γ lie in
T (W) then γ ⊂ T (W).

I expect one can could prove that E(W) is convex, but there was a gap in the original version of this
proof, and only the weaker statement was covered.

Proof. We now use Condition 5.4 to prove the convexity of the extended carrier of W.
Let γ be a geodesic in X̃∗ that starts and ends on the thickened carrier T of W. As provided in the

proof of Theorem 5.32, let λ be a path on T with the same endpoints such that the disk diagram D→ X̃∗

between them has minimal Comp among all such possibilities for D, λ. Note that λ can be chosen to
be on a minimal length ladder in T containing a ladder in N.

Moreover, let γ′ denote a geodesic in D with the same endpoints as γ such that γ′ and γ together
bound a square subdiagram of D. Thus D is the union of two diagrams Dλ and Dγ that meet along γ′

(see Figure 98). We will assume that Dλ has minimal area among all possible choices with γ fixed.
Since γ′ is a geodesic, Condition 5.4 implies that Dλ has no shell with outerpath on γ′. There is also

no generalized square in Dλ with outerpath on γ′, for then we could pass a square across γ′ to increase
Area(Dγ) and decrease Area(Dλ).

We now consider the diagram E bounded by γ′ on one side, and bounded by and including the ladder
LT in T (W) consisting of the sequence of cone-cells and flat rectangles between them. We will show
that γ′ lies on LT by showing that Dλ is an arc. Since γ and γ′ lie in the local (square) convex hull of
each other, we see that γ lies in LT as well, thus proving the theorem.

Without loss of generality, we can prove the statement for a subpath γ′0 of γ′ obtained by ignoring
initial and terminal subpaths of γ′ that already lies on LT . We let E0 denote the resulting diagram, and
observe that cropping γ in this way, would necessitate a corresponding cropping of initial and terminal
rectangles of LT .

As above, minimality of complexity implies that there are no outerpaths of generalized squares at
the “top” boundary path along LT . Condition 5.1.(5) implies there is no θ-shell C within the cladder
with outerpath at the top of LT , since then the innerpath S and outerpath Q of C satisfy ΩC(S ) < π and
and S is homotopic in the ambient cone to the carrier of a hyperplane and thus a square ladder U of
length at most |S | − 2. So the C with ∂pC = QS can be replaced by a square diagram with boundary
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path S Q′ where Q′ is along one side of the ladder U. This shortens the ladder LN in N at the top of LT
since U replaces a cone-cell, and hence violates our earlier minimality assumption.

The lack of positively curved shells claimed above holds with the sole exception of a cone-cell and
or square at either end of LN ⊂ LT . Note that cropping removed the possibility of a second corner of
a generalized square. Moreover, the second dual curve of a square at the end of LN must terminate on
γ′ (and not on a cone in LT ). Indeed, as explained in the proof of Theorem 5.32, all cladders emerging
from λ terminate on γ (after passing through γ′).

As there are only two positively curved cells, Theorem 3.36 implies that E0 is a ladder. �

Corollary 5.34. If X is 1-dimensional then carriers are convex.

Proof. In this case the carrier is the same as the thickened carrier which is the same as the extended
carrier, so the result follows from Theorem 5.33. �

Lemma 5.35 (Walls quasiisometrically embed). If pieces in cones (and hence cone-cells) are uniformly
bounded in size, then each wall quasiisometrically embeds in X̃∗.

Proof. The hypothesis implies that the thickened carriers are in a finite neighborhood of the walls. A
bit more thought shows the walls are quasi-isometric to their thickened carriers, which are isometrically
embedded. �

5.10. ~ Bigons.

Definition 5.36. Let Y,H be a cone and a hyperplane intersecting it. The wallray based at Y in the
direction of H consists of the part of W corresponding to the subtree of ΓW that starts at the leaf
consisting of the vertex y of Y , and contains the edge (y, h). The wallray is carried by the corresponding
subspace of N(W).

Theorem 5.37 (Intersection of Wallrays). Let Y,H1,H2 be a cone and a pair of hyperplanes in X̃∗ with
dual 1-cells in Y. Let h1 = Y ∩ H1, and let h2 = Y ∩ H2. Suppose that ΩY (h1, h2) > 0 so that there are
no 1-cells e1, e2 in h1, h2 that lie in the same cone-piece or wall-piece in Y. And suppose that h1, h2 do
not cross in Y, so there is no 2-cube in Y with 1-cells dual to both h1 and h2.

Then the wallrays (W1,Y,H1) and (W2,Y,H2) do not have crossing hyperplanes besides H1 ∩ H2,
and they do not both intersect any cone besides Y.

Remark 5.38. The statement needs to be reconciled with the proof, since we now allow some initial
crossing in H1 ∩ H2. Crossing at the last square implies crossing inside the last cone. See Figure 99.

The following Corollary is easier to prove than Theorem 5.37.

Corollary 5.39. Let W1,W2 be walls intersecting a cone Y. Suppose that ΩY (W1 ∩ Y,W2 ∩ Y) > 0.
Then W1 and W2 do not have hyperplanes that intersect in any cone other than Y, or that intersect in
any square except for those dual to codimension-2 hyperplanes emanating from Y.

Proof of Theorem 5.37. Let Y+ denote the union of Y and the carriers of codimension-2 hyperplanes
consisting of components of H1 ∩ H2 that intersect Y in a component of h1 ∩ h2.
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We say p ≤i Y+ if p lies on a cone or hyperplane carrier of N(Wi) but does not lie on a cone or carrier
of the wallray (Wi,Y,Hi), or p ∈ Y+. If p �i Y+ then we write p >i Y+.

Consider paths P1, P2 in N(W1),N(W2) with initial points p1, p2 and terminal points q1, q2 such that

(1) pi ≤i Y+ for i = 1 or i = 2 or both,
(2) each qi >i Y+.
(3) pi, qi lie on 1-cubes dual to Wi for each i.
(4) p1, p2 lie on a cone or square A containing the above 1-cubes, and q1, q2 lie on a cone or square

B containing the above 1-cubes.
(5) there are paths Pa → A and Pb → B connecting p1, p2 and q1, q2.
(6) Pa is trivial if A is a square, and Pb is trivial if B is a square.

Note that by the conditions above, B cannot equal Y , and cannot be a square on Y+ dual to a codimension-
2 hyperplane H1 ∩ H2 intersecting Y in some h1 ∩ h2.

If there were an intersection contradicting the theorem, then there would be paths Pi in the carriers
of (Wi,Y,Hi) that start on vertices along 1-cells in A = Y dual to hi, and a connecting path Pa joining
their initial points, so that these paths end on vertices along 1-cells dual to W1,W2 on a cone B , Y or
on a square B not dual to a codimension-2 hyperplane emanating from Y , and we could let Pb connect
their endpoints when B is not a square, and let their endpoints be identical when B is a square.

We aim to produce a contradiction ruling out a minimal counterexample by applying Theorem 3.36
to a suitably produced bicollared diagram capturing the above data in a minimal case. Let us first as-
sume that P1, P2, Pa, Pb are chosen with the above properties so that their concatenation is a quadrilat-
eral that bounds a minimal complexity disk diagram D→ X̃∗ among all possible such counterexamples
to the statement of the theorem.

Our first aim is to show that the minimal complexity of D implies that PaP1P−1
b does not pass through

any dual 1-cell of W1, and likewise, P−1
a P2Pb does not pass through any dual 1-cell of W2.

As the argument is symmetric, let us consider the first scenario. Indeed, suppose P1 did pass through
such a 1-cell m dual to W1, then we could produce a lower complexity example, following Figure 103.
Consider an embedded ladder L in D carrying a dual curve to this 1-cell m and terminating at another
dual 1-cell m′ on ∂pD. If m′ also lies on PaP1P−1

b , then we can produce a smaller complexity coun-
terexample, by traveling along PaP1P−1

b until we hit m, then traveling along the bottom of L (that is the
side facing P2), and then continuing along the subpath of PyP1 after m′.

If m lies on Py then Py is replaced by the initial subpath preceding m, and the initial point of P1 is
adjusted. Likewise if m′ lies on Pz then Pz is replaced by the terminal subpath following m′, and the
terminal point of P1 is adjusted.

Also note that in the degenerate case where m is an isolated 1-cell of D along a backtrack of PyP1Pz,
then m = m′ and the procedure described above simply crops off the part of this arc in D from m
outwards, corresponding to the subpath of ∂pD between m and m′ inclusive. (So among our minimal
counterexamples, we first choose one with a shortest boundary path.)

A more interesting case arises when the ladder L terminates on a 1-cell on P2, for in this case we
will not only produce a lower complexity diagram, but we will make a more substantial shift of our
choice of initial or terminal positions while retaining our hypotheses. Let v be the endpoint of the path
along the side of L facing Pa. There are two cases according to whether v ≤1 Y+ or v >1 Y+.

Let v′ denote the other endpoint of m′, and observe that v ≤2 Y+ if and only if v′ ≤2 Y+. Indeed,
if v lies on Y or on a square s dual to a codimension-2 hyperplane of H1 ∩ H2 emanating from Y then
so does v′ (and vice-versa). This is because wall carriers cannot interosculate with cones or squares by
Theorem 5.23. See Figure 100.
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Consider the second case where v >1 Y+. The path P2 is supported by a ladder in N(W2). Let B′

denote the cone or square on this ladder which contains the 1-cell m′, and note that as above, B′ , Y in
the cone case, and B′ is not a square dual to H1 ∩ H2 emanating from Y .

Let q2 be the first point on P2 that lies on B′. Let Q2 be a shortest path in B from q to a 1-cell dual to
W2, and let u be the endpoint of Q2. Let S be the path on the ladder L from m to m′. Let q1 be the first
point of S that lies on B′, and let Q2 be the terminal subpath of S from q1 to v. Let Qb be the subpath
of P2 from q1 to q2.

We now define P′2 to be the path obtained from P2 by substituting Q2 for the part after q2. We define
P′b to be the concatenation Q−1

2 QbQ1. The path P′1 will be the concatenation of the part of P1 preceding
m, followed by the initial part of S until q1, followed by Q1.

We note that when B′ is a square instead of a cone, the path Qb is trivial. The construction is similar
if m and/or m′ lie on Pa and/or Pb.

The new quadrilateral P′aP1P′−1
b P−1

2 bounds a proper subdiagram D′ of D.
In the second case where v > Y+, we will replace A instead of B. The details are similar. We refer to

Figure 102.
We note, that as in the fourth figure, since we have shown in Theorem 5.20 that there is no self-

crossing of walls, a dual curve (in a dual graph) that passes through the same cone-cell twice, is actually
passing through the same wall of the corresponding cone. The third and fourth diagrams represent a
dichotomy between the possibility that an endpoint of the ladder carrying the dual curve w does or
does not lie on Y+. In the third diagram it does not, so we produce a smaller complexity example
with a different pair of endpoints. In the fourth diagram it does lie on Y , and so we choose a different
initial point but the same endpoint. We emphasize that in this case, since a hyperplane carrier cannot
interosculate with a cone, if one endpoint of the dual 1-cell of the ladder lies in Y , then both do. We
could have thus chosen an even smaller diagram (on the opposite side of this ladder) with the same
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F 103.

F 104.

properties. A degenerate version of this situation occurs when the initial 1-cell of P1 is dual to W1 and
is a spur of D.

Having shown that D does not contain dual 1-cells of W1 along PaP1P−1
b or dual 1-cells of W2 along

P−1
a P2Pb, we now follow Construction 5.21 to obtain a bicollared diagram with two corners.
We first attach a square or cone-cell CA along Pa where Ca maps to A and has boundary path ∂pC

extending the path e1Pae2 where each ei is a 1-cell dual to Wi at the initial point of Pi. Similarly, we
attach a square or cone-cell CB mapping to B along the path f1Pb f2 where f1, f2 are 1-cells dual to W2
at the initial and terminal vertices of P2. We then attach a ladder Li starting with CA and ending with
CB along each Pi carrying a dual curve wi in Wi. (Note that these are only ladders in a general sense
allowing initial and terminal cells to be squares...) In this way we form the diagram E as in one of the
diagrams in Figure 104.

The next stage of the argument is to remove cancellable pairs in E to obtain a reduced diagram that
is a counterexample with the same structure, in the sense that it is bicollared by ladders associated to
W1,W2, but that the corner at A maps to a cone or square with a vertex satisfying v ≤i Y+ for some i,
but the corner at B maps to a cone or square with a vertex satisfying v >1 Y+ and v >2 Y+

We refer the reader to Figure 105 for various possibilities that arise when removing cancellable pairs.
There are several situations where we must pass to a new bicollared (almost sub) diagram that starts
at a cone-cell, and does not end on Y or on a square that is dual to a component of a codimension-2
hyperplane H1 ∩ H2 that contains a component of h1 ∩ h2.

Note that we are also forced to consider “singular bicollared diagrams” as in Remark 5.40 and
Figure 107.
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The main point here is to consider a cancellable pair from a fake wall-piece or cone-piece which
was part of the collar on the other side of the diagram E. If so, there is a dichotomy between this
cone-cell occurring at Y or not. If it doesn’t then we obtain a smaller complexity diagram by adjusting
the endpoints, and if it does occur on Y then we obtain a smaller complexity diagram by adjusting the
initial point.

There is one possible type of cancellable pair that deserves special mention: This is when A is a
square, and forms a corner of a generalized square whose outerpath lies on some cone-cell C in E.
Note that C is necessarily in both collars. A similar such situation can occur with B a square. We
illustrate the A case on the left in Figure 106.

In the A case, if C is a cone-cell mapping to Y , the as is illustrated in the second diagram in Fig-
ure 106, we simply crop off the initial part of the diagram, and allow A′ = C to play the role of A.

If C does not map to Y , but A maps to a square that is dual to a codimension-2 hyperplane of H1∩H2
emanating from Y , then we remove the interior and boundary path of A from the diagram, and add a
cone-cell A′ mapping to Y , and attach it to the internal path of A along a pair of square ladders mapping
to H1,H2. The modified result is on the right in Figure 106. Note that from the viewpoint of “reducing
the diagram” we can regard the square A as having been first absorbed into C, before we add the new
cone-cell that has a length-2 piece with C.

Let p = p1 (which equals p2 in this case). By hypothesis, for at least one value i ∈ {1, 2} we have
p ≤i Y+.

If C maps to Y , then we still have p′ ≤i Y+, where p′ is at the “inside” of the initial corner A′ = C of
our new collared diagram (the second picture)

If C doesn’t map to Y , and p ∈ Y+ then p′ ∈ Y since we augmented the diagram by adding a cone-cell
A′ mapping to Y together with two rectangles.

If C doesn’t map to Y , and p < Y+ then we use the second picture possibility. The crucial point that
must be verified is that C does not contain a 1-cell dual to the wallray (Wi,Y,Hi), or in other words,
that C is outside the carrier of this wallray. Observe that to enter this wallray from a point not on Y and
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arrive at a point within the carrier of this wallray that is not on Y , one must first travel to Y and then
travel around Y to jump across the wall in Wi ∩ Y represented by Hi ∩ Y , by traveling from a piece on
Y along one hyperplane of Wi ∩ Y (not equal to Hi ∩ Y) to a piece on Y along Hi ∩ Y .

Note that there is a path from p to C along a single hyperplane, and this certainly cannot jump across
a wall of Y , and so the cone of C cannot lie within N(W1,Y,H1) Similar arguments show that a path
along a rectangle followed by a path around C (starting and ending on the same wall) cannot travel
around Y but I’m not sure if this is necessary.

In the B case, we simply remove B together with the width 2 square ladder from C to B, and allow
B′ = C to play the role of B. Note that C cannot be a cone-cell mapping to Y because then B would be
dual to a codimension-2 hyperplane of H1 ∩ H2 emanating from Y , so the endpoint q = q1 = q2 of D
lying on B would contradict our hypothesis that q >i Y+ for each i.

Let F denote the new bicollared diagram.
First note that F must be a ladder by Theorem 3.36.
Then note that by construction, F has the property that its initial cone-cell does not lie in N(Wk,Y,Hk)

for at least one of k = 1, 2, however its terminal cone-cell lies in N(Wi,Y,Hi) for each i.
The bicollar of F along Wk consists of a (sub)ladder which must have some cone-cell mapping to

Y . Regarding A, B as the leftmost and rightmost cone-cells of the ladder, we consider the rightmost
cone-cell Cr mapping to Y , and note that it cannot be the final cone-cell B since B > Y+.

Finally, observe that the dual curves of the square ladders carrying the part of W1 and W2 emanating
rightwards from Cr to Cr+1 must map to H1,H2. Indeed, otherwise we would backtrack into a cone-cell
also not in N(Wk,Y,Hk) and there would be a Y cone-cell appearing further to the right.

However, this means that these dual curves lie in a piece between Cr and Cr+1 which contradicts the
hypothesis of the theorem that ΩY (H1,H2) > 0. �

Remark 5.40. We note that in the course of the proof it is natural to consider singular collared dia-
grams which have the property that the collars can occupy the same 2-cell as in Figure 107. These
arise when a cone-cell or square in one collar is absorbed into a cone-cell on the other collar because
of a cancellable pair.

Remark 5.41. In general, it is possible for two hyperplanes H1,H2 to cross two different cones Y1,Y2
such that Y1,Y2 are not simply joined together by a generalized rectangle, but could have some sequence
of cones between them. This can be avoided by extra hypotheses on the hyperplanes within a cone. We
refer the reader to Figure 108.

I believe the following special case of Theorem 5.37 could have been obtained more directly along
the lines of Lemma 5.6 and Lemma 5.15, and might have facilitated the proof of Theorem 5.37.

Corollary 5.42. Let Y be a cone and let H1,H2 be hyperplanes in X̃∗. Suppose that ΩY (H1∩Y,H2∩Y) >
0. Then H1 ∩ H2 is the union of codimension-2 hyperplanes emanating from Y.

5.11. ~ 1-dimensional linear separation. The wallspace X̃∗ satisfies the linear separation property
if #(p, q) ≥ Ld(p, q) − M for some constants L,M ≥ 1. Here #(p, q) denotes the number of walls
separating the 0-cells p, q, and d(p, q) is the distance between p, q in the 1-skeleton of X̃.
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F 108. There is a ladder containing three cone-cells in the complex above such that the
first and last cone-cells are connected by a pair of hyperplanes without a square diagram be-
tween them.

F 109.

Definition 5.43. Let X be 1-dimensional. We say p, q ∈ Y0 are strongly separated by the wall w of Y
if no 1-cell e dual to a hyperplane of w lies in the same piece as p or q.

We say the cone Y in X̃∗ has the π
2 -strong separation property if p, q are strongly separated by some

wall whenever ΩY (p, q) ≥ π
2 .

Lemma 5.44. Let 〈x1, . . . , | R1, . . . 〉 be an ordinary presentation, satisfying the ordinary B(6) small-
cancellation condition. So more than half a relator cannot be the concatenation of fewer than four
pieces. Use the split-angling (which is the same as the grade-angling here with each 2-cell having
grade 6).

Then each relator has the π
2 -strong separation property.

Proof. Suppose p, q are points on the boundary of a 2-cell (i.e. a cone) that do not lie in the concatena-
tion of two pieces. Let P and Q be “piece neighborhoods” of p and q in the sense that P contains every
edge that lies in a piece with p, and similarly for Q. By hypothesis, P∩Q = ∅. By possibly exchanging
the notation, assume that |Q| ≥ |P|. Let w1,w2 be the walls dual to the edges immediately before and
after Q. If w1 and w2 are both dual to edges of P then |P| > |Q| which is impossible. If neither w1 nor
w2 is dual to an edge of P, then P is separated from Q by one or both of w1,w2.

We refer the reader to Figure 109. The diagram on the left indicates the notation, and it is then
obvious that if Q passes through both hyperplanes then its length exceeds |P| + 2. The diagrams on the
left indicate some of the possible combinatorial fashions that one of the walls w1,w2 might separate. �

Theorem 5.45. Suppose X is 1-dimensional, and 〈X | Yi〉 is a cubical presentation with an angle
assignment satisfying the B(6) condition and short innerpaths, and the π

2 -strong separation property
for each cone.

Then X̃∗ satisfies the linear separation property.

Proof. Let γ be a geodesic in X̃∗. Let e1 be a 1-cell on γ. We will show that either the wall W1 in
X̃∗ that is dual to e1, crosses γ in no other dual 1-cell, or else there is a 1-cell e2 within a uniformly
bounded distance of e1, so that the wall W2 dual to it has the same property. Either way, this shows that
each edge of γ is within a uniform distance of a wall that γ crosses at a single 1-cell. This is easily seen
to imply the linear separation property.
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By Corollary 5.34, the geodesic γ lies in T (W1). Let C1 be an initial cone-cell in a ladder in T (W1)
that carries γ and starts on the dual 1-cell e1 and ends on a second dual 1-cell e′1. Let p, q denote
outermost points in γ ∩ Y1 where Y1 is the cone supporting C1.

We now show that ΩY (p, q) ≥ π
2 . Let γ′ denote the subpath of γ joining p, q. Suppose there is a path

σ from p to q with ΩY (σ) < π. Since γ is a geodesic in X̃∗, we must have |γ′| ≤ |σ|. Since ΩY (σ) < π
and it is impossible that |σ| < |γ′| we see that σ and γ′ are path-homotopic in Y by Condition 5.4.
Consequently, if ΩY (σ) < π

2 then ΩY (γ′) ≤ ΩY (σ) < π
2 by the following observation:

Note that Ω(α) ≥ Ω(β) whenever Y is 1-dimensional and α → Y and β → Y are path homotopic,
and β is an immersion. This is suggested by Figure 110. Note that the number of internal corners along
α decreases as backtracks are folded outwards. So our claim is clear for the grade-angling. For the
split-angling, one finds that two defects of π

3 and/or π
2 can become a single defect of π

3 or π
2 . Therefore

the total defect does not increase.
However, we refer the reader to the two rightmost diagrams in Figure 111 for an explanation of why

ΩY (γ′) > π
2 . Indeed, we can concatenate part of γ′ with part of the piece between C1 and the next

cone-cell in the ladder for W1, to obtain a path δ with ΩY (δ) < π (the part of γ′ contributed a defect
of < π

2 and at most an extra π
2 of defect occurs at the transition between these subpaths because there

are no acute corners). Since δ crosses the wall of W2 ∩ Y in two distinct hyperplanes, we obtain a
contradiction of Condition 5.1.(5).

By the π
2 -strong separation hypothesis, there exists a wall W2 separating p, q. We refer the reader

to Figure 112 for an explanation of why W2 cannot double cross γ. All possible situations lead to
either p, q lying in the same piece as one of the hyperplanes of W2 ∩ Y , or lead to a path µ with
ΩY (µ) < π that passes through distinct hyperplanes in the same wall of a cone-cell Y thus contradicting
Condition 5.1.(5). �

5.12. ~ Linear Separation when X is a pseudograph.

Definition 5.46 (Pseudograph). A nonpositively curved cube complex X is a pseudograph if each
hyperplane of X is a compact CAT(0) space.

Lemma 5.47. Suppose X is a compact pseudograph. Then π1X is free.
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F 112. I believe this covers most of the variety of cases.

I don’t know if Lemma 5.47 holds when X is a nonpositively curved cube complex whose immersed
hyperplanes are simply-connected (without a compactness hypotheses).

The following proof can probably be replaced by a direct elementary proof that X̃ is quasiisometric
to a tree.

Proof. Let H be a hyperplane in X̃. If each component of X − H is deep, then we see that X̃ and hence
X has more than one end, and hence π1X is infinite cyclic or splits as a free product. The factors are
quasiconvex subgroups.

Thus each factor is again a pseudograph with the same property. Hence each factor is free (by
induction on rank).

If exactly one component of X −H is not deep, then π1X leaves invariant the intersection of the deep
halfspaces, and so the theorem is true by induction on the number of cells in X.

If neither component is deep, then π1X stabilizes H and so π1X is trivial. �

Remark 5.48. The main difficulty in generalizing the proof of Theorem 5.45 is that it is unclear what
plays the role of p, q (e.g. min and max points in C ∩ S ), and it is difficult to ensure that geodesic paths
in S ∩ Li overlap with p, q or some substitute.

We say a wall w in Y is contiguous with a hyperplane u if one of the following hold for some
hyperplane v of w:

(1) v = u.
(2) v crosses u.
(3) v and u have dual 1-cells sharing an endpoint (this covers the previous two cases).
(4) v has a dual 1-cell with an endpoint lying on a piece in Y that contains a dual 1-cell of u.

Theorem 5.49. If 〈X | Yi〉 satisfies the following properties then X̃∗ has linear separation.

(1) X is a compact pseudograph.
(2) X∗ satisfies the B(6) condition.
(3) All cones are finite.
(4) For distinct hyperplanes w1,w2 in the same wall of Y, there does not exist a path ε → Y with

ΩY (ε) < π
2 whose first and last edges ep, eq are dual to hyperplanes hp, hq, such that hp equals

w1 and hq has a dual 1-cell with an endpoint on a dual 1-cell of w2 or a piece containing a
dual 1-cell of w2.

(5) For each Y, and each CAT(0) interval J ⊂ Y, and hyperplanes ḣ, k̇ ⊂ J consisting of compo-
nents of intersections of hyperplanes h, k with J the following holds: If ΩY (ḣ, k̇) ≥ π

2 then there
is a wall w in Y that separates h, k but is not contiguous with h or k.
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Remark 5.50. The hypothesis that all cones are finite can be replaced by a strengthening of Condi-
tion (5). Specifically, we assume that the wall w2 of Y separating h, k should have a hyperplane lying
lying within a uniformly bounded distance of w1.

Remark 5.51. The statement of the theorem suggests that we should have declared ΩY (e, f ) to be the
infimum of defects of paths that start and end at 1-cells dual to the same hyperplanes as e and f .

Proof. Let S → X̃ be the local convex hull of the geodesic γ → X̃∗ from p to q.
We will show that each edge of S lies within a uniform distance of a hyperplane whose wall in X̃∗

intersects S in a single hyperplane. Since there are uniformly many hyperplanes in S within a uniform
distance of any point, we obtain the desired linear separation.

Let e1 be an edge of S that is dual to a wall W1 of X̃∗ intersecting S in more than one hyperplane.
Let he be the hyperplane of S dual to e1. By Theorem 5.33, considering the subpath of γ starting and
ending on edges dual to distinct hyperplanes in W1, we find that this subpath is homotopic to a subpath
λ that lies on a ladder L1 → T (W1). Accordingly, the ladder L1 begins with a square ladder in S that
starts at e1 and terminates at a 1-cell f1, and is followed by a cone-cell C mapping to a cone Y , such
that f1 maps to Y and is dual to a hyperplane w1 of Y , and w1 lies in the same wall as a hyperplane w′1
of Y with w′1 , w1. And the cone-cell C either meets S in a 1-cell e′1 dual to w′1 or else the cone-cell C
has a piece (with a subsequent cone-cell in L1), so that the piece contains the 1-cell e′1 dual to w′1, and
an endpoint of the piece contains a point of λ which is necessarily in S .

Let J be the component of the preimage of Y in S that intersects he.
Let hp be a hyperplane in S passing through J that is extreme in the following sense: for any

geodesic σp from a 1-cell dual to hp ∩ J to the point p, all 1-cells of the initial subpath σp ∩ J are dual
to hyperplanes crossing hp (except for the initial 1-cell dual to hp). We observe that for any geodesic
in S from J to p whose intersection with J consists precisely of its initial 1-cell, the hyperplane dual to
this 1-cell has the property above, and so we can choose hp in this manner. We choose the hyperplane
hq analogously.

Note that we can assume that we chose hp so that either hp = he or so that hp is disjoint from he and
separates p, he. Indeed, suppose that he is not a final hyperplane in J to p. Then there is a geodesic α
from a 1-cell of J dual to he to the point p, so that the final 1-cell of α ∩ J is dual to a hyperplane that
doesn’t cross he. We then let hp be the hyperplane dual to this 1-cell.

Let ḣp = hp∩J and ḣq = hq∩J. Our hypothesis that Condition (4) holds implies that ΩY (ḣp, ḣq) ≥ π
2 .

Indeed, let κ be a path starting and ending at 1-cells dual to ḣp and ḣq. Since either hp = w1 or w1
separates p, hp, we see that κ passes through a 1-cell dual to w1. Our choice of hq implies that it is
dual to a 1-cell with an endpoint in J that is either also on a 1-cell dual to w2 or also on a piece in Y
containing a 1-cell dual to w2. Thus Condition (4) implies that ΩY (κ) ≥ π

2 .
By the strong-separation hypothesis in Condition (5), there exists a wall w2 of Y that strongly sepa-

rates hp, hq in the sense that w2 is not contiguous with either hp or hq.
Let W2 be the wall of X̃∗ corresponding to w2. We will show that W2 cannot intersect S in a second

hyperplane. Indeed, suppose that W2 intersects S in a second hyperplane. Let σ be a geodesic from p
to q that passes through a 1-cell e2 in J that is dual to w2.

There are two cases to consider according to whether σ intersects W2 in another hyperplane in S
on its way to p or on its way to q. We consider the former case and note that there is an analogous
argument for the latter case holding for q and σq and hq.

Let σp denote the subpath of σ that starts on w2 and ends on a second 1-cell dual to W2 (in the
direction of p).

We refer the reader to Figure 113 for diagrams indicating the notations.
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By Theorem 5.33, the path σp is square-homotopic to a path σ′p that lies along a ladder L2 → T (W2).
The path σ′p must pass through a 1-cell f2 of S that is dual to the hyperplane hp, and this 1-cell f2
actually lies in J ⊂ S ∩ Y . Indeed, by choice of w2 we know that ΩY (hp,w2) , 0 and hp,w2 do not
cross in Y , and so by Theorem 5.37, even the wallray from Y emanating in the direction of hp cannot
cross the wall W2 outside of Y . The second diagram in Figure 114, illustrates the impossible scenario
that hp veers into L2 in a way that makes it cross W2 outside of Y . The third diagram indicates that the
cone-cells might lie substantially inside S - more than was illustrated for the wall W1.

Let δ denote the subpath of σ′p that starts on e2 and ends on f2. By the property characterizing hp,
all the vertices of δ are endpoints of 1-cells dual to hp. Thus an endpoint of a 1-cell dual to hp lies on
the same piece as a 1-cell dual to w2 which is impossible. �

5.13. ~ Codimension-1 subgroup preserved. Show that (under certain hypotheses) each new wall is
cut by an infinite new wall that proceeds infinitely deeply on each side.

This certainly fails if we consider 〈X | Y〉 where Y is a very high girth cover of X satisfying all the
properties. The main hypothesis will ensure that new walls are infinitely extendible.

5.14. Elliptic Annuli.

Definition 5.52 (Elliptic Annulus). An element g ∈ π1X∗ is elliptic if gỸi = Ỹi for some lift Ỹi of some
cone Yi of X∗.

An annular diagram A → X∗ is elliptic if the lift of its universal cover Ã → X̃∗ actually lifts to a
cone Ỹi.

Note that when A is elliptic, both boundary paths P+, P− of A represent elliptic elements (or rather,
conjugacy classes) in π1X∗.

A typical elliptic annulus A → X∗ contains a single cone-cell that overlaps with itself at an internal
path that is not a piece. As opposed to the typical situation in a disk diagram, it is impossible to
“reduce” A by combining the cone-cell with itself. When a cone Yi of X∗ contains an interesting square
annulus, then one obtains an elliptic annulus which is disguised by being built out of squares - though
it could be replaced by a single self-overlapping cone-cell as above. There are two special cases worth
mentioning: Any elliptic element yields an elliptic annulus that is isomorphic to a subdivided circle. If
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Yi contains a hyperplane that is stabilized (without inversion) by some element g ∈ Aut(Yi), then this
data yields an interesting elliptic annulus that looks like a closed square annuladder. More generally,
in the B(6) case, we regard an elliptic annuladder carrying the dual curve of some wall as a length 0
annuladder. See Figure 115.

Lemma 5.53 (Elliptic subannuli merge). Suppose X∗ is a small-cancellation complex, and internal
cone-cells have negative curvature, and Ỹ is superconvex for each cone Y, and contiguous cone-pieces
are finite (or more generally, have trivial stabilizers in π1X).

If an annular diagram A contains two or more essential elliptic annular subdiagrams. Then they are
associated to the same cone Ỹ.

An annulus is essential if its boundary paths are essential in X∗.

Proof. Reduce as much as possible, and consider the annular subdiagram bounded by two nontrivial el-
liptic annuli. We can assume there is no essential elliptic annular subdiagram between them (otherwise
consider consecutive pairs).

Let B denote the annular subdiagram between (but not including) them, and consider a generalized
corner of a square or a nonnegatively curved θ-shell along ∂B. The former would absorb into one of
the two elliptic annuli, and likewise, the latter must be absorbable or replaceable since the defect sum
around it would be exactly 2π. (In both cases, the interesting situation is where the corner or outerpath
is at the transition in the elliptic annulus.)

Thus B is not just a flat annulus as in Lemma 2.10 but an actual product. If B contains squares, then
the superconvexity of cones absorbs the square ladders along the outside. If B contains no squares, then
B̃ would be an infinite contiguous cone-piece between the two distinct cones associated to the elliptic
annuli on either side of ∂B, thus these cones are the identical, and the elliptic annuli merge. Note that
the assumption that the elliptic annuli are nontrivial implies that B represents a nontrivial conjugacy
class in X∗ and hence in X, so B̃ is infinite. �

We now briefly focus on elliptic W-annuladders which are defined in Definition 5.67. The following
is similar to Lemma 5.53:

Lemma 5.54. Suppose X∗ is small-cancellation and B(6) and superconvex cones. Suppose A → X∗

is a reduced annular diagram, containing an essential elliptic annulus and an essential W-annullader.
Then they are the same.

Sketch. Let B denote the diagram between the W-annuladder and the elliptic annulus such that B in-
cludes the former but not the latter. Then B has nonpositive curvature on the W-annuladder side, and
negative curvature on the elliptic annulus side.

One first concludes that B equals the W-annuladder, and one then concludes that the W-annuladder
absorbs into the elliptic annulus. �
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5.15. Annular Diagrams and the B(8) condition.

Definition 5.55. [Generalized B(8) condition] The following conditions will restrict the structure of
certain annuli:

(1) [Strict metric small-cancellation] For each closed path S Q in a cone Y , if ΩY (S ) ≤ π then either
|S | < |Q| or S Q is nullhomotopic in Y .

(2) [Negative curvature relative to walls] Let S be a path in Y whose first and last 1-cell are dual to
hyperplanes in the same wall. If ΩY (S ) ≤ π then these 1-cells are dual to the same hyperplane,
and S is homotopic into this hyperplane in Y .

(3) [Negative Curvature] For each closed cycle P → Y , if ΩY (P) ≤ 2π then P → Y is nullhomo-
topic.

Remark 5.56 (Comparison with Definition 5.1).
Condition 5.55.(3) strengthens Condition 5.1.(2).
Condition 5.55.(1) strengthens Condition 5.4.
Condition 5.55.(2) strengthens Condition 5.1.(5).

Definition 5.57. A W-ladder in a diagram is a ladder containing a dual curve mapping to a wall W of
X̃∗, it provides a generalization of a square ladder containing a dual curve. Since a cone-cell can offer
multiple continuations of a W-ladder, we will often choose continuations that yield a simple dual curve,
and more specifically, a simple W-ladder is an embedding on its interior. On the other hand, we will
sometimes consider an entire dual graph instead of a dual curve, and then obtain a branched W-ladder.

We will often use the term cladder when suppressing the associated wall W.

Lemma 5.58 (W-ladders cannot self-cross). Let A→ X∗ be an annular diagram whose outside bound-
ary λ is collared by a wall W, in the sense that λ̃ lies on N(W).

Let L → A be a W-ladder that is dual to a 1-cell of λ dual to W. Then L cannot self-cross, in the
sense that it passes through the same square in non-parallel 1-cells, or the same cone-cell in 1-cells
that map to distinct walls in the corresponding cone.

Moreover, L cannot end on another 1-cell of the outside boundary of λ unless it too is dual to W.

Proof. This is true for a disk diagram because of Theorem 5.20.
Let Ã → A be the universal cover of A, and observe that Ã is collared by the universal cover of the

collar of A. If L self-crosses in A then a pair of distinct lifts of L̃ in Ã cross each other. Connecting them
along the collar of Ã, this gives a self-crossing W-ladder within a disk diagram, which is impossible by
Theorem 5.20.

Similarly, if L enters A on a 1-cell on the outside boundary that is dual to W but exits at a 1-cell on
the outside boundary that is not dual to W within the collar, then the lift of L̃ in Ã does the same thing,
which is impossible. We refer the reader to Figure 116. �

Theorem 5.59 (~ Conjugate into wall). Suppose that 〈X | {Yi}〉 satisfies the conditions of Definition 5.1
and additionally, the strengthened conditions of Definition 5.55, and in particular Definition 5.55.(1).
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Let γ → X∗ be an immersed essential circle that has minimal length within its homotopy class in X∗.
Suppose γ is homotopic to a closed path λ that lies in the carrier of a wall of X̃∗. So λ̃ ⊂ N = N(W), or
equivalently, λ→ X factors as λ→ N̄ → X∗, where N̄ = 〈γ〉\N.

Let A be an annular diagram between γ and λ, and suppose that A is reduced and of minimal
complexity subject to λ → N̄ varying within its homotopy class in N̄, and subject to Ã having one side
equal to the fixed copy γ̃ ⊂ X̃∗ of the universal cover of γ, and the other side lying on a fixed copy of
N ⊂ X̃∗.

Then A is a square diagram in X, and γ lies on one side of a flat subannulus, whose other side γ′

lies in the local convex hull of λ in A.

We refer the reader to Figure 117 for two possible scenarios. In the second case, γ is homotopic to a
path in a square annulus in N̄. In the first case γ is homotopic to a more general annulus in N̄ containing
cone-cells.

Remark 5.60. We note that γ̃ lies in T (W) if γ̃ intersects N(W) in a point. Indeed this follows by
combining the above result with Theorem 5.33. However, in general it is possible that γ̃ is disjoint
from T (W) and even E(W). Indeed, the simplest example is the subdivided cylinder [0, n] × S 1. We
let γ denote {0} × S 1, and we let W denote the universal cover of {n − 1

2 } × S 1. Then γ̃ does not lie in
N(W) = T (W) = E(W) which equals [n − 1, n] × S̃ 1.

The proof shows that this is essentially the only possible failure, in the sense that if λ does not lie
along a square annulus of N̄ then γ̃ is forced to intersect N(W).

Proof. Let A be an annular diagram as in the hypothesis of the theorem. So the inside boundary path
of A is γ which is of minimal length (among closed paths in X) in its homotopy class in X∗, and the
outside boundary path of A is a path λ → N(W), and A is reduced in the sense that it doesn’t have
removable square bigons, or absorbable squares or replaceable cone-cells or combinable cone-cells,
and furthermore there does not exist a local complexity reduction achieved by pushing λ across some
square or cone-cell that maps to N(W). We note that all such reductions preserve the “class” of A in the
sense that the lift of Ã at γ̃ has the property that the outside boundary path lifts to the same fixed copy
of N(W) no matter what local reduction is performed above.

If γ′ has a common point with λ then the result follows from Theorem 5.33 which states that a
geodesic starting and ending on the carrier is square homotopic into the carrier.

As suggested by the first and second diagrams in Figure 118, our choice of A implies that λ cannot
pass through any dual 1-cell of W. For then, following a simple W-ladder emanating from this dual
curve, we are able to find a lower complexity annulus of the same class, using a different choice of λ but
the same γ. Note that this W-ladder cannot self-cross within Aλ, as each of the various self-intersection
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possibilities are ruled out by Theorem 5.20 as established in Lemma 5.58. We note that pushing λ
inwards to absorb a single cell of A that maps to N̄ reduces the complexity without effecting the class.
However, the more global explanation we offer that follows an entire W-ladder within A also covers the
case of an isolated 1-cell on A which is traversed twice by λ.

We shall now choose annular subdiagrams Aγ and Aλ with the following properties: Aγ will be a
square annular diagram within A between γ and another path γ′ of the same length, and Aλ will be the
remaining annular diagram, so that A equals the union of Aγ and Aλ along γ′. Moreover, we choose
Aλ, Aγ such that the

(
#(cone-cells), #(squares)

)
complexity Area(Aλ) is minimal among all possible

decomposition choices with γ fixed but other features varying as above.
There is a W-ladder consisting of a sequence of cones and squares in N̄ which support the path λ.

We choose this sequence so that it is minimal in the sense that it uses as few cones as possible, and
then as few squares as possible. Choosing a basepoint the path λ is expressible as a concatenation
of subpaths that either travel along connecting square ladders or paths in cones that start and end on
0-cells dual to distinct hyperplanes in the same wall (of the intersection of W and a cone). In the latter
case, it is possible for the path to start and/or end on a piece containing a dual 1-cell, but the starting
and ending dual 1-cells are dual to distinct hyperplanes in the same wall. This can be remedied by first
adding some arcs or “backtracks” to λ.

We now augment A by attaching along λ an “annular” W-ladder L corresponding to the above con-
catenation of paths. As illustrated in the fourth diagram of Figure 118, let B = Aλ ∪γ′ L. We refer the
reader to Construction 5.21.

We now form the rectified annular diagram B̄ from B as in Section 3.6, and then examine the possible
positively curved cells in B̄. There is no outerpath of a generalized square in B̄ along γ′, for then we
could push the square across γ′ to reduce the area of Aλ (at the expense of increasing Area(Aγ). We
refer to Figure 119 for illustrations of this and the next few excluded possibilities. In each case, the
possibility is illustrated in a diagram above, and the “reducing action” is illustrated directly below it.

For θ ≤ π, there is no θ-shell with outerpath Q along γ′, for otherwise, denoting its boundary by QS ,
with Q outer and S inner, we would have Ω(S ) ≤ π and hence by Condition 5.55.(1), either |S | < |Q|
so γ′ and hence γ → X∗ is not of minimal length in its homotopy class, or the θ-shell bounded by QS
can be replaced by a square diagram, thus reducing the complexity.

There is no outerpath of a generalized square along the part of the boundary of B in ∂L − λ. Indeed,
any such outerpath would necessarily lie along one of the connecting square ladders of L, but then λ
can be pushed across this generalized square to reduce Area(Aλ) while remaining on N̄.

Generalizing our earlier reduction when γ intersects λ at some point, we observe that: if some cone-
cell C of L intersects γ′, then we can cut B along C leaving copies C1,C2 of C at each end, to form a
diagram D whose boundary path is a concatenation γ′c1`c2 where ` is a path along ∂L − λ, and c1, c2
are paths on C. This is illustrated in the final pair of diagrams in Figure 119. The arguments above
show that D has no positively curved cells except for C1,C2, and hence Theorem 3.36 shows that D is a
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ladder. This completes the proof in this case, as it follows that γ′ = λ lies on T̄ = 〈γ〉\T (W), and hence
γ lies in the local convex hull of λ within A.

Now assume that no cone-cell C of L intersects γ′, so in particular, each cone-cell in B̄ is either
internal, or is a θ-shell consisting of a cone-cell not in L that has outerpath along the inside of B on γ′,
or is a θ-shell consisting of a cone-cell in L whose outerpath lies on the opposite side of L from λ.

By Condition 5.55.(3), each internal cone-cell has negative curvature. Since we have already ex-
cluded θ-shells with θ ≤ π having outerpath along γ′ above, we see that any such θ-shell along γ′

would have negative curvature. For each cone-cell in L, its innerpath S passes through 1-cells dual to
distinct hyperplanes in the same wall. Thus, by Condition 5.55.(2), if Ω(S ) ≤ π, then the 1-cells are
dual to the same hyperplane, and S is homotopic into this hyperplane by a square diagram. We could
therefore have used a connecting square ladder in place of this cone-cell, in this case. This is impossi-
ble as it violates the minimality of our choice of L. We conclude that Ω(S ) > π for each innerpath of
cone-cell in L, and so any such cone-cell yields negative curvature.

In summary, there are no outerpaths of generalized squares, each θ-shell has θ > π and is hence
negatively curved, and each internal cone-cell is negatively curved. Since χ(B) = 0, we see from
Theorem 3.15 that there are no cone-cells in B.

We conclude that either L contains a cone-cell, in which case γ′ is forced to lie on (or rather factor
through) N̄ as above (since each such cone-cell must intersect γ′), and A = Aγ is a square diagram with
γ lying in the local convex hull of λ. Or, L is a width-1 square annulus consisting of the product of a
1-cube and a subdivided circle. In this case, by Lemma 2.10, B is then a “flat annulus” in the sense of
Lemma 2.10. Thus A is a square annulus. �

5.16. Doubly Collared Annular Diagrams.

Theorem 5.61 (Doubly Collared Annulus). Let 〈X | {Yi}〉 satisfy the B(6) conditions of Definitions 5.1,
as well as the no inversion condition given in Lemma 5.25. Let A → X∗ be an annular diagram with
boundary paths α1, α2 that are essential in X∗. Suppose that the lift of its universal cover Ã → X̃∗ has
the property that the induced lifts of α̃i → X̃∗ lie on carriers of walls N1 = N(W1) and N2 = N(W2).

There exists a new annular diagram B such that B is reduced in the sense that it has no:

(1) cancellable square bigons,
(2) absorbable squares along cone-cells,
(3) absorbable (cancellable) pairs of cone-cells,
(4) outerpaths of generalized corners of squares on its boundary,
(5) cone-cells that are replaceable by square diagrams,
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F 120. B is thick on the left, and B is thin on the right.

(6) cone-cells on its boundary that are replaceable by square ladders (with no adjustment of inter-
nal boundary path).

B contains a pair of annuladders L1, L2 mapping to N̄1, N̄2 where Li is a Wi-annuladder. Each
Li → B is an embedding and B deformation retracts to Li. For each i, the path βi is one of the
boundary paths of Li. Then B has one of the following two structures:

(1) Either B is thick in which case L1, L2 have disjoint interiors and lie along the boundary of B in
the sense that β1, β2 are the boundary paths of B.

(2) Or B is thin and B is itself an annuladder. We emphasize that in this case β1, β2 might not
equal the boundary paths of B.

Finally, B lies in the same class as A in the sense that the lifts of Ã and B̃ have: α̃i, β̃i lie in the same
translate of Ni for each i, and αi, βi represent the same conjugacy class in each Stab(Ni) (and hence in
π1X∗ as well).

We refer the reader to Figure 120 for illustrations of the thick and thin cases of an annular diagram
B together with the annuladders L1, L2 inside it.

Proof of Theorem 5.61. Preliminary Note: The thick case arises when the translates of W1 and W2
under consideration do not cross the same cone or square. Then the diagram B can be chosen to be the
union of a minimal

(
#(Cone-cells), #(Squares)

)
complexity annular diagram A′ → X∗ in the same class

as A, together with minimal complexity annuladders Li → N̄i each having a common boundary path
with A′.

The thin case arises when W1 and W2 cross, or are equal to each other. Note that there is a degenerate
case where L1 = L2 that arises in this situation.

A minimal annular diagram in the class: Let E be an annular diagram in the same class as A
with boundary paths εi that represent elements conjugate to αi in Stab(Ni). Suppose moreover, that the
complexity

(
#(Cone-cells), #(Squares)

)
of E is minimal among all possible such diagrams.

Properties conferred by minimality: The minimality ensures that E is reduced in the usual sense,
of having no bigons, cancellable pairs of cone-cells, absorbable squares, generalized corners of squares
on cone-cells, or replaceable cone-cells. However, the minimality ensures there are other properties
related to “compressions into the boundary”.

If E has a square or cone-cell with a 1-cell along εi and this square or cone-cell maps to Ni under
the map Ẽ → X̃∗, then we could push εi through this square or cone-cell and obtain a lower complexity
diagram in the same class. Thus no such configuration exists.

If E has a cutpoint, then this cutpoint subtends a subpath of either ε1 or ε2 which bounds a disk
diagram that is a subdiagram of E. Chopping off this disk diagram, and replacing this subpath by
a point reduces the complexity but does not effect the class. We can therefore assume that no such
configuration exists.



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 89

Accordingly, if ei is a 1-cell on εi whose lift is dual to a 1-cell of Wi then ei must be an isolated 1-cell
of E and the other boundary path ε j must also pass through ei (which cannot be a cut-cell as above).

Finally, if εi contains the outerpath cd of a corner of a generalized square of E, and this length-2
path lies along the external boundary of a length-2 square Wi-annuladder (more concretely, there is a
1-cell ei dual to Wi that forms a square with corners cei and e−1

i d in X̃∗) then this generalized square
can be pushed out of the diagram, to decrease the complexity while maintaining the class.

The thick case: In case W1 and W2 don’t cross the same square or cone and aren’t equal, then εi
cannot pass through a 1-cell ei lifting to a dual 1-cell of Wi. Indeed, as above, such a 1-cell is forced
to be an isolated 1-cell of A that also lies on ε j (here i , j). A cone or square dual to W j in N j that
contains ei on its boundary is crossed by both Wi and W j.

We shall now assume that no such 1-cells e1, e2 are traversed by ε1, ε2.
Minimal Wi-annuladders: For each i, (following a procedure similar to Construction 5.21) we let

Li → N̄i be a Wi-annuladder having εi as one of its boundary paths, and moreover, assume that Li is
chosen to have minimal

(
#(Cone-cells), #(Squares)

)
complexity among all such choices with εi fixed.

Forming B in the thick case: We now form the thick annuladder B = L1 ∪ε1 E ∪ε2 L2 by gluing
L1, L2 along ε1, ε2 to E.

We are assuming here that the lifts L̃1 and L̃2 do not “cross” the same cone or the same square
(possibly even along the same dual 1-cell).

We now verify that B is reduced and has the desired properties. Since E is reduced, we need only
consider the interaction between cells in L1, L2, and the interaction between cells in E with L1, L2. A
cancellable pair of cells between L1, L2 would lift to the same cell (i.e. square or cone) in X̃ and hence
X̃∗, and would imply that either W1,W2 cross in some square or both cross some cone or are equal.
A cancellable pair of cells between Li, Li would violate minimality if they are already adjacent in Li.
Minimality would also be violated if we could replace a cone-cell by a square diagram without effecting
εi. A cancellable pair of cells between Li, Li that are not already adjacent would mean that these cells
are adjacent in E, and hence εi passes through a cutpoint which would violate the minimality of E as
above. A cancellable pair between a cell in Li and a cell in E would imply that there is a cell of Ni
within E along the boundary of εi, contradicting the minimality of E, as above. Finally, a corner of
a generalized square along B would have to come from a square within E, since for any square in Li,
one of the dual curves of this square lies entirely in Li and doesn’t meet ∂B. But, such a corner of a
generalized square within E was ruled out by the minimality of E above.

Forming B in the thin case: The case where L̃1, L̃2 cross the same cone or square is very closely
related to, and could probably be treated by applying Theorem 5.37 but we will give an independent
treatment here.

Bouncing 1-cells: The bouncing 1-cells of Wi are those 1-cells bi
1, b

i
2, b

i
3 . . . in εi that are dual to Wi

in the Wi-annuladder Li, and actually lie in its interior (note that it is possible for such dual 1-cells to
occur on the boundary of Li along cone-cells). The proof hinges upon reducing the number of bouncing
1-cells, so that the 2-complex B = L1 ∪ε1 E ∪ε2 L2 is in fact an annular diagram since εi is a boundary
path of Li. We can nevertheless form the complex B above when there are bouncing 1-cells, and a
typical such situation is illustrated in Figure 121.

The eventful 1-cells of E are those 1-cells with the property that they are isolated, and either in ε1
and dual to W1 or in ε2 and dual to W2, or are the location of a cancellable or absorbable pair of 2-cells
between Li, L j, if we were to form B. We emphasize that a 1-cell may be eventful for more than one
reason. As explained above, and as is clear from the cancellable pair possibility, each eventful 1-cell is
an isolated 1-cell of E that is traversed by εi on one side and ε j on the other side. There is thus a cyclic
ordering of eventful 1-cells in E.
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F 121. The nonplanar 2-complex B = L1 ∪ε1 E ∪ε2 L2 will be adjusted to produce a thin
annular diagram.

F 122. Slide bouncing events to the cone-cells and then rechoose cone-cells: We slide
the events in the diagram on the left to obtain the diagram on the right. Note that the shaded
parts of E are forced to have no squares. The cone-cells in the adjusted diagram are a bit larger
and absorb more squares from the other ladder than they did before. We then rechoose the
cone-cells to absorb squares where bouncing events occur, and thus obtain a planar B.

Outline of construction of thin annular diagram: As the construction of the thin annulus has
complex supporting details, we outline the plan before proceeding. See Figure 122.
}1 Configurations that violate minimality of L1, L2: We will show below that our minimality

conditions on E, L1, L2 restricts the nature of the sequence of eventful 1-cells as follows:

(1) There does not exist a cancellable pair of squares at a non-bouncing eventful 1-cell unless
W1 = W2.

(2) There does not exist a cancellable pair of squares at a bouncing eventful 1-cell.
(3) If a, b, c are consecutive bouncing eventful 1-cells and b is dual to Wi and b lies on a square in

L j then either a or c has a cone-cell on the Li side, and the event is absorption of a square of L j
into this Li cone-cell.

}2 Sliding events to cone-cells: Each bouncing eventful 1-cell of Li that lies on a square is either
preceded or succeeded (or both) by a cone-event. We now use this to “slide” the bouncing eventful
1-cells so that they all occur on a cone-cell instead of a square. This involves rechoosing E, L1, L2.
}3 Rechoosing cone-cells: After absorbing squares and cone-cells at the absorption-events, we

obtain a complex B′ that has all its events on cone-cells, and in particular, has all its bouncing events
on cone-cells. The parts of B′ between consecutive cone-cells are collections of rectangles forming a
contiguous or non-contiguous cone-piece. We remedy the nonplanarity of B by rechoosing the cone-
cells to build a new complex B that is the desired (planar) thin annular diagram.
}4 “Zipping” when W1 = W2: A simple argument shows that L1, L2 can be “zipped together”

and that E is a subdivided circle when there is an absorption of squares or cone-cells that implies that
W1 = W2.

We now describe the argument. An important first step is to restrict the types of events.
There is no cancellable pair of squares (unless W1 = W2): The minimality of E, and our hypoth-

esis that we are considering consecutive bouncing 1-cells will imply there cannot be a cancellable pair
of squares in B between L1, L2. Indeed, let s be such a square in Li intersecting L j in a bouncing 1-cell,
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F 123. The left diagram shows that a cancellable pair of squares between L1, L2 cannot
occur except at a bounce as illustrated in the middle. In this case, the orientations shows that
the square-bounce is consecutive with a cone-event as on the right.

F 124. Replacing the ladder L along C with a shorter square ladder L′.

and suppose that the 2-cell in L j across from this 1-cell is s′ with s and s′ canceling across it. As in
Figure 123, we could either absorb a cell within E into L j as illustrated on the left (thus contradicting
minimality of E) or s is incident with L j at another 1-cell as illustrated on the right. In this case, we
see that L j has an earlier bouncing 1-cell, and moreover (keeping track of the illustrated orientations)
using 2-sidedness of W̄ j in N̄ j there must have been an even earlier one besides this. Note that the cell
prior to s′ in L j must be a cone-cell for this to occur.

With a bit more analysis, we now show that this bouncing square-square cancellable pair preceded
by the cone-cell C is impossible as it violates our minimality assumptions. As in the third diagram in
Figure 123, the wall Wi enters L j at the top of the C. Consider the ladder L in L j between its square s j
that cancels with a square si in Li and the first cell in L j that either Wi enters or is a square that absorbs
into C or a cone-cell that combines with C. See the fourth diagram in Figure 123.

In the case where Wi enters L j or a square absorbs into C (and both of these are essentially can-
cellable pair situations), then we note that L is entirely formed from squares, since a cone-cell could be
compressed out of Li thus reducing its complexity. Consequently, we find that s j can be absorbed into
C.

The other case to consider is where there is no cancellable pair, and Wi simply enters L j.
Firstly consider the case where it enters at a square. Now, L is again a square ladder, since as above,

otherwise a cone-cell can be compressed out of Li. As the bottom external boundary path of L forms
a single wall-piece with C, and this piece starts and ends on 1-cells dual to the same wall, applying
Conditions 5.1.(4) and 5.1.(5), we find that the path in C compresses onto the W2 wall in C. We are
thus able to adjust Li by replacing L with a ladder L′ having two fewer squares. See the first three
diagrams in Figure 124.

Secondly consider the case where it enters at a cone-cell. Now we apply Conditions 5.1.(5) and find
that there is a corner of a generalized square in Li on C, and we use this to decrease the length of Li as
in the last four diagrams in Figure 124. This is very similar to the arguments used in the 2nd and 3rd
cases of Figure 128.

Consecutive events: We now show that for (maximal) consecutive events at 1-cells a, b, after ab-
sorbing cells one obtains a diagram that is either: a ladder having exactly two cone-cells at the two
events; or there is a cone-cell at one of these events and a bouncing square at the other and the reduced
subtended diagram looks like a generalized corner of square on a cone-cell; or there are two bouncing
squares and the subtended diagram looks like a bigonal square diagram; or a single cone-cell - arising
from a ladder that bounces twice on a cone-cell and absorbs into it - see Figure 127. We will later
restrict these options further using our minimality assumptions.
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F 125. Some of these consecutive events cannot arise in a minimal situation.

F 126. Each subdiagram of B starting and ending at an event (after absorptions) is either
a single cone-cell, a ladder with exactly two cone-cells, a corner of generalized square on a
cone-cell, or a bigonal square diagram.

F 127. It is possible for Li to bounce twice in a row on a cone-cell C, but the minimality
of E implies that there are no squares between, and the minimality of L j implies that this part
of Li absorbs into C.

The key point is that the subdiagram subtended by consecutive events is already nearly reduced,
and has very little possibility for positive curvature. The parts within each of L1, L2, E are reduced, and
the parts between Li and E are reduced, so the only possible reduction is between L1, L2 - at the two
ends of the subdiagram. When two cone-cells are combined there is no further reduction, (except that
such an absorption between cone-cells could provide a new cone-cell that is replaceable by a square
diagram - but we can make this replacement at the end of the entire process) and when a cone-cell in
Li absorbs a square in L j, it is a priori possible for some sequence of further absorptions of a sequence
of squares of L j to absorb into this “prolonged” cone-cell. A subsequent absorption of a cell in E with
this cone-cell remains impossible, since it could have been absorbed to begin with, thus decreasing the
complexity of E. We note that the degenerate case where everything (a square ladder) on one side is
absorbed into the cone-cell is one of our possible conclusions.

The only global features that could prevent the diagram from being reduced are: a generalized corner
of a square - necessarily from a square at one corner to a cone-cell at the other; or a bigonal square
diagram - between squares at the two corners.

Having obtained a reduced diagram, the collars from L1, L2 ensure that there are only two possible
places sources of positive curvature, and so Theorem 3.36 ensures that we obtain a ladder between two
cone-cells.

Restricting further: Bouncing 1-cells on the same side or an alternating triple: A consecutive
pair of square events contradicts the minimality if they both bounce from Li to L j. We refer the reader
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F 128. If a square bounce is consecutive with a cone absorption event, then we slide it
over to bounce on the cone. The 2nd and 3rd cases lead to a decrease in the L1, L2 complexity
and thus do not arise.

F 129. Two consecutive square events on the same side, or three alternating square events
allow the reduction of the L1, L2 complexity.

F 130. One or two (alternate) square bounces cannot be all, for otherwise a carrier would
be 1-sided.

F 131. On the left, the innerpath σ of the middle cone-cell, is the concatenation of two
pieces so Ω(σ) < π, and hence the cone-cell can be replaced by a square ladder. A similar
argument holds for the second diagram. The pair of diagrams on the right, illustrate that a
cone-cell cannot be prolonged by absorbing squares from the other ladder.

to the top of Figure 129. Moreover, if there is a bounce from L j to Li, followed by Li to L j, followed by
L j to Li again, one also yields a reduction as on the bottom of Figure 129. As illustrated in Figure 130,
we use that W̄i is 2-sided in N̄i to see that a single square bounce or two alternate square bounces are
not everything.

Sliding bouncing 1-cells to cones: For each i, we are able to slide the bouncing 1-cells of Li so they
occur on a cone-cell of Li. We refer the reader to Figure 128. We note that by assuming first that we are
in a situation with a minimal total length of Li, L j, we can assume that the bottom sequence can never



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 94

F 132. We rechoose the cone-cells so that square ladders end on disjoint arcs. There can
be many ways of doing this, as illustrated on the top two.

F 133. If W1 = W2 are identified because of a cancellable pair, then we consider the next
event to prove that L1, L2 do not diverge. Not that the 4th and 5th diagrams are impossible.

occur, since it reduces one of the lengths, since ultimately a square can be absorbed into a cone. The
top sequence is typical. The middle sequence can be assumed not to occur as we did for the bottom
sequence. Note that the last two diagrams in the middle sequence are interchangeable (but differ on εi),
indicating that bouncing 1-cells can be passed across a rectangle in Li that is absorbable into a cone-cell
in L j.

Choosing new cone-cells: Having performed the above moves, we can now assume that each event
is either an absorbable pair of cone-cells between Li, L j, or a square (or sequence of squares) in Li that
is absorbable into L j (or vice-versa).

Moreover, the diagram between successive events is a (grid) rectangle.
We now show how to choose a cone-cell for each such event, such that the rectangular diagram on

its left and right can be attached to it in a way that allows us to create an annular diagram. We refer the
reader to Figure 132.

When W1,W2 fold into each other: We now consider the case where there is a cancellable pair
of squares between L1, L2 along a 1-cell that is not dual to either W1,W2. A similar situation arises
when there is a cancellable pair of squares or cone-cells along a 1-cell dual to both W1,W2. These
situations are very special as they immediately imply that W1 = W2, and have global consequences as
we construct the annulus.

Consider the subdiagram starting at such a cancellable pair and ending at the next event. See Fig-
ure 133. A priori, we do not know that (as illustrated) the Wi-ladders from this cancellable pair to the
next event consist entirely of squares, however we shall conclude that this is the case. We note that
the final case, indicating that Wi,W j cross in a square is impossible by Theorem 5.20. The second to
last case will also be impossible since we will show that the two 1-cells on the terminal cone-cell are
adjacent, and they are also adjacent or in the same piece on the other side. It follows that the cone-cell
compresses which violates our minimal choice of Li, L j.

There is some initial sequence of cancellable pairs of cells, and we consider the first two that do
not cancel. For instance, in Figure 133 there might be three such consecutive cells. We consider the
diagram obtained by chopping off the sequence of cancellable pairs, and identifying the boundary along
the last pair of dual 1-cells of Wi,W j, as in Figure 134. If the next event is a similar cancellable pair of
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F 134. The parts where L1, L2 diverge would yield impossible collared diagrams after
identifying 1-cells or absorbing on each end.

squares, then we perform the same operation on that side. If it is a cone event, then we simply absorb
into one cone, and let it be the final cell of our diagram.

The resulting diagram is reduced but has no positive curvature. It is thus impossible by Theo-
rem 3.15, or in fact Theorem 3.40.

We reach the conclusion that the two hyperplanes in the cone-cell of the next event, are not only in
the same wall, but in the same hyperplane, as in fact, the dual 1-cells are adjacent and fold into each
other. See Remark 5.11.

This conclusion passes from cone-cell to cone-cell as we go around the diagram. Indeed, at each
stage, successive pairs of dual 1-cells are dual to the same wall in the cone (from the previous stage), but
lie in the same piece (from the next stage) and thus lie in the same hyperplane. We can thus apply the
argument above to choose appropriate cone-cells. Moreover, if desired, we can simplify each cone-cell
so that the Wi-ladders occupy the same position all the way around, and the result is a single annuladder
that is both a Wi-annuladder and a W j-annuladder. �

Corollary 5.62. Suppose B(8)-Conditions 5.55.(2) and 5.55.(3) are added to the hypotheses of Theo-
rem 5.61. Then either B is thin, or B has no cone-cells and is thus a square annular diagram B→ X.

Proof. Suppose B is a thick ladder containing W-annuladders L1 and L2 on its inside and outside, such
that L1, L2 have disjoint interiors. Condition 5.55.(3) implies that any internal cone-cell is negatively
curved and Condition 5.55.(2) implies that any cone-cell with a single boundary arc is a negatively
curved θ-shell (since it lies on L1 or L2). These would be impossible by Theorem 3.15, and so these
cone-cells are replaceable. Thus in the thick case, B must be a square diagram. �

Remark 5.63 (Elliptical degeneracy). There is an elliptical annuladder case to consider in the proof
(or at least the conclusion) of Theorem 5.61. This arises when the L1 or L2 complexity is either (1, 0)
or (0,m) and moreover the initial and terminal dual 1-cells of the annuladder do not form a piece where
they are joined up in the (1, 0) case (and something similar in the (0,m) case). In this case, one or two
of L1, L2 is an elliptical annuladder. Then L1, L2 are forced to merge within the annuladder B into a
single elliptical annuladder following Lemma 5.53.

When only one is elliptical, say L2, then we need a bit more work - and we must assume that
internal cone-cells have negative curvature. We let B1 = L1 ∪ε1 E be the subannulus of B that meets
L2 along ε2. Observe that B1 has nonpositive curvature along L1. Any generalized corner of square
along ε2 could be absorbed into the elliptical annulus L2, and likewise any θ-shell with θ ≤ 0 would
be replaceable by a square diagram or absorbable into L2 since otherwise it would yield an internal
cone-cell. Since there is no positive curvature along L1, and no nonnegatively curved cone-cell along
ε2 nor any corner of generalized square on ε2, we see that E is a product square annulus. If we assume
cones are superconvex, then if L2 is nontrivial, then E would absorb into L2, so we can assume E is
a subdivided circle. If L1 has no cone-cells, then it too would likewise be absorbed into L2. So let us
assume it has at least one cone-cell C. In the split-angle case Condition 5.1.(5) suffices to show that C
is replaceable or absorbable into L2. In general, Condition 5.55.(2) is sufficient.

The above shows that the thick case is ruled out when one of L1, L2 is elliptic. The thin case is
already dealt with in Lemma 5.53.

This is dealt with in Lemma 5.54 as well.
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F 135. To verify Condition (3). Each wall in cones of 〈X | Yi〉 maps to a single equiva-
lence class of hyperplanes in X, but a single equivalence class has connected intersection with
each piece in each cone.

F 136.

5.17. Malnormality of wall stabilizers.

Theorem 5.64. Let 〈X | Yi〉 be a cubical presentation satisfying the conditions below. Then Stab(W) is
almost malnormal in π1X∗ for each wall W.

(1) B(6) and B(8) conditions of Definitions 5.1 and 5.55, and the no inversion condition of Lemma 5.25.
(2) {π1H1, . . . , π1Hk} is a malnormal collection of subgroups of π1X when {H1, . . . ,Hk} are distinct

immersed hyperplanes of X that are images of hyperplanes in the same wall W of X̃∗. (See
Definition 12.2.)

(3) For each Y ∈ {Yi} and hyperplanes h1 , h2 ⊂ Y, and lifts h̃1, h̃2 contained in a lift Ỹ of Y to X̃∗:
if h̃1, h̃2 lie in hyperplanes H1,H2 of X̃∗ that belong to the same wall of W, then h1, h2 cannot
lie in the same cone-piece of Y.

Remark 5.65. Condition (3) is difficult to check in practice, but is instead verified through the follow-
ing scenario which represents a stronger condition. The hyperplanes of X are partitioned into equiv-
alence classes. For each i, the hyperplanes of each wall of Yi map to hyperplanes in X that are in the
same equivalence class. The union of all hyperplanes of X in an equivalence class have connected
intersection with (or more generally, preimage in) each piece of each Yi. This is illustrated heuristically
in Figure 135.

For instance, we will later use this to verify Condition (3) in a situation where all hyperplanes of X
embed, each wall of Y maps to the same hyperplane in X, and the injectivity radius of hyperplanes of
X exceeds the diameter of the largest cone-piece or wall-piece in any Y .

Remark 5.66. Condition (3) is equivalent to the following: For any cone Y in X̃∗, if W1,W2 are walls
in X̃∗ intersecting Y in hyperplanes h1, h2: If W1 = gW2 for some g ∈ π1X∗, then h1, h2 cannot lie in the
same cone-piece of Y .

Condition (3) implies that the dual curves illustrated in the first diagram of Figure 136 actually lie
within the same hyperplane in each of the cones (receiving the cone-cells). If this is not the case for
a pair of dual curves in the second diagram of Figure 136, then that pair of dual curves does not have
lifts contained in the same wall of X̃∗.

Definition 5.67 (Annuladder). We use the term annuladder for an annulus with the structure of a
ladder as in Definition 3.35 but we now include the possibility of a square ladder. We use the term
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F 137. If gW ∩ Y and W ∩ Y diverge (by not passing through the same piece) then
N(W) ∩ N(gW) = Y .

W-annuladder to mean that its universal cover maps to N(W) and there is a W dual curve within it that
generates π1.

Proof of Theorem 5.64. Let N = N(W) be the carrier of the wall. Let B be the diagram provided by
Theorem 5.61. By Corollary 5.62, B is either thin or it has no cone-cells and is a square diagram.

In the latter case, B represents a homotopy in X between closed curves in distinct immersed hyper-
planes H̄1, H̄2 of X where H1,H2 are components of their preimages in X̃∗ that lie in the same wall W.
Condition (2) on malnormality implies that H̄1 = H̄2 and that B can be homotoped into the carrier of
H̄1 (relative to β1, β2). In particular, B is homotopic into N̄ = Stab(W)\N relative to β1, β2 and we find
that β1, β2 are conjugate in Stab(W) and hence the same holds for α1, α2. Note that the above argument
deals with the case that B contains no cone-cell (whether it is thick or thin).

We now examine the case where B is thin. The case where B contains no cone-cell is dealt with
above. Now B contains a pair of annular W-ladders L1, L2 passing through each cone-cell of B and
traveling around B so that each generates π1B. We now use Condition 5.64.(3) to see that the dual
curves of L1, L2 lie in the same hyperplane in each cone (at entrance and exit). We refer the reader to
Figure 138. This gives us a homotopy between β1 and β2 within N̄.

Alternate argument in the hyperbolic case (our intended application): When H is a quasiconvex
subgroup of a word-hyperbolic group, almost malnormality of H is equivalent to: Hg ∩ H contains an
infinite order element if and only if g ∈ H. Thus, in our case of greatest interest, when X∗ has compact
cones, and X̃∗ is δ-hyperbolic and N is quasi-isometrically embedded, it suffices to verify the above
condition. When the cones of X∗ are finite, an infinite order element cannot be represented by an
elliptic annulus. There are then pieces between consecutive cone-cells in B, and it is this which allows
us to see that B→ X∗ factors as B→ N̄ → X∗. (Or alternately, that B̃ lifts to N.)

When one or both of the annuladders L1, L2 in B are elliptical annuli, then Lemma 5.54 and Lemma 5.53
imply that L1 = B = L2 is a single elliptical annulus. (Moreover, we can assume that it is built from a
cone-cell and not a square ladder, as the latter case was dispensed with above.) Now, however, there is
no cone-piece between consecutive cones - and so we are no longer able to deduce from Condition (3)
that W1 = W2.

Instead we argue as follows: The elliptic annulus B has B̃ lifting to a cone Y in X̃∗ where Y ⊂
(N ∩ gN). The subgroup H ∩ gHg−1 equals Stab(N)∩ Stab(gN), which is a subgroup of Stab(N ∩ gN),
and this is a useful statement since N ∩ gN , ∅.

There are then two cases: Either N∩gN = N, in which case g ∈ Stab(N) = Stab(W) so g ∈ Stab(W).
Or N ∩ gN = Y , in which case Stab(N) ∩ Stab(gN) ⊂ Stab(Y). The former case arises when 1-cells
dual to (Y ∩W) lie in the same piece as 1-cells dual to (Y ∩ ghW). The latter arises when they are in
different pieces, for then N ∩ gN = Y by Corollary 5.39. We use here that (Y ∩ gW) doesn’t cross or
osculate with (Y ∩W) in Y , and we use that a piece of Y does not contain 1-cells e, f such that e is dual
to (Y ∩W) and f is dual to (Y ∩ gW) unless (Y ∩W) = (Y ∩ gW). �

Lemma 5.68. If W is 2-sided in N and its hyperplanes map to a collection of embedded disjoint
hyperplanes in X then Stab(N) = Stab(W).
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F 138. Since the annulus B is thin, Condition 5.64 implies that the two annuladders travel
through the same immersed wall W̄ → X∗, and hence B → X∗ factors through the immersed
carrier N̄ → X∗ consisting of cones and carriers of hyperplanes.

F 139.

Proof. It is obvious that Stab(W) ⊂ Stab(N). To see that Stab(N) ⊂ Stab(W) we suppose that gN = N
and need to show that gW = W. If there are no cones in N then we use that W̄ is a single embedded
hyperplane of N̄ to see that π1X automorphisms of W are in one-to-one correspondence with π1X
automorphisms of N. If there is a cone Y in N, then we can translate by an element h ∈ Stab(W), so
that hgY = Y . It then suffices to verify that hg ∈ Stab(W). But hg(W ∩ Y) and W ∩ Y are translates of
the same wall in Y that lie in the same piece, and are thus the same wall by Condition (3), so hgW = W.

�

Remark 5.69 (Concrete Version). Consider a (possibly degenerate) rectangular square diagram be-
tween two cone-cells corresponding to a piece between the corresponding cones. Suppose the hyper-
planes dual to a side S of the rectangle lying along the cone Y are all distinct, except for the first and
last 1-cells that are dual to the same hyperplane H. Thus, the intermediate path joining these 1-cells is
a local geodesic (and hence a geodesic in the CAT(0) piece).

Then S lies along N(h) where h = H ∩ Y . We refer the reader to Figure 139.
More generally, we should be able to slice off parts of the rectangle whenever there are duplicated

hyperplanes in S , until we reach the situation above. Alternately, we might be able to choose our
cone-cells so that S has the desired properties a priori.

6. S C C

In [HW08] we defined “special cube complexes” and examined some of their properties. In Sec-
tion 6.2 we review the definition of special cube complexes in terms of illegal hyperplane pathologies,
and we state the characterization in terms of local isometries to the cube complex of a right-angled Artin
group. In Section 6.4 we review the definition of canonical completion and retraction. The hyperplane
pathology definition of special cube complex arose from our desire to define canonical completion and
retraction above dimension one. Subsequently, we realized that this was equivalent to a local isome-
try to the cube complex of a right-angled Artin group. Many other aspects of special cube complexes
are explored in [HW08], [HWa] and [HW10] including various conditions which imply that a cube
complex is virtually special. The material in Section 6.5 is new.
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F 140. Immersed Hyperplane Pathologies

6.1. Hyperplanes. A midcube of the n-cube [−1, 1]n is the subspace obtained by restricting exactly
one of the coordinates to 0. A hyperplane Y in the CAT(0) cube complex C, is a connected subspace
whose intersection with each cube is either a midcube or is empty. The 1-cubes intersected by Y are
dual to Y . For a CAT(0) cube complex, there exists a hyperplane dual to each 1-cube, and more-
over, hyperplanes are themselves CAT(0) cube complexes with respect to the cell structure induced by
intersection, and are convex subspaces in the CAT(0) metric [Sag95].

We now define an immersed hyperplane in an arbitrary cube complex C. Let M denote the disjoint
union of the collection of midcubes of cubes of C. Let D denote the quotient space of M induced
by identifying faces of midcubes under the inclusion map. The connected components of D are the
immersed hyperplanes of C.

6.2. Hyperplane Definition of Special Cube Complex. We shall define a special cube complex as a
cube complex which does not have certain pathologies related to its immersed hyperplanes.

An immersed hyperplane D crosses itself if it contains two different midcubes from the same cube
of C.

An immersed hyperplane D is 2-sided if the map D → C extends to a map D × I → C which is a
combinatorial map of cube complexes.

A 1-cube of C is dual to D if its midcube is a 0-cube of D. When D is 2-sided, it is possible to
consistently orient its dual 1-cubes so that any two dual 1-cubes lying (opposite each other) in the same
2-cube are oriented in the same direction.

An immersed 2-sided hyperplane D self-osculates if for one of the two choices of induced orienta-
tions on its dual 1-cells, some 0-cube v of C is the initial 0-cube of two distinct dual 1-cells of D.

A pair of distinct immersed hyperplanes D, E cross if they contain midcubes lying in the same cube
of C. We say D, E osculate, if they have dual 1-cubes which contain a common 0-cube, but do not
lie in a common 2-cube. Finally, a pair of distinct immersed hyperplanes D, E inter-osculate if they
both cross and osculate, meaning that they have dual 1-cubes which share a 0-cube but do not lie in a
common 2-cube.

A cube complex is special if all the following hold:
(1) No immersed hyperplane crosses itself
(2) Each immersed hyperplane is 2-sided
(3) No immersed hyperplane self-osculates
(4) No two immersed hyperplanes inter-osculate

Example 6.1. Any graph is a 1-dimensional cube complex that is special.
Any CAT(0) cube complex is special.
The cube complex associated to a right-angled Artin group is special.

6.3. Right-angled Artin group characterization. A special cube complex is automatically nonposi-
tively curved. In fact, we give the following characterization of special cube complexes in [HW08]:

Proposition 6.2. A cube complex is special if and only if it admits a combinatorial local isometry to
the cube complex of a right angled Artin group.
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A quick explanation of Proposition 6.2 is that for a local isometry B→ C, the prohibited hyperplane
pathologies on C induce the same prohibited pathologies in B. On the other hand, if C is special, then
we define a graph Γ whose vertices are the immersed hyperplanes of C, and whose edges correspond
to intersecting hyperplanes. Then there is a natural map C → C(Γ) which is a local isometry.

6.4. Canonical completion and retraction. We refer to [HW08, HWa] for more details about the
following fundamental property of special cube complexes:

Proposition 6.3 (Canonical completion and retraction). Let f : Y → X be a local isometry from a
compact nonpositively curved cube complex to a special cube complex. There exists a finite degree
covering space C(Y → X) → X called the canonical completion of f : Y → X such that f : Y → X
lifts to an embedding f̂ : Y → C(Y → X) → X, and there is a retraction map C(Y → X) → Y called
the canonical retraction.

It follows that π1Y is separable in π1X since virtual retracts of residually finite groups are separable.
As explained in [HW08], when X is virtually special compact and word-hyperbolic, any quasiconvex
subgroup H ⊂ π1X is separable. Indeed, H can be represented by a compact based local isometry
Y → X by Proposition 8.2. Thus H is a virtual retract. The analogous separability results hold in the
sparse case as discussed in Theorem 16.23.

6.5. Extensions of quasiconvex codimension-1 subgroups.

Definition 6.4 (K-partitions and K-walls in G). Let G be a finitely generated group with Cayley graph
Γ(G, S ) and let K be a subgroup of G. A coarse K-partition of G is a collection of subsets {G1, . . . ,Gm}

with G = G1 ∪ · · · ∪Gm, that is K-stable so for each k ∈ K the translate kGi coarsely equals some G j in
the sense that the symmetric difference kGi∆G j lies in KC for some compact C. We shall assume that
each pair Gi , G j is K-coarsely r-separated in the sense that for each r ≥ 0 we have Nr(Gi) ∩ Nr(G j)
lies in KC where C is some compact subset of γ(G, S ). With these last properties in mind, we will
regard two partitions as K-equivalent if their differences lie in KC for some C. We shall also assume
that there is some r ≥ 0 so that each Gi is coarsely r-connected in the sense that Gi lies in a single
component of Nr(Gi) in Γ(G, S ).

While our arguments work in general, we have in mind the case of a K-wall which is a K-partition
consisting of two subsets, and especially the situation where K is a codimension-1 subgroup, and each
of these sets is K-deep in the sense that it doesn’t lie in Nr(K) for any r. For instance one set might be
a K-deep component of Γ(G, S ) − Nr(K), and the other set equals its complement.

Parts of {G1, . . . ,Gm} that are not already K-deep, could be absorbed into other parts without affect-
ing the intention of the situation, so one normally assumes that each part is K-deep.

We note that if G′ is a finite index subgroup of G, then we obtain a K-partition {G′1, . . . ,G
′
m} of G′ by

setting G′i = Gi ∩G for each i, and if each part of G is K-deep, then so is each part of G′. Conversely,
if {G′1, . . . ,G

′
m} is a K-partition of G′ with K-deep parts, then (up to K-equivalence) it is associated to

a unique K-partition of G. Indeed, we let Gi = Nr(G′i) ∩G where r is chosen so that G ⊂ Nr(G′). Note
that each Gi is K-deep since G′i is K-deep, and note that K-stability holds since if kG′i is coarsely the
same as G′j then kGi is coarsely the same as kG j.

Definition 6.5 (Extension of K-partitions). Let H be a subgroup of G, and let K be a subgroup of
H, and let H1, . . . ,Hm be a coarse K-partition of H. We say that H1, . . . ,Hm extends to a coarse K′-
partition {G1, . . . ,Gm} of G if K′ is a subgroup of G with K′ ∩ H = K, and {H ∩ G1, . . . ,H ∩ Gm} is
K-equivalent to {H1, . . . ,Hm}.

We say that the subgroup H ⊂ G has the extension property for K-partitions if each K-partition of
H extends to a K′-partition of G.
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The goal of this section is to prove the following:

Theorem 6.6 (Quasiconvex Extension Property). Let G be the fundamental group of a compact special
cube complex X. Let H be a subgroup represented by a compact based local isometry Y → X. Let K be
a subgroup represented by a compact based local isometry Z → Y. Then any K-partition of H extends
to a K′-partition of G such that K′ is represented by a compact local isometry Z′ → X.

Remark 6.7. It is conceivable that Theorem 6.6 holds under the weaker assumption that H is a virtual
retract of G, but some work would be needed to produce and ensure that K′ is quasiconvex.

We will prove Theorem 6.6 focusing on the case where the K-partition of H has no shallow parts.

Proof. Let {H1, . . . ,Hm} be a K-partition of H. Let z̃ be a lift of the basepoint z of Z to Ỹ . Choose r so
that distinct Hĩz do not intersect the same component of Ỹ − Nr(Z̃). (The intuition here is that each Hĩz
lies in the connected subspace ∪{S : S∩Hĩz,∅}S ∪Nr(Z̃) where S varies over the components of Ỹ−Nr(Z̃).
We would insist that a shallow Hĩz lie within Nr(Z̃).)

By Proposition 8.3, Nr(Z̃) lies in a K-cocompact convex subcomplex Z̃1 ⊂ Ỹ and let Z1 = K\Z̃1.
Pass to a finite based cover Ŷ → Y such that Z1 → Y lifts to an embedding in Ŷ . For instance, we

could let Ŷ = C(Z1 → Y). Let Ĥ = π1Ŷ , and assign the K-partition {Ĥ1, . . . , Ĥm} where Ĥi = Ĥ ∩ Hi
for each i.

Consider the canonical completion C(Ŷ → X) and the canonical retraction C(Ŷ → X) → Ŷ . It in-
duces an equivariant retraction map X̃ → Ỹ that fixes Ỹ .

Let Z+
1 denote the base-component of the preimage of Z1 in C(Ŷ → X), and let K′ = π1Z+

1 . Note that
Z+

1 is locally convex by Lemma 6.9.
Observe that K′ ∩ Ĥ = K by Remark 6.10 (with Ŷ playing the role of Y).
Let Z̃+

1 denote the base component of the preimage of Z+
1 in X̃. We consider the subsets X̃1, . . . , X̃m of

X̃−Z̃+
1 that retract to the distinct coarsely connected subsets of Ỹ−Z̃ corresponding to {Ĥ1̃z, . . . , Ĥmz̃}.

Let J ⊂ G be the subset with J̃z ⊂ Z̃+
1 . Partition J into J1 ∪ · · · ∪ Jm such that Hi ∩ J ⊂ Ji (there are

many ways to do this, but they are all coarsely the same). Now define Gi so that it contains Ji and all
elements gi with gĩz ⊂ X̃i.

This yields a K′-partition of G that extends the K-partition of Ĥ. We have thus reached our goal of
extending our original K-partition of H, as the K partition of Ĥ extends to a unique K partition of H.

The construction extends deep sets of the K-partition to deep sets of the K′-partition. This is because
the combinatorial retraction map is distance non-increasing, but fixes the subcomplex Ỹ . Therefore, if
some part Gi lies in Ns(K′) for some s, then its image Hi lies in Ns(K) and is thus not deep. �

The wall case of the following corollary is an important ingredient in the hypotheses of Proposi-
tion 7.8.

Corollary 6.8. Let G be a word-hyperbolic group with a finite index subgroup Ḡ that is the fundamental
group of a compact special cube complex. Let H be a quasiconvex subgroup of G and let K be a
quasiconvex subgroup of H that also lies in Ḡ. Then any K-partition of H extends to a K′-partition of
G such that K′ is quasiconvex.

Proof. Let H̄ = Ḡ∩H, and note that the K-partition H1t· · ·tHm of H induces a K-partition H̄1t· · ·tH̄m
of H̄ where H̄i = H̄ ∩ Hi.

Theorem 6.6 provides a K′-partition Ḡ1 t · · · t Ḡm of Ḡ extending the K-partition of H̄. Finite
neighborhoods Gi = Ns(Ḡi) provide a K′-partition of G itself that extends the K-partition of H. �
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Lemma 6.9 (Locally Convex Canonical Preimage). Let X be special. Let Y → X be a local isometry
with Y compact. Let Z ⊂ Y be a locally convex subspace.

Consider the canonical completion and its canonical retraction map φ : C(Y → X) → Y. Let
Z+ = φ−1(Z). Then Z+ is a locally convex subspace of C(Y → X).

Before proceeding with the proof, we note that, after subdividing some of the cubes in C(Y → X)
that are not in Y , the map φ is a cubical map - it maps cubes to cubes (of possibly lower dimension)
by maps modeled on In+m → In that collapse dimensions. This subdivision is denoted C�(Y, X) and
discussed in [HWa].

Proof. Suppose two 1-cubes e1, e2 are adjacent along a 0-cube v with e1, e2, v ∈ Z+. Suppose e1, e2
form the corner of a 2-cube c at v in C(Y → X). If φ(e1), φ(e2) form the corner of a 2-cube at φ(v)
then it must be φ(c), and moreover φ(c) lies in Z by local convexity of Z in Y , and so c is in Z+. The
alternative is that one of φ(e1) or φ(e2) collapses to φ(v), or perhaps that both collapse to φ(v). In the
former case φ(c) must collapse to φ(e2) or φ(e1), and in the latter case φ(c) collapses to φ(v). But either
way, we again see that φ(c) ⊂ Z so c is in Z+. �

Remark 6.10. Choose a basepoint in Z ⊂ Z+ ⊂ C(Y → X), then: π1Z+ ∩ π1Y = π1Z.
Indeed (π1Z+ ∩ π1Y) ⊃ π1(Z+ ∩ Y) = π1Z.
And (π1Z+ ∩ π1Y) = φ(π1Z+ ∩ π1Y) ⊂ φ(π1Z+) = π1Z.

The following result presumes familiarity with sparse cube complexes as treated in Definition 16.4.

Theorem 6.11. Let X be a sparse special nonpositively curved cube complex. The quasiconvex exten-
sion property holds for quasi-isometrically embedded subgroups of π1X whose intersections with par-
abolic subgroups have a compact core. In particular, it holds when the subgroup is quasi-isometrically
embedded and has either trivial or finite index intersection with each parabolic subgroup.

Proof. By Proposition 8.2 there is a compact geometric representative Y → X. Now the proof follows
as before. �

Remark 6.12. When G is locally-quasiconvex and virtually sparse special, every K-wall in H extends
to a quasiconvex K′-wall in G. The difficulties in the proof of Theorem 6.11 are merely in ensuring the
quasiconvexity of the subgroup K′ induced by retracting.

Remark 6.13 (No new parabolic slopes). Let P be a parabolic subgroup of π1X, and observe that the
hyperplanes of X̃ determine a wall structure on P.

Let K′ be a new wall of π1X arising from a K-wall in a quasiconvex subgroup H ⊂ π1X as produced
by Theorem 6.6.

Then K′ does not contribute essentially new walls on P in the following sense: Let F̃ be the cubical
convex hull of some orbit Px̃. Then, each new wall in X̃ either cuts F̃ parallel to some hyperplane of
X̃, or F̃ lies in one (or both) halfspaces associated to the new wall.

Algebraically, we have P∩ (K′)g is either finite or is equal to P, or is commensurable to P∩Stab(D)
where D is some hyperplane in X̃.

The reason for this is as follows: By the construction given in Theorem 6.6, the wall is represented
by a compact local isometry Z′ → X, and hence by a convex combinatorial subcomplex Z̃′ ⊂ X̃. It
must therefore intersect F̃ in a wall that is a convex combinatorial subcomplex, and is thus limited by
the original combinatorially available possibilities.

Masters gave a pretty argument showing that every finitely generated free subgroup of a 3-dimensional
closed right-angled hyperbolic Coxeter group lies in a quasifuchsian surface subgroup [Mas08]. We
can use the material developed here to give a variation on his result:
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Theorem 6.14. Let X be a compact special cube complex with π1X word-hyperbolic. Let H be a
quasiconvex subgroup of π1X that is not of finite index. Then H lies in a codimension-1 quasiconvex
subgroup of π1X.

Proof. By Proposition 8.2, let Y → X be a compact local-isometry with π1Y = H. Since H is qua-
siconvex and has infinite index in π1X we can choose an element a such that 〈H, a〉 � H ∗ Z. (We
could likewise choose a, b to obtain H ∗ F2 and produce an amalgamated product over H below.) Let
K = 〈H, a〉. Let Z → X be a compact core for K so π1Z = K, and note that we can assume that Y ⊂ Z
(indeed, we can rechoose the core for H in K at this stage). Now extend the codimension-1 (splitting)
subgroup H ⊂ K to a codimension-1 (splitting) subgroup H′ ⊂ G′ of a finite index subgroup G′ of G
and hence to a codimension-1 subgroup of G itself. Note that H′ is just π1 of the based preimage of Y
under the canonical retraction of C(Z → X)→ Z. �

Problem 6.15. Does Masters’ theorem hold for quasiconvex free subgroups of higher dimensional
right-angled Coxeter groups?

Is every quasiconvex free subgroup of a word-hyperbolic compact special group contained in a
surface subgroup?

Can one recover his theorem for special hyperbolic 3-manifold groups using our method?

Problem 6.16. Let G be virtually sparse special. Does G have the extension property with respect to
any quasiconvex H-wall in an arbitrary quasiconvex K subgroup of G? In particular, does this hold
when K is a parabolic subgroup?

6.6. The Malnormal Combination Theorem. In [HWa] we prove the following:

Proposition 6.17. Let Q be a compact nonpositively curved cube complex with an embedded 2-sided
hyperplane H. Suppose that π1Q is word-hyperbolic. Suppose that π1H ⊂ π1Q is malnormal. Let
No(H) denote the open cubical neighborhood of H. Suppose that each component of Q − No(H) is
virtually special. Then Q is virtually special.

Here is a more general formulation that permits torsion: Let G act properly and cocompact on a
CAT(0) cube complex Q̃. Suppose there is a 2-sided hyperplane H̃ such that:

(1) Stab(H) is almost malnormal in G,
(2) gH̃ ∩ H̃ = ∅ for each g ∈ G − Stab(H̃).
(3) Stab(H) preserves each component of No(H̃) − H̃
(4) For each component X̃ of Q̃ − GNo(H̃), the group Stab(X̃) has a finite index torsion-free sub-

group J such that J\X̃ is special.

We note that Condition (3) holds in a finite index subgroup so long as Condition (2) holds.

7. C

7.1. Wallspaces.

Definition 7.1. Haglund and Paulin introduced the notion of a wallspace to abstract a property that
arises in many natural scenarios, and especially for Coxeter groups [HP98]. A wallspace is a set X
together with a collection of walls each of which is a partition X =

←−
N t

−→
N into halfspaces, and such

that moreover, #(p, q) < ∞ for each p, q ∈ X where #(p, q) equals the number of walls separating p, q.
The fundamental example of a wallspace is the 0-skeleton of a CAT(0) cube complex, together with

a system of walls associated to the hyperplanes.
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F 141. The dual cube complex on the left is a tree, the one on the right is 2-dimensional.
The n-cubes correspond to certain n-fold collections of pairwise crossing walls.

7.2. Sageev’s construction.

Definition 7.2. Let G be a finitely generated group with Cayley graph Γ. A subgroup H ⊂ G is
codimension-1 if it has a finite neighborhood Nr(H) such that Γ − Nr(H) contains at least two H-orbits
of components that are deep in the sense that they do not lie in any Ns(H).

For instance any Zn subgroup of Zn+1 is codimension-1, and any infinite cyclic subgroup of a closed
surface subgroup is as well. We note that an edge group of a nontrivial splitting is codimension-1. We
also note that if the coset diagram H\Γ has more than one topological end, then H is codimension-1.
There is a closely related notion: H is divisive if Γ − Nr(H) has two or more deep components. Every
codimension-1 subgroup is divisive, however there are divisive subgroups that are not codimension-1
The difficulty is that the action of H on Γ might permute the deep components of Γ − Nr(H). When
Γ − Nr(H) has finitely many deep components, there is a finite index subgroup H′ ⊂ H whose action
stabilizes each of these components, and one obtains a multi-ended coset diagram H′\Γ, which is
equivalent to H′ being codimension-1 in G.

Given a finite collection of codimension-1 subgroups H1, . . . ,Hk of G, Michah Sageev introduced a
simple but powerful construction that yields an action of G on a CAT(0) cube complex C that is dual
to a system of walls associated to these subgroups [Sag95].

For each i, let Ni = Nri(Hi) be a neighborhood of Hi that separates Γ into at least two deep compo-
nents. The wall associated to Ni is a fixed partition {

←−
N i,
−→
N i} consisting of one of these deep components

←−
N i together with its complement

−→
N i = Γ−

←−
N i, and more generally, the translated wall associated to gNi

is the partition {g
←−
N i, g
−→
N i}. The two parts of the wall are halfspaces.

We presume a certain degree of familiarity with the details of Sageev’s construction here, but hope
that any interested reader will mostly be able to follow the arguments. We shall not describe the
structure of the dual cube complex C here but will describe its 1-skeleton. A 0-cube of C is a choice of
one halfspace from each wall such that each element of G lies in all but finitely many of these chosen
halfspaces. A wall is thought of as facing the points in its chosen halfspace. Two 0-cubes are joined by
a 1-cube precisely when their choices differ on exactly one wall. See Figure 141 for two particularly
simple dual cube complexes.

The walls in Γ are in one-to-one correspondence with the hyperplanes of the CAT(0) cube complex
C given by Sageev’s construction, and the stabilizer of each such hyperplane equals the codimension-1
subgroup that stabilizes the associated translated wall: The stabilizer of the hyperplane corresponding
to a translated wall associated to gNi is commensurable with gHig−1.

Sageev’s construction naturally decomposes into two separate ideas. The first is that a collection
of codimension-1 subgroups yields a wallspace. The second is that a wallspace yields a dual cube
complex (see [CN05, Nic04] for more details on the latter).

7.3. Finiteness properties of the dual cube complex. Cocompactness properties of the action of G
on the CAT(0) cube complex dual to a wallspace associated to a collection of codimension-1 subgroups
was analyzed in [Sag97] where Sageev proved that:
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F 142. Heuristic picture of a cosparse cubulation.

Proposition 7.3. Let G be a word-hyperbolic group, and H1, . . . ,Hk be a collection of quasiconvex
codimension-1 subgroups. Then the action of G on the dual cube complex is cocompact.

We refer to [HWb] for a more elaborate discussion of the finiteness properties of the action obtained
from Sageev’s construction, as well as for background and an account of the literature.

In parallel to Proposition 7.3, is a properness criterion which we state as follows (see for instance
[HWb]). We use the notation #(p, q) for the number of walls separating p, q.

Proposition 7.4. If #(1, g)→ ∞ as dΓ(1, g)→ ∞ then G acts properly on C.

The main theorem in [HWb] generalizes Proposition 7.3 to a relatively hyperbolic context as follows:

Proposition 7.5. Let G be a f.g. group that is hyperbolic relative to a collection of parabolic subgroups
P1, . . . , Ps. Let H1, . . . ,Hk be a collection of quasi-isometrically embedded codimension-1 subgroups
of G. Let C denote the CAT(0) cube complex dual to the G-translates of W1, . . . ,Wk. For each i, let Ci
denote the CAT(0) cube complex dual to the walls in Pi corresponding to the nontrivial walls obtained
from intersections with translates of the Wi, and note that Ci embeds in C as a convex subcomplex.
Then:

(1) there exists a compact subcomplex K such that C = GK ∪s
i=1 GCi, and

(2) giCi ∩ g jC j ⊂ GK unless i = j and g−1
j gi ∈ Stab(Ci).

Remark 7.6. We may further assume that GK is connected. Indeed, since G is finitely generated, and
C is connected, one can add a collection of paths S i to K such that each S i starts at the basepoint in K
and ends at the translate of this basepoint by the i-th generator of G.

We are most interested in the following corollary which is the source of cosparse CAT(0) cube
complexes (see Definition 16.4). The first explicit appearance of such cosparse CAT(0) cube complexes
was in the CAT(0) cube complexes associated to B(6) small-cancellation groups [Wis04] (they were
called “cofinite” there). However the notion is certainly a general phenomenon associated to relative
hyperbolicity.

Corollary 7.7. Let G be hyperbolic relative to virtually free-abelian subgroups. Let Wi be a finite
collection of quasi-isometrically embedded codimension-1 subgroups (or rather walls in Γ(G)). Then
G acts cosparsely on the CAT(0) cube complex associated to this system of walls.

7.4. Cubulating Amalgams. We now summarize the results from [HWc]. As the main statement is
rather technical, we first give an imprecise simplification that disregards certain facilitating conditions.

Quasi-Theorem. Let G split as A ∗C B or A∗Ct=C′ . And suppose that G is hyperbolic relative to
virtually abelian subgroups, and that C is malnormal and quasiconvex in G. If A, B act properly and
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cocompactly on CAT(0) cube complexes then G acts properly on a CAT(0) cube complex dual to a
system of walls associated to quasi-isometrically embedded subgroups.

A subgroup H ⊂ G of a relatively hyperbolic group is aparabolic if it has finite intersection with
each (noncyclic) parabolic subgroup of G.

A slightly simplified version of the main result from [HWc] is:

Proposition 7.8. If G has all the following properties then G acts properly on a CAT(0) cube complex,
and the stabilizers of the hyperplanes are quasi-isometrically embedded.

(1) G is hyperbolic relative to f.g. virtually abelian subgroups.
(2) G splits as an amalgamated product G � A ∗C B.
(3) A and B are fundamental groups of compact (or more generally, sparse) nonpositively curved

cube complexes (or more generally, they act properly on CAT(0) cube complexes with corre-
sponding quotient).

(4) The two embeddings C+,C− of C are relatively quasiconvex in their vertex groups.
(5) the embeddings C− ⊂ A and C+ ⊂ B are almost malnormal.
(6) the embeddings C− ⊂ A and C+ ⊂ B are aparabolic.
(7) C has separable quasiconvex subgroups.
(8) There are quasiconvex subgroups H1, . . . ,Hr of C and Hi-walls in C such that C acts properly

on the resulting cube complex.
(9) Each Hi-wall of C, extends to an HA

i -wall of A and an HB
i -wall of B, where HA

i ,H
B
i are quasi-

convex subgroups of A, B.
Alternately, we can assume the following slightly more flexible possibility:

(5′) and (6′) C+ is almost malnormal in B and C+ is aparabolic in B.
(8′) and (9′) There is a system of walls for A so that A acts properly and cosparsely on the resulting cube

complex such that there are induced Hi-walls for C, and each such Hi-wall extends to an HB
i -

wall in B.
In the HNN case we have the following adjusted statements:

(2) G splits as A∗C .
(4) C is quasi-isometrically embedded in G.
(5) {C+,C−} are an almost malnormal pair of subgroups of A.
(6) {C+,C−} are aparabolic in A.
(8) There are quasiconvex subgroups H1, . . . ,Hr and Hi-walls of C, so that C acts properly on the

resulting cube complex.
(9) Each Hi-wall of C+ and each Hi-wall of C− extends to an HA

i -wall.
A more general version requires that only C+ be malnormal and aparabolic at the expense of assum-

ing there is a cubulation of A with only unpaired excess walls at C+. Specifically, the walls induced by
C− ⊂ A are precisely the walls of C, and the walls induced by C+ ⊂ A are the walls of C together with
some additional excess. We will illustrate this in a specific case in the proof of Theorem 17.6 (and not
use it elsewhere).

8. L-  

Definition 8.1. A combinatorial map φ : Y → X between nonpositively curved cube complexes is a
local-isometry provided that for each pair of 1-cubes e1, e2 of Y with initial vertex y, mapping to a pair
φ(e1), φ(e2) of 1-cubes with initial vertex φ(y), if φ(e1), φ(e2) bound a corner of a square at φ(y) then
e1, e2 bound the corner of a square at y.
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If the inclusion map φ : Y ↪→ X of a subspace is also a local-isometry then we say that Y is a
locally-convex subcomplex.

It is not hard to verify that a local-isometry φ : Y → X lifts to an isometric embedding Ỹ → X̃
between universal covers, and is hence π1-injective.

We proved in [SW] (see also [Hag08]) that:

Proposition 8.2. Let X be a compact nonpositively curved cube complex with π1X word-hyperbolic.
Let H ⊂ π1X be a quasiconvex subgroup, and let C ⊂ X̃ be a compact subspace. Then there exists
an H-cocompact subspace Ỹ ⊂ X̃ containing C. We refer to Ỹ as a locally convex core containing C.
Likewise, when C is a compact subspace of H\X̃, we term H\Ỹ ⊂ H\X̃ a locally convex core containing
C.

The analogous result holds for G acting cosparsely on a sparse CAT(0) cube complex X̃ with G
hyperbolic relative to abelian subgroups: If H is a quasi-isometrically embedded subgroup then there
exists Ỹ ⊂ X̃ such that Y is H-cosparse.

Moreover, if H intersects each free-abelian subgroup of G in either a finite index or trivial subgroup,
then we can choose Y to be H-cocompact.

One can also prove the following (see [HW08] for a strong form of this).

Proposition 8.3. Let Ỹ ⊂ X̃ be a convex subcomplex of a CAT(0) cube complex. For each a ≥ 0 there
exists b ≥ 0 and a convex subcomplex Ỹ+ such that Na(Ỹ) ⊂ Ỹ+ ⊂ Nb(Ỹ). Moreover, assuming X̃ has a
proper group action, we can assume Ỹ+ is stabilized by the stabilizer of Ỹ.

8.1. Superconvexity.

Definition 8.4. Let X be a metric space. A subset Y ⊂ X is superconvex if for any bi-infinite geodesic
γ, if γ ⊂ Nr(Y) for some r > 0, then γ ⊂ Y . A map Y → X is superconvex if the map Ỹ → X̃ is an
embedding onto a superconvex subspace.

Lemma 8.5. Let H be a quasiconvex subgroup of a word-hyperbolic group G. And suppose that G acts
properly and cocompactly on a CAT(0) cube complex X. For each compact subcomplex D ⊂ X there
exists a superconvex H-cocompact subcomplex K ⊂ X such that D ⊂ K.

Proof. It follows from δ-hyperbolicity that any infinite geodesic lying in Nr(Hx̃) actually lies in N2δ(Hx̃).
Now apply Proposition 8.2 to obtain a convex cocompact core Y containing Nr(Hx̃). (We remind the
reader that we use the combinatorial metric.)

To see that Y is superconvex, observe that any geodesic in a finite neighborhood of Y , is actually
contained in a 2δ neighborhood of Hx̃, and hence in Y . �

Lemma 8.6. If Y ⊂ X is superconvex and cocompact, then there is a non-negative function f : R→ R
such that for any length f (r) geodesic segment σ that lies in Nr(Y), the midpoint of σ lies in Y.

Consequently, for any geodesic segment σ lying in Nr(Y), if σ′ is obtained by removing the initial
and terminal subsegments of length f (r)

2 then σ′ ⊂ Y.

8.2. Fiber Products.

Definition 8.7 (fiber product). Given a pair of combinatorial maps A → X and B → X between cube
complexes, we define their fiber product A ⊗X B to be a cube complex, whose i-cubes are pairs of
i-cubes in A, B that map to the same i-cube in X. There is a commutative diagram:

A ⊗X B → B
↓ ↓

A → X
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Note that A ⊗X B is the complex in A × B that is the preimage of the diagonal D ⊂ X × X under the
map A × B→ X × X. Recall that D has a natural structure as a cube complex since for any cube Q, the
diagonal of Q2 is isomorphic to Q by either of the projections.

Our description of A ⊗X B as a subspace of a cartesian product endows the fiber product with the
property of being a universal receiver in the following sense: Consider a commutative diagram as
below. Then there is an induced map C → A ⊗X B such that all the obvious compositions commute.

C → B
↓ ↓

A → X

When the target space X is understood, we will simply write A⊗B. When A, B, and X have basepoints
and the maps are basepoint preserving, then A ⊗ B has a basepoint, and it is often natural to consider
only the base component.

When A → X and B → X are covering maps, then so is A ⊗ B → X. Moreover, let (a, b) ∈ A × B
reflect choices of the preimage of the basepoint x ∈ X, then the component of A⊗ B containing (a, b) is
the covering space of X corresoponding to π1(A, a) ∩ π1(B, b).

We will now generalize this:

Lemma 8.8. Suppose that X is a nonpositively curved cube complex, and that A → X and B→ X are
connected and locally convex, and that A is super-convex. Then the [noncontractible] components of
A ⊗ B correspond precisely to the [nontrivial] intersections of conjugates of π1(A, a) and π1(B, b) in
π1X.

Proof. Let XA and XB denote the based covers of X corresponding to π1(A, a) and π1(B, b), and note
that there are locally convex embeddings A ⊂ XA and B ⊂ XB.

Suppose that for some α, β ∈ π1X the conjugates π1Aα ∩ π1Bβ = π1Xα
A ∩ π1Xβ

B have nontrivial
intersection. �

Remark 8.9. When A→ X and B→ X are superconvex, then bi-infinite local geodesic pieces between
A and B are precisely the same as bi-infinite local geodesics in A ⊗ B.

Lemma 8.10. If A and B are superconvex then so is each component of A ⊗ B.
When A is connected and superconvex, then π1A is malnormal if and only if A⊗A consists of a diag-

onal component (that is an isomorphic copy of A) together with various contractible components. More
generally, when each component Ai of A is superconvex, the malnormality of the collection of conju-
gacy class representatives π1Ai ⊂ π1X corresponds to contractibility of all nondiagonal components of
A ⊗ A.

Remark 8.11 (Small-cancellation and Superconvexity). When 〈X | Yi〉 satisfies a small-cancellation
condition asserting that wall-pieces have bounded length, then Ỹi → X̃ is superconvex.

Indeed, consider a geodesic γ in X̃. Suppose that γ lies in Nr(Ỹ) for some r > 0, but that γ 1 Ỹ .
We can find an arbitrarily large subpath γ′ that is disjoint from Ỹ . We will show that γ′ is parallel to

an impossibly long piece of Ỹ .
Let D be a minimal area diagram between γ′ and Ỹ in the sense that the boundary path of D equals

σ1γ
′σ2λ where σi are paths from γ′ to the endpoints of a path λ in Ỹ , and these three remaining paths

can vary among all such paths and D with these properties.
We can ignore arcs of bounded length consisting of spurs at the corners of D (just redefine γ, λ etc.)
Note that dual curves emanating from a pair of edges on one of the four sides cannot cross each

other. This is because γ′ is a geodesic in X̃, because Ỹ is convex, so we could reduce area by pushing
λ inwards, and σi can likewise be pushed inwards to reduce the area.
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F 143.

F 144. The preimages in Ÿ → Y of hyperplanes in Y are walls in Ÿ . We have indicated
some walls with corresponding labelled edges. The most interesting case is on the right, where
#W , H1(−;Z2).

Consequently, D is a flat rectangle. In particular, each dual curve travels between σ1, σ2 or between
γ′, λ. Indeed, a minimal (inward) counterexample going across a corner, would yield a generalized
outerpath of a square on one side or the other, by considering dual curves that it bounds. See Figure 143.

By the pigeon-hole principle, since Y is compact, there are arbitrarily long subpaths of λ whose
endpoints project to the same point of Y . Let λ′ be such a subpath, and note that it projects to a closed
essential path in Y .

Using the fact that D is not a line segment, observe that λ′ has a hyperplane piece with a hyperplane
represented by a dual curve from σ1 to σ2. This contradicts Condition 5.4.

9. SW

9.1. A finite cover that is wallspace.

Construction 9.1 (Splicing). Let Y be a connected nonpositively curved cube complex whose hyper-
planes are 2-sided and embedded. Let Λ(Y) denote the set of hyperplanes of Y . Let q : Λ(Y)→ S be a
map with the property that for each s ∈ S , no two hyperplanes in q−1(s) cross each other.

Consider the homomorphism #q : π1Y → ZS
2 induced by #q(e) = vq(Λe) where Λe is the hyperplane

dual to the 1-cube e and where ZS
2 has basis {vs : s ∈ S }.

Let Ÿ denote the cover of Y corresponding to the kernel of #q. Let s ∈ S lie in the image of q. Let
Ws denote the collection of hyperplanes of Ÿ that map to hyperplanes of Y which map to s.

Remark 9.2. We have in mind the following situation: Y ↪→ X is an embedded locally convex sub-
complex of a nonpositively curved cube complex X whose hyperplanes are embedded and 2-sided.

The set S equals the collection Λ(X) of hyperplanes of X. The map q : Λ(Y) → Λ(X) sends a
hyperplane of Y to the hyperplane of X containing it. The map #q : π1X → ZΛ(X)

2 sends each path
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σ to the Z2-vector whose vΛ coordinate is the number of times (modulo 2) that σ passes through the
hyperplane Λ. The map #q : π1Y → ZΛ(X)

2 is induced by composition with the natural map π1Y → π1X.

Lemma 9.3. For each s ∈ q
(
Λ(Y)

)
, the collection of hyperplanes Ws separates Ÿ.

The motivation is to produce a collection of walls in Ÿ each of which corresponds to some Ws.

Proof. Consider a closed edge path σ̈ in Ÿ . We must show that σ̈ cannot pass through hyperplanes
of Ws an odd number of times. If this were the case, then the image σ of σ̈ in Y would pass through
hyperplanes of q−1(s) an odd number of times. But then σ would not be in the kernel of π1Y → ZS

2 , for
#q(σ) would take the value 1 on the vs coordinate. �

We will also employ the following simple method of inducing a wallspace on a cover.

Construction 9.4 (Cover induced wallspace). , Let Y be a nonpositively curved cube complex that is
a wallspace. Let Y ′ → Y be a covering space. There is an induced wallspace structure on Y ′ where
each wall of Y ′ is the preimage of a wall of Y , and each halfspace of that wall in Y ′ is the preimage of
a halfspace in Y .

9.2. Preservation of small-cancellation and obtaining wall convexity.

Lemma 9.5 (Obtaining π-wall separation). Let 〈X | Y1, . . . ,Yk〉 be a cubical presentation. Suppose that
X has finitely many immersed hyperplanes D, and that for each D̃ and r > 0, there are finitely many
distinct translates gD̃ with dX̃(D̃, gD̃) ≤ r. Suppose that π1D is separable in π1X for each hyperplane D,
and suppose that there is a uniform upper bound on the diameters of wall-pieces and cone-pieces. Then
for each θ there is a finite regular cover X̂ → X whose induced covers Ŷ1, . . . , Ŷk have the following
property: Consider 〈X̂ | gŶi : 1 ≤ i ≤ k, g ∈ Aut(X̂)〉. For any path S → Ŷi that starts and ends on
1-cells of a hyperplane D̂ of X̂ but is not homotopic into D̂, we have ΩYi(S ) ≥ θ.

The condition on the hyperplanes is naturally formulated in terms of double cosets with short repre-
sentatives and it obviously holds when X is compact.

Proof. By the upper bound on diameters of pieces, for each hyperplane D and each Yi, there are finitely
many nontrivial cosets Dgi represented by elements S with ΩYi(S ) < θ for some Yi. By separability
of π1D, we can choose a cover X̂D separating π1D from each of these cosets, so that there is no path
S → Yi that lifts to a path Ŝ in X̂D that starts and ends on D, and has ΩYi(S ) < θ, unless S is homotopic
into D.

Let X̂ be a regular cover factoring through each X̂D. Then X̂ has the desired property. �

Lemma 9.6 (Obtaining and preserving wall convexity). Let Ÿ be obtained as in Construction 9.1 from
Y → X.

Suppose that for each path P → Y whose endpoints are on 1-cells dual to the same hyperplane of
X, either Ωi(P) ≥ π or P is homotopic in X (and hence in Y by local convexity) into the carrier of this
hyperplane. Then the same holds for paths P̈→ Ÿ.

Similarly, suppose ΩY (P) ≥ θ whenever P → Y whose first and last edges are dual to hyperplanes
in the same wall of Y. Then the same holds for paths P̈ → Ÿ whose first and last edges are dual to the
same wall of Ÿ.

Proof. In each case, a path P̈→ Ÿ with the above start-end property, projects to a path P→ Y with the
same property. The defect ΩŸ (P̈) = ΩY (P). �



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 111

Lemma 9.7. Let {Yi → X} be local isometries of cube complexes. Let Ŷi → Yi be regular covers
with the following symmetry property: Each automorphism φ of Yi → X lifts to an automorphism φ̂ of
Ŷi → X.

For each condition listed in Definition 5.1, if 〈X | Yi〉 satisfies this condition then so does 〈X | Ŷi〉.

Proof. For Condition 5.1.(3), we utilize Construction 9.4 to produce the wallspace structure on each
Ŷi, and so if walls of Yi agree with walls of X then so do walls of Ŷi.

The other conditions are almost immediate. The main point is that Ŷi has fewer essential curves than
Yi, their lengths are the same, and for a path P, we have ΩYi(P) = ΩŶi

(P). �

9.3. ~ Obtaining the separation properties for pseudographs.

Lemma 9.8. Suppose that Y has a complete disjoint system of CAT(0) hyperplanes.
Assume something about girth. and maybe something about pieces and hyperplanes in a wall.
Conclude that ŶW has the correct separation properties:
If Λ̂, Λ̂′ are distinct hyperplanes in the same wall, then they are at least 4 pieces away from each

other.
For pairs of hyperplanes Λ̂1, Λ̂2, that project to hyperplanes Λ1,Λ2 that are far from each other

(more than two pieces away), they are separated by a wall [Λ̂3] such that Λ3 is far from both Λ1,Λ2.

Let us prove Lemma 9.8 for the case where Y is a graph and the pieces are trees.

Graph Case. We assume that the “pieces” are collections of finite trees {T j}.
If σ is a path that starts and ends on the same hyperplane Λ of Y (note that Λ is an edge in this case),

then either #W(σ) = 0, or #W(σ) has a nonzero coordinate on some hyperplane Λ f dual to an edge f
outside any tree neighborhood T of Λ. In the former case σ lifts to a path σ̂ in ŶW which starts and
ends on the same hyperplane.

In the latter case, σ̂ connects distinct hyperplanes Λ̂, Λ̂′, but there is a wall [Λ̂ f ] that separates Λ̂, Λ̂′

since σ̂ passes through [Λ̂ f ] an odd number of times. Furthermore, [Λ̂ f ] is disjoint from the tree
neighborhoods T̂ , T̂ ′ of Λe,Λ

′
e.

A similar statement holds for a pair of 1-cells e, d, that lie far apart. Any path σ between them
must have an odd value on some edge f in the complement of the disjoint neighborhoods of e, d.
Consequently, any path σ̂ projecting to σ cuts through [Λ̂ f ] an odd number of times. �

General Case. Suppose Y is a special cube complex, and some subset Vi of the hyperplanes of Y form
a disjoint complete set of hyperplanes. Then there is a finite cover of Y which is splicable and satisfies
the B(6) separation conditions.

After passing to a finite cover Ŷ there is a combinatorial map Ŷ → Γ such that Γ is the graph dual to
the complete disjoint set of hyperplanes. The map is just the map that forgets about (the orientations of)
the other hyperplanes. It is definable in the universal cover, and the map is equivariant, so it is definable
in the quotient space as well.

The remaining hyperplanes map to finitely generated subgroups of π1Γ, so without loss of generality
we may assume that they map to free factors, and that moreover, they homotopically map to subgraphs
of Γ. Indeed, this would be the case after passing to a finite cover. (“Homotopically” is practically
replaced by the idea that they map π1-isomorphically to, and their images are contained in a slight
π1-injective uniform thickening of various subgraphs.)

The separation properties between hyperplanes dual to our edges is identical to the proof in the
special case - if they are far enough apart then there is a separating hyperplane - chosen from the
disjoint complete family.
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F 145.

Applying separability results, we should be able to arrange a cover of Γ such that there is very
large girth relative to Γv subgraph. This means, any path that starts and ends on a Γv subgraph is
either homotopic into it, or travels quite far away. Thus any path that is nonzero in the wall-count
homomophism would have an odd value on some edge far from Γv.

Similarly, when Γv and Γu are sufficiently far away the same holds. �

Remark 9.9. It is important to keep track of a few issues related to torsion.
Firstly there is a trick to get rid of the first layer of torsion- just choose the large girth covers of the

objects we are quotienting, so that they are induced by a particular cover of the special cube complex.
That allows us to get rid of that torsion!

Now, the ZW2 torsion can either be left as is in the case of searching for an actual virtual special
quotient. (It leaves walls invariant, so it won’t effect the malnormal hierarchy business).

When we are only interested in a special quotient after applying the forgetful functor to the cube
complex, we might be able to use the ZW2 cover induced on each particular quotiented subcomplex.
This would group walls together according to their grouping in the larger complex. We would therefore
need to assume that walls in the subcomplex that map to the same wall in the main complex are VERY
far apart. This plays the role of B(6) small-cancellation, I reckon, so that our walls are quasiconvex -
and perhaps gives malnormality.

We only need geometric separation.
We need hyperplane separation to get linear separators!

The following example has π1X free, yet there is no complete set of cuts in any finite cover X̂ → X.

Example 9.10. Let X be the square complex obtained by identifying two squares along their vertices.
Then #W � H1(−;Z2) for any finite cover X̂. See the rightmost diagram in Figure 144.

10. C X∗

Construction 10.1 (Inflating a single cone with respect to wall). Let Y be a nonpositively curved cube
complex. Let w be a wall consisting of the union of a separating collection of disjoint 2-sided embedded
hyperplanes that do not self-osculate.

Let No(w) be the open cubical neighborhood of w, and note that No(w) � w× (−1, 1) by assumption.
There is a natural map w × [−1, 1] → Y . Let Y−1 and Y+1 denote the parts of Y − No(w) on opposite
sides of the wall w so that Y±1 contains the image of w × {±1}.

We define Cw(Y) to be the union of the ordinary cones C(Y+1) and C(Y−1) glued together with
C(w)× [−1, 1] by identifying C(w)× {−1} with its image in C(Y−1) and identifying C(w)× {+1} with its
image in C(Y+1). We identify C(w) with C(w)×{0} ⊂ C(w)× (−1, 1). We refer the reader to Figure 145.
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F 146. Cw(〈X | Y1,Y2,Y3,Y4〉) has Yi ∩ w with 0, 2, 1, 0 components respectively.

There is a natural combinatorial map Cw(Y) → C(Y) induced by quotienting the cone-edge to the
cone-point.

Construction 10.2 (Inflated coned space with respect to wall). We now consider 〈X | Yi〉, and suppose
that each Yi is a wallspace. Let w be a base-wall of X∗ consisting of a collection of disjoint hyperplanes
with the property that wi = w ∩ Yi is a wall in the wallspace structure of Yi for each i. Generalizing
the situation where Yi → X is an embedding, we use the notation w ∩ Yi for the preimage of w under
the map Yi → X. We shall inflate the coned off space X∗ which equals the union X ∪

⋃
i C(Yi) as

follows: Let Cwi(Yi) denote the inflated cone space of Yi with respect to wi. When wi = ∅ we simply
let Cwi(Yi) = C(Yi). The base of Cwi(Yi) is Yi as usual. Now define Cw

(
〈X | Yi〉

)
to be X ∪

⋃
i Cwi(Yi)

where for each i we attach Cwi(Yi) to X along its base using the map Yi → X.
Note that the map Cw(〈X | Yi〉) → X∗ that sends each cone-edge to a cone-point and each inflated

cone space to a cone space is a homotopy equivalence.
Observe that the base-wall w has a natural geometric extension w′ in Cw(〈X | Yi〉) consisting of

the union of hyperplanes in w, together with the cone C(wi) on each wi in Yi, which lies in C(wi) ×
{0} ⊂ C(wi) × (−1, 1)). In particular, w′ has an open cubical neighborhood No(w′) in Cw(〈X | Yi〉)
consisting of the union of open cubical neighborhoods of hyperplanes in w together with the open
cubical neighborhoods C(wi) × (−1, 1) of C(wi) in each Cwi(Yi) with wi , ∅.

We will examine the image of π1w′ below by interpreting it, or rather N(w′) = w′ × I as a certain
π1-injective subcomplex (it is a subcomplex provided certain non self-osculation assumptions hold),
and use this to understand the splitting of π1X∗.

The splitting of π1X∗ is represented geometrically by cutting Cw(〈X | Yi〉) along w′. In particular,
Cw(〈X | Yi〉) − w′ deformation retracts to Cw(〈X | Yi〉) − No(w′) which equals the space obtained from
X by coning off the various Y+1

i and Y−1
i . More precisely Cw(〈X | Yi〉) − N◦(w′) = C

(
〈X − N◦(W) | Y j :

w j = ∅,Y+1
i ,Y−1

i : wi , ∅〉
)
. It is often the case that Y+1

i or Y−1
i is not connected, but is treated as one

unit and receives a single cone-point in Cw(〈X | Yi〉). See Figure 145.
By adding additional splittings (over trivial groups) we can pass to a space which is the coned off

space of the complex (which may have two components) consisting of 〈X−No(w) | Y±1
i 〉. The wallspace

structures on Y+1
i and Y−1

i are induced by the original wallspace Yi but we note that a wall in Y+1
i might

have more hyperplanes than in Yi.

Lemma 10.3 (Persistence after cutting). Small-cancellation conditions on 〈X | Yi〉 are preserved after
cutting along a wall, and then cutting along cone-points.

In particular, the B(6) and B(8) conditions persist.
The malnormality of a collection of hyperplanes in a base-wall persists.
The injectivity radius of hyperplanes exceeding half the diameters of cone-pieces persists.
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Condition 5.64.(3) ensuring that distinct hyperplanes in the same base-wall cannot be dual to 1-cells
in the same cone-piece persists.

Proof. Each component of Yi−No(w) is a nonpositively curved cube complex. And continues to embed
in X − No(w) as a locally convex subspace.

If Yi was a wallspace, then the walls of a component Zi of Yi−No(w) are defined to be the intersection
of Zi with walls of Yi.

Lemma 10.7 implies the persistence of B(6) and B(8).
Lemma 10.6 verifies that the malnormality of a collection of hyperplanes persists.
We verify in Lemma 10.10 the persistence of Condition 5.64.(3). �

Definition 10.4. [Geometric malnormal collection] We say that two annular diagrams f1 : A1 → X and
f2 : A2 → X are equivalent if they have the same boundary cycles P, P′ (in an orientation preserving
manner) so that the diagram below commutes, and moreover, such that there are lifts f̃i : Ãi → X̃ that
restrict to the same lifts of P̃, P̃′.

P t P′

↙ ↓ ↘

A1 → X ← A2

A map Z → X of cell complexes is malnormal if there is no essential annular diagram (A, ∂A) →
(X,Z) in the sense that any such map is equivalent to a map (A′, ∂A′)→ (Z,Z).

The above notation is meaningful when Z ⊂ X is a subspace. More generally, we require that
for each commutative diagram below on the left, there exists A′ → Z such that the middle diagram
commutes and such that the two annular diagrams on the right are equivalent. (Note that ∂pA consists
of two boundary cycles, and we identify ∂pA′ = ∂pA.)

∂pA → Z
↓ ↓

A → X

∂pA → Z
↓ ↗

A′
A→ X

A′ → Z → X

A prestidigitative use of Definition 10.4 shows that Z → X is π1-injective on each component if it is
malnormal. Indeed, a disk diagram in X for a path P in Z can be reconsidered as an annular diagram
between P and the trivial path (which could be adjusted to a nontrivial path in Z to accommodate the
annular diagram definition). Homotoping the diagram into Z shows that P is already null-homotopic in
Z.

We now relate the geometric notion of malnormality with the notion from Definition 12.2 of a mal-
normal collection (of conjugacy classes) of subgroups:

Lemma 10.5 (Algebraic and geometric forms of malnormality). Suppose Z → X is a map where X
is connected, and Z is the disjoint union of its components: Z = ti∈IZi. Then {π1Zi} is a malnormal
collection in π1X if and only if the map is malnormal.

Lemma 10.6. Let X be a nonpositively curved cube complex. Let {h1, . . . , hk} be a malnormal collection
of immersed 2-sided hyperplanes in X. Let {w1, . . . ,w`} be a collection of disjoint embedded 2-sided
hyperplanes. Let X′ = X − No(∪wi). Let {hi j} be hyperplanes in X′ mapping to {h1, . . . , hk}.

Then {hi j} is a malnormal collection of immersed hyperplanes in X′.

We note that when X′ is not connected, the algebraic version of malnormality must be suitably
reinterpreted.

Downstairs proof. An essential annular diagram A→ X′ with boundary cycles mapping to the ∪N(hi j)
determines an annulus in X with boundary cycles in ∪N(hi). By malnormality of ∪N(hi) → X,
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F 147.

Lemma 10.5 implies that A is homotopic to an annulus A′ → ∪N(hi), and in particular, into a sin-
gle N(hi). This is illustrated on the left in Figure 147.

Suppose that A′ is chosen so that it intersects {w1, . . . ,w`} in a minimal number of components. Note
that all w-dual curves in A′ are closed since ∂A′ ∩ w = ∅, and therefore each of these components is a
dual w-circle that is either essential or null-homotopic.

By considering innermost null-homotopic w-circles first, each w-circle bounding a disc in A′ can
obviously be removed through a homotopy without introducing further w-circles. The essential w-
circles come in “facing pairs” as in the annulus A′ on the left of Figure 147 that are joined by a dual
curve in a disk diagram C between the conjugators c, c′ of A, A′. This diagram C is illustrated between
the annuli A, A′ in the left diagram.

The combinatorial path p along the outside of this dual curve is homotopic to the subpath b′ of c′

whose initial and terminal edges are dual edges. Let E denote the disk diagram between p and b′. It is
illustrated as a subspace of the diagram C. Considering lifts Ẽ and Ã′ ⊂ N(h̃i), we see that p̃ has the
same endpoints as b̃′. We can choose a path b′′ in N(w̃ j) ∩ N(h̃i) that is homotopic to p and hence b′.
Let D be the disk diagram in N(h̃i) between b′ and b′′. We illustrate D within the configuration of two
crossing hyperplane carriers in X̃ in the middle of Figure 147. Note that since p doesn’t cross w̃i we can
assume that b′′ has the same property. This simplifies our next step, for otherwise extra null-homotopic
w-circles would be introduced. Moreover, we can choose D to avoid w j circles by removing them as
above.

Finally we can drag A′ along b′ into D to obtain a new annular diagram A′′ → N(hi) as on the right
of Figure 147. This turns the pair of essential circles into the single nonessential circle. We then remove
this as we did earlier. �

Upstairs proof. If there is an annulus (A, ∂A)→ (X′,∪N(hi j)), then the malnormality hypothesis gives
an equivalent annulus (A, ∂A) → (∪N(hi),∪N(hi j)), so these maps restrict to the same map on ∂A and
have equal conjugators, or equivalently, they have lifts to X̃ that restrict to the same lifts of ∂Ã. Our
goal is to find another equivalent annulus of the form (A, ∂A)→ (∪N(hi j,∪N(hi j)).

We work in the universal cover Ñ of the component N = N(hi) containing the image of A. Observe
that M̃ = Ñ − No(w̃) is a convex subcomplex of N. Identifying Z with π1A, there is a Z-equivariant
retraction map Ñ → M̃, which takes a point x ∈ Ñ to the unique point in M̃ that is nearest to it.

The composition Ã→ Ñ → M̃ yields the desired map Ã→ Ñ. �

We note that if we used the CAT(0) metric (and not the cubical metric) in the above proof, we would
produce a Z-equivariant homotopy, and this projects to a homotopy A→ X to A→ X′ fixing ∂A.

Lemma 10.7. The B(6) and B(8) conditions persist.
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Proof. We verify the persistence of Condition 5.1.(5) as the other properties are proven similarly. Let
X∗1 be obtained from X∗ by cutting along w and then along cone-points, and let Y1 be a cone of X∗1
obtained in this way from a cone Y of X∗. Let S be a path in Y1 that starts and ends on a wall v1 of Y1
and suppose ΩY1(S ) < π. Then S is a path in Y starting and ending on a wall v inducing v1 such that
ΩY (S ) < π. Consequently, by Condition 5.1.(5) we see that S is homotopic into the carrier of a single
hyperplane u of v.

Consider a minimal area square diagram D between S and a path P on N(u). Obviously, no 1-cell of
S is dual to w. Consequently, no 1-cell of P is dual to w for otherwise, we could reduce the complexity
of D. Indeed, a dual curve in D that is dual to w must start and end on 1-cells of P, and hence we could
push P past it to obtain a smaller diagram D′ between S and a new path P′ that is still on N(u). (This
is essentially an application of Lemma 2.2) . Since D is disjoint from w, it is a diagram in Y1 and we
are done as P′ lies on the carrier of a single hyperplane u1 ⊂ u. �

We refer the reader to Definition 3.47 for the notions here. I was unable to resolve the following
problem, but found that the stronger condition in Lemma 10.9 is a workable substitute.

Problem 10.8. Does the metric small-cancellation property of short innerpaths persist?

Lemma 10.9. The following properties persist and they together imply the short innerpath property.
(1) There is a bound BY on diameters of pieces in each cone Y.
(2) An innerpaths S with ΩY (S ) < π is the concatenation of a uniformly bounded number of pieces

(For instance, is 5 enough in the split-angling?)
(3) Each essential path in a cone Y has length exceeding twice the sum of the maximal diameter

BY of such pieces, and hence exceeding 2∇Y (S ) for any candidate innerpath S .

Proof. Lower bounds on systoles persist since each induced cone maps to its ancestral cone by a local
isometry. Similarly the upper bound on 2∇Y (S ) persists since pieces in the derived complex are pieces
in the ancestor. �

Lemma 10.10 (Wall intersection persists). Suppose that X∗ satisfies Condition 5.64.(3). Let w be a
base-wall in X∗, and let X∗1 (or X∗1, X∗2 in the separating case) be the cubical presentation obtained by
cutting along w. Then X∗1 (and also X∗2 in the separating case) also satisfies Condition 5.64.(3).

Proof. Let Y1 be a cone of X∗1, and let h1, k1 be hyperplanes in the same wall of Y1, and suppose that
h1 and k1 have dual 1-cells in the same cone-piece of Y1, say associated to a cone Y ′1 along some
rectangular diagram between Y1,Y ′1.

By construction, Y1 is a component of a cone Y obtained by cutting along N(w), so Y1 is either Y+ or
Y−. And likewise Y ′1 arises from some Y ′, and the piece between them Y1,Y ′1 arises from a cone-piece
between Y and Y ′ accordingly. In particular, h1, k1 arise from hyperplanes h, k in Y that are dual to
1-cells in this cone-piece. Since h1, k1 lie hyperplanes in the same base-wall v1 of X∗1, and v1 is induced
from a base-wall v of X∗, we see that h, k lie in hyperplanes in the same base-wall v.

Condition 5.64.(3) applied to h, k, v in X∗ implies that h, k are in the same hyperplane of Y . We refer
the reader to Figure 148. On the left we illustrate that h, k actually lie in the same wall of Y , and
consequently, h′, k′ lie in the same (induced) wall of Y ′.

On the right of Figure 148 we illustrate that since pieces are CAT(0) and twice the injectivity radius
of hyperplanes exceeds the diameters of pieces, hyperplanes have connected intersection with pieces.

�

Remark 10.11 (Algebraic Splitting). Under appropriate small-cancellation conditions, the geometric
splitting of Cw(〈X | Yi〉) along w′ induces a splitting of π1X∗ along the image of π1w′.
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F 148. Persistence of Condition 5.64.(3)

F 149. Each Ti × I added on the right connects the wall in a cone.

Adding Dummy Squares to form X̄∗: It is inconvenient that w ∩ Yi might be disconnected for
some values of i. We remedy this by adding dummy squares as follows: Let wi1, . . . ,wipi denote the
hyperplanes that are the components of wi = w ∩ Yi. Choose 1-cells ei1, . . . , eipi in Yi that are dual to
these. Let Ti be a pi-pod which is a tree consisting of a base-vertex vi of valence pi, whose edges end
at leaves vi1, . . . , vipi . Consider the square complex Ti × I, and now attach a copy of Ti × I to Yi with the
edge vik × I attached to eik (so that the orientations are consistent), and likewise attach a copy of Ti × I
to X with the edge vik × I attached to the image of eik under the map Yi → X. We do not perform this
procedure when pi = 0 in which case w ∩ Yi = ∅.

Following the above procedure we obtain Ȳi for each i, and X̄ which contains a Ti× I contribution for
each Yi. We let Ȳi = Yi when wi = ∅. We let w̄ denote the hyperplane of X̄ containing w, so the carrier
N(w̄) contains N(w) and each Ti × I. The advantage of w̄ over w is that the wall W̄ in ˜̄X∗ corresponding
to w̄ has a unique hyperplane. Note that W̄ ∩ X̃∗ = W, a wall mapping to the base-wall w.

Observe that 〈X̄ | Ȳi〉 deformation retracts to 〈X | Yi〉 by collapsing along free faces.
Moreover, there is a deformation retraction of Cw̄(〈X̄ | Ȳi〉) onto Cw(〈X | Yi〉) that pulls each base-

edge of Ti upwards to the cone-edge of Cw̄i(Yi).
Dummy Squares Preserve Small-Cancellation: If 〈X | Yi〉 satisfies a small-cancellation condition

predicated on an upper bound on the diameters of all wall-pieces and cone-pieces, then the same holds
for 〈X̄ | Ȳi〉.

First note that the 1-cells parallel to each Ti are certainly not involved in any pieces.
As each Ti × I is contained in Ȳi, the only way a 1-cell e from another cone with e parallel to the I

factor of Ti × I could be involved with a new piece is as a wall-piece from one of the new hyperplanes
dual to an edge of Ti. But such a piece would also be a cone-piece.

(It appears that it would also be a wall-piece (in some other way) unless that cone contained all of
w. This would probably violate the B(6) condition 5.1.(5), since a path in w from one component of
w ∩ Yi to another such component would lie in a single cone-piece.)

Nevertheless, any small-cancellation condition depending upon sizes of pieces is preserved.
Examining the Splitting: Let Ā = N(w̄) � w̄ × [−1, 1], and consider the map Ā → X̄. As in

Construction 12.17, we let 〈Ā|Ā ⊗X̄ Ȳi〉 denote the induced cubical presentation. Our Ti × I additions
have now made the cones connected, whereas A ⊗X Yi has components in one-to-one correspondence
with components of w ⊗X Yi.
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F 150. Cubical cone points:

(1) Let S → Y be a path that starts and ends on vertices on the carrier of the same wall W of Y . If
ΩY (S ) < π then S is path-homotopic into N(W).

Condition 5.1.(1) implies that the map Ā∗ → X̄∗ has no missing θ-shells, and is thus π1-injective by
Theorem 12.16.

Observe that Ā∗ is isomorphic to a product D × I and that the deformation retraction map Cw̄(〈X̄ |
Ȳi〉) → Cw(〈X | Yi〉) sends D to a space whose fundamental group is the same as Stab(W) where W is
the wall in X̃∗ corresponding to w.

We thus see that π1Ā∗ = Stab(W), and that π1X∗ = π1X̄∗ splits as an HNN extension or AFP over the
subgroup Stab(W) = Stab(W̄) = π1Ā∗.

The reader might prefer to consider the two maps D × {±1} to X̄ − No(w̄), and verify that there are
no missing θ-shells, and that the induced presentations of D × {+1} and D × {−1} are the same.

Remark 10.12 (Cubes instead of conepoints). A promising viewpoint that we have not pursued is to
extend the idea of Construction 10.2 to a more complete setting. I describe this in the hope that some
variation on this idea will be useful.

As each cone Yi is a wallspace, there is an embedding Yi → C(Yi) where C(Yi) is the dual CAT(0)
cube complex. (Note that it might not be a cube.) For each i, let Mi be the associated mapping cylinder,
and then instead of coning off the cones, we attach a copy of Mi to X along its base X ← Yi → Mi. See
Figure 150.

11. H

Definition 11.1. The class MQH of groups with an almost malnormal quasiconvex hierarchy is the
smallest class of groups closed under the following conditions:

(1) If |G| < ∞ then G ∈ MQH .
(2) If G � A ∗B C and A,C ∈ MQH and B is quasiconvex and almost malnormal in G, then

G ∈ MQH .
(3) If G � A∗B and A ∈ MQH and B is quasiconvex and almost malnormal in G then G ∈ MQH .

It follows from the Bestvina-Feighn Combination Theorem that every group in MQH is word-
hyperbolic [BF92].

In conjunction with Definition 11.1, a hierarchy for G is a specific sequence of splittings leading
to terminal groups, and the length of this hierarchy is the longest maximal (nontrivial) subsequence.
Depending on the context we might allow the splittings to be general graphs of groups, or we might
insist that each is either an HNN extension or AFP. The hierarchy is malnormal, quasiconvex, etc. if
each of its constituent splittings has this property. The terminal groups could be trivial as in QH , or
they could be finite as forMQH . Other possibilities are considered in Section 16.

Theorem 11.2 (MQH is virtually special). Each group in MQH is virtually special. More gener-
ally, if G has an almost malnormal quasiconvex hierarchy terminating at virtually compact special
hyperbolic groups then G is virtually compact special.
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F 151. X ← X̂ ↪→ X̂′

Proof. This holds by induction on the “length” of a hierarchy using Theorem 11.3.
(We note that every compact special cube complex with word-hyperbolic fundamental group has a

finite cover with a malnormal quasiconvex hierarchy [HWa]. Thus such a hierarchy can be extended
further to a virtual malnormal quasiconvex hierarchy.) �

Theorem 11.3. Let G = A ∗C B or G = A∗C where C is almost malnormal and quasiconvex and A, B
(respectively A) is virtually compact special. Then G is virtually compact special.

Proof. Proposition 6.17, together with Proposition 7.8 and the wall case of Corollary 6.8. For the
amalgamated product A ∗C B one lets A′, B′ be special finite index subgroups of A, B, and then let
C′ = A′ ∩ C ∩ B′. Then one chooses a collection {H1, . . . ,Hr} of quasiconvex codimension-1 sub-
groups cubulating C′ (and consequently cubulate C). By Corollary 6.8, this collection is extendible to
quasiconvex codimension-1 subgroups {HA

1 , . . . ,H
A
r } in A and {HB

1 , . . . ,H
B
r } in B.

The HNN case is similar but also follows from the AFP case as described in Remark 11.4. �

Remark 11.4. Revising the notation, let X be a graph of spaces with a vertex space A and edge space
C × I corresponding to the HNN extension, so G = π1X splits as π1A∗π1C . Let X̂ denote the double
cover of X corresponding to the map sending the stable letter t of the HNN extension to the generator
of Z2 and sending π1A to the identity element. Let S be a “dummy-square” such that ∂pS has label
a1t1a2t2. We add S to X̂ to form X̂′ by identifying t1 and t2 with the two copies of the t-edge in X̂. We
do this so that their orientations agree. See Figure 151. Finally, there is a splitting of X̂′ as a graph of
spaces: each vertex space equals Âi ∪ ai where Â1, Â2 are the two components of the preimage of A
in X̂, and a1, a2 are the other two 1-cells on ∂S . And the sole edge space consists of the two copies
(C × I)1, (C × I)2 of the preimage of C × I, joined together with the square S . Note that π1X̂′ � π1X̂ ∗Z
is word-hyperbolic if π1X is. The reader can check that our splitting as a graph of spaces induces a
splitting of π1X̂′ as an amalgamated free product, whose vertex groups are each isomorphic to π1A ∗ Z
and hence virtually special, and whose edge group is isomorphic to π1C ∗ π1C and is easily seen to be
quasiconvex.

The height of the pair of inclusions of π1C into π1A inside the HNN extension equals the height of
each edge group π1C ∗ π1C in each vertex group of the amalgamated free product. In particular, almost
malnormality of the splitting is preserved.

If the amalgamated free product is virtually compact special, then the original group is as well, since
it has a finite index subgroup with this property. (Here one needs word-hyperbolicity to guarantee the
compactness. See Remark 12.6).

The amalgamated free product case of Theorem 13.1 thus implies that π1X̂′ is virtually compact
special, and hence the same holds for the quasiconvex subgroup π1X̂, and hence π1X.

Theorem 11.2 generalizes to the class QMVH of groups with a quasiconvex malnormal virtual
hierarchy. It is closed under the following additional condition:

(4) If [G : H] < ∞ and H ∈ QMVH then G ∈ QMVH .
We aim to analyze the class of groups that are hyperbolic relative to tori, and that have quasiconvex

hierarchies.
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Each compact special cube complex X has π1X ∈ QH . It is therefore interesting to examine possible
converses, but it is unclear exactly what extra ingredients are needed to ensure that a group with a
hierarchy is virtually special.

Definition 11.5. Let QH denote the smallest class G of groups that is closed under the following three
operations, and let QVH denote the related class obtained by adding the fourth operation.

(1) {1} ∈ G.
(2) If G = A ∗B C and A,C ∈ G and B is f.g. and embeds by a quasi-isometry, then G is in G.
(3) If G = A∗B and A ∈ G and B is f.g. and embeds by a quasi-isometry, then G is in G.
(4) Let H ⊂ G with [G : H] < ∞. If H ∈ G then G ∈ G.

Remark 11.6. The class of groups with a hierarchy such that each edge group is f.g. (and free) is
nastier than one might expect, and certainly contains groups that are not virtually special. For instance
it is known that such groups can have undecidable word problem. Even among 2-dimensional cubical
complexes whose fundamental groups exhibit such a hierarchy, there are examples that are not virtually
special [BM97, Wis07]. The simplest examples with a hierarchy that are not virtually special are certain
Baumslag Solitar groups (see Problem 11.8).

One of the main results in this paper is that every virtually torsion-free word-hyperbolic group in
QVH is virtually special. It is unclear what hypothesis (besides hyperbolic relative to abelian sub-
groups) could replace hyperbolicity in a variant of the above statement.

Conjecture 11.7 (QSVH is virtually special). Let us restrict the third operation as follows:

(3’) If G = A∗B and A ∈ G and B is f.g. and embeds by a quasi-isometry and B is separable in G,
then G is in G.

Let QSVH denote the class G of groups that is closed under the four operations. These are the groups
with a Separable Quasi-isometric Virtual Hierarchy. Then for every group G ∈ QSVH there is a finite
index subgroup H ⊂ G such that H is the fundamental group of a special cube complex.

Problem 11.8. A good test case is the class of one-relator groups. The strongest possible conjecture
one could hope for here would be that a one-relator group is virtually special if and only if it contains
no subgroup BS (n,m) with n , ±m nonzero, and where BS (n,m) = 〈a, t | (an)t = am〉.

Another important test case are free-by-cyclic groups and more generally ascending HNN extensions
of free groups that are hyperbolic relative to virtually abelian subgroups.

A special case of Conjecture 11.7 is:

Conjecture 11.9. Let X be a (compact) nonpositively curved cube complex. If π1D is separable in π1X
for each hyperplane D of X, then X is virtually special.

12. V S Q T

The goal of this section is to prove the following theorem:

Theorem 12.1 (Virtually Special Quotient). Let G be a word-hyperbolic group with a finite index
subgroup that is the fundamental group of a compact special cube complex. Let H1, . . . ,Hr be qua-
siconvex subgroups of G. Then there are finite index subgroups H′1, . . . ,H

′
r such that the quotient:

G′ = G/〈〈H′1, . . . ,H
′
r〉〉 is a word-hyperbolic group with a finite index subgroup that is the fundamental

group of a compact special cube complex.
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12.1. The malnormal special quotient theorem.

Definition 12.2 (Malnormal Collection). A collection of subgroups {H1, . . . ,Hr} of G is malnormal
provided that Hg

i ∩ H j = {1G} unless i = j and g ∈ Hi. Similarly, the collection is almost malnormal if
intersections of nontrivial conjugates are finite (instead of trivial). Note that this condition implies that
Hi , H j (unless they are finite in the almost malnormal case).

Theorem 12.1 will be a consequence of the following special case which is our main focus in this
section, and probably the crux of this paper:

Theorem 12.3 (Malnormal Virtually Special Quotient). Let G be a word-hyperbolic group with a finite
index subgroup J that is the fundamental group of a compact special cube complex. Let {H1, . . . ,Hr}

be an almost malnormal collection of quasiconvex subgroups of G. Then there are finite index sub-
groups Ḧ1, . . . , Ḧr such that: For any finite index subgroups H′i , . . . ,H

′
r contained in the Ḧ1, . . . , Ḧr the

quotient: G′ = G/〈〈H′1, . . . ,H
′
r〉〉 is a word-hyperbolic group with a finite index subgroup J′ that is the

fundamental group of a compact special cube complex.

The statement will be proven using subgroups H′i and Ḧi that are normal in Hi, but consequently
holds (as stated) without assuming these subgroups are normal. We also note that the statement allows
us to choose the H′i to lie in any pre-chosen finite index subgroups H◦i of Hi.

Remark 12.4. There is a tricky point in the algebraic statement. When passing to a nonpositively
curved cube complex X for a finite index subgroup J of G, each subgroup Hi appears in several ways
as a subgroup Hi j = Hg j

i ∩ J. We could keep the subgroups Hi j abstractly isomorphic by assuming that
J is normal in G. However, they might not have the same representative geometry when we pass to a
nonpositively curved cube complex X with π1X � J. This can be remedied by recubulating with a cube
complex containing an action of G/J. One way to do this is to use an action of G on X[G:J]. Another
way uses the following lemma:

Lemma 12.5. Let G be word-hyperbolic and suppose that G has a finite index subgroup that acts
properly and cocompactly on a CAT(0) cube complex. Then G acts properly and cocompactly on a
CAT(0) cube complex.

Remark 12.6. The situation for a relatively hyperbolic group is more delicate. A case in point, is the
Coxeter group 〈a1, a2, a3 | a2

i , (aia j)3〉 which doesn’t act properly and cocompactly on a CAT(0) cube
complex but has an index 6 subgroup isomorphic to Z2.

Proof of Lemma 12.5. Let G′ be a finite index subgroup of G that acts properly and cocompactly on a
CAT(0) cube complex Ỹ . To simplify matters, we can assume that Ỹ ′ does not contain a G′-invariant
CAT(0) cubical subcomplex. (For otherwise we could pass to such a subcomplex Ỹ ′, which leads
to a slightly smaller result for G.) Let U1, . . . ,Ur denote representatives of the G′-orbits of hyper-
planes in Ỹ . Then Stab(Ui) is a codimension-1 subgroup of G′ for each i. Accordingly Stab(Ui) is
a codimension-1 subgroup of G as well, and a finite neighborhood Ni = Nri(Stab(Ui)) separates the
Cayley graph Γ(G, S ), so we obtain a wall consisting of a deep component of Γ(G, S ) − Ni together
with its complement. We assume that we have chosen the component so that the wall is in agreement
with the way Ui separates an orbit of G′ỹ.

We consider the full collection of G-translates of such walls, and observe that G acts properly on
the resulting cube complex since G′ does, and acts cocompactly because each subgroup is quasiconvex
[Sag97]. �

Proof of Theorem 12.3. By Lemma 12.5, there is a proper cocompact action of G on a CAT(0) cube
complex X̃0.
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Since G has separable quasiconvex subgroups (as it is virtually special), it has a finite index subgroup
J that acts specially on X̃0 (see [HW10]), so X0 = J\X̃0 is a compact special cube complex. Note that
specialness is preserved by arbitrary further covers.

By Proposition 8.2, for each i, let Z̃i ⊂ X̃0 denote an Hi-cocompact superconvex subcomplex. Let
Hi0 = Hi ∩ J for each i. Let Zi = Hi0\Z̃i so Zi → X0 is a compact superconvex local isometry
representing Hi0 ⊂ J. (We can ignore the basepoint here as only the conjugacy class in J interests us).

A regular cover X → X0 determines a cubical presentation in the following way: Let Ẑi denote an
elevation of Zi to X, so Ẑi is the cover of Zi corresponding to π1Zi ∩ π1X. We shall choose X so that
π1X is normal in G. For 1 ≤ i ≤ r we let Yi = Ẑi, and employing the G-action on X to obtain other
elevations, we extend this correspondence to let {Y1, . . . ,Y j} = {gẐi : 1 ≤ i ≤ k, g ∈ G} denote the
collection all possible such elevations, and we obtain the cubical presentation:

〈X | Y1, . . . ,Y j〉

Our initial goal below, is to show how to choose a finite regular cover X → X0 so that using the
above notation, the cubical presentation 〈X | Y1, . . . ,Y j〉 satisfies the following properties:

(1) Each hyperplane M of X has π1M malnormal in π1X.
(2) Each cone Yi → X is an embedding.
(3) There exists D such that each cone-piece and wall-piece is a CAT(0) subcomplex of X with

diameter ≤ D.
(4) The length of the smallest essential cycle in Yi is > 12D (so C(6) (metric) small-cancellation

with split-angling holds).
(5) Thus internal cone-cells in reduced disk diagrams have negative curvature.
(6) Twice the injectivity radius of each hyperplane of X is > D and thus exceeds the diameter of

any cone-piece.
(7) For each hyperplane M ⊂ X and path S → Yi starting and ending on 0-cells at endpoints of

1-cells dual to M if ΩYi(S ) ≤ π then S is homotopic into N(M) ∩ Yi.

We note that the main conditions above are stable in the sense that they are preserved by passage
to a further finite cover (or finite regular cover), this greatly facilitates achieving the conditions, as we
can resolve each specific issue at some finite cover, and then conclude by taking a finite cover factoring
through all of these whose fundamental group is normal in G.

Malnormality: For each hyperplane M` of X0, the subgroup π1M` is separable in π1X0. And there
are finitely many cosets π1M`gi such that π1Mgi

`
∩π1M` is infinite. We can therefore separate π1M` from

each gi in a finite index subgroup to make π1M` malnormal there. We obtain a finite cover XM` → X0
for each hyperplane, and any finite regular cover of X0 factoring through all of these has the desired
property. The above sketch is explained in [HW09] in a relatively hyperbolic context.

Cone Injectivity: By separability of quasiconvex subgroups, we can pass to a finite cover Xi → X0
such that Zi embeds. (Indeed, C(Zi → X0) does the trick.) Any finite regular cover of X0 factoring
through each Xi has the desired property.

Piece Size and Embedding: The almost malnormality of {H1, . . . ,Hr} and superconvexity of {Ỹ1, . . . , Ỹ j}

bounds the cone-pieces and wall-pieces in each gỸi, in that each such cone-piece or wall-piece lies in
a diameter D CAT(0) subcomplex of X̃ = X̃0. (See Lemma 3.46, and note that each Ỹp is a translate of
a Z̃q.) By residual finiteness of π1X0, and local finiteness of X̃, we can pass to a finite regular cover of
X0 such that all diameter ≤ D CAT(0) subcomplexes of X̃ embed.

Small-Cancellation and Negative Curvature: For each i, by residual finiteness, we can choose a
finite cover of Z̄i → Zi such that ||Zi|| > 12D. We then choose a regular cover X̄i such that each elevation
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of Zi to X̄i factors through Z̄i. Any further cover of X̄i has the desired property for Zi, and thus any cover
X0 factoring through each X̄i has the desired property.

Theorem 3.20 applies to show that the split-angling system has nonpositive curvature for (essential)
internal cone-cells in reduced disk diagrams, and moreover, essential internal cone-cells have negative
curvature since the inequality is strict.

Injectivity radius > 1
2 Cone-piece diameter: This is a simple consequence of the separability of

hyperplane subgroups. The injectivity radius of a hyperplane M ⊂ X is half the length of the shortest
path σ starting and ending on 1-cells of M such that σ is not homotopic into M. This equals half the
minimal distance between lifts g1M̃, g2M̃ in X̃.
π-Wall Separation: Like the malnormality claim and the injectivity radius claim, this is a conse-

quence of separability of hyperplanes.
Any path S → Yi with ΩYi(S ) ≤ π is the concatenation of at most five pieces. Indeed, using the

split-angling, the minimal defect for any transition between pieces on S is π
4 . Thus, it suffices to

separate from M any path S → Yi that is the concatenation of at most five pieces, and that starts and
ends on 1-cells dual to the hyperplane M of X0 but is not homotopic into M. There are finitely many
such situations to dispose of as above.

Splicing the cones to obtain B(8):
We now pass to a finite cover Ÿi → Yi that is induced by a cover Ẍ → X such that 〈X | Ÿi〉 satisfies

the conditions above (except (2)) as well as the following:

(8) The B(6) and B(8) small-cancellation conditions in Definitions 5.1 and 5.55.

Let W = W(X) denote the family of hyperplanes of X. Consider the map #W : π1X → ZW2 induced
by counting (modulo 2) the number of times a path passes through a hyperplane. As in Subsection 9.1,
let Ẍ denote the cover of X associated to #W. Let Ÿi → Yi denote the cover induced by Ẍ → X for
each i. According to Construction 9.1, each Ÿi is a wallspace where each wall of Ÿi is the preimage of
a single hyperplane of X.

We define Ḧi to equal π1Ÿi. Note that π1Ẍ is a normal subgroup of G, because the intrinsic definition
of Ẍ → X implies that it preserves the symmetries of the G-action on X. Consequently each Ḧi is a
normal subgroup of Hi.

For any finite index normal subgroup H′i ⊂ Hi that is contained in Ḧi, we let Y ′i denote the corre-
sponding cover of Yi. Following Construction 9.4, we let each Y ′i have the wallspace structure induced
from Yi.

We use the notation X∗ = 〈X | gY ′i : g ∈ Aut(X), 1 ≤ i ≤ r〉.
The walls of X̃∗ embed in X̃∗ by Theorem 5.20, and are quasi-isometrically embedded by Lemma 5.35.
By construction, the new walls embed as base-walls in X∗. Indeed, the hyperplanes of a wall of Y ′i

is the entire preimage of a hyperplane of X under the map Y ′i → X.
〈X | gY ′i 〉 inherits the small cancellation properties of 〈X | Yi〉 by Lemma 9.7 and in addition, B(8)-

Condition 5.55.(2) is now satisfied by Lemma 9.6.
The Hierarchy: We now apply the cutting instructions of Section 10 where at each stage we alter-

nately cut along a wall and then along various cone-points that are cutpoints. In the former case, the
B(8) conditions are satisfied and in the latter case, we are merely splitting along trivial groups. The
result after each such pair of cuts are new complexes that are smaller in the sense that they have fewer
1-cells. After finitely many cuts, we arrive at 0-cells.

Since the B(8) conditions are preserved by the cuts, at each stage the walls we are cutting along are
quasiconvex by Theorem 5.35 and are almost malnormal by Theorem 5.64.
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We thus have an almost malnormal quasiconvex hierarchy, and so the group π1X∗ is virtually special
by Theorem 11.2. Finally, observe that G/〈〈H′1, . . . ,H

′
r〉〉 contains G′ = π1X∗ = π1X/〈〈π1gY ′i : g ∈

Aut(X), 1 ≤ i ≤ r〉〉 as a finite index subgroup. �

12.2. Height and Virtual Almost Malnormality.

Definition 12.7 (Height). Consider a collection {H1, . . . ,Hk} of subgroups of G. We use the notation
Hg = g−1Hg. We say Hgi

mi and Hg j
m j are distinct conjugates unless mi = m j and Hmigi = Hm jg j. We

emphasize that each “conjugate” corresponds to a value of (mi,Hmigi) and not just a subgroup Hgi
mi .

We say the collection has height 0 ≤ h ≤ ∞ if h is the largest number so that there are h distinct
conjugates of these subgroups whose intersection Hg1

m1 ∩Hg2
m2 ∩ · · · ∩Hgh

mh is infinite. If each Hi is finite,
then the height of the collection is h = 0. If there is an infinite collection of distinct conjugates whose
intersection is an infinite subgroup, then the height of the collection is h = ∞.

For instance, if G is infinite and [G : H] is finite then the height of H in G equals [G : H].
The notion of height was introduced and studied in [GMRS98] where it was shown that quasiconvex

subgroups of word-hyperbolic groups have finite height. It follows that a finite collection of quasicon-
vex subgroups also has finite height. We have explored the notion a bit further for relatively hyperbolic
groups in [HW09].

A collection of subgroups is almost malnormal as in Definition 12.2 precisely if its height is ≤ 1.

We will later make use of the following closely related result which also hinges on the key point
implying the height finiteness. It holds because for conjugates whose intersection contains an infinite
order element, the corresponding cosets must lie within a uniformly bounded distance of an axis, and
because there are finitely many A-translates of gB cosets within a finite distance of A.

The following was first proven in [GMRS98]:

Proposition 12.8. Let G be a hyperbolic group and A, B be quasiconvex subgroups. There are finitely
many double cosets AgB such that Ag ∩ B is infinite.

Definition 12.9 (Commensurator). The commensurator CG(H) of H in G is defined by: CG(H) = {g ∈
G : [H : Hg ∩H] < ∞}. It is shown in [KS96] (see also [Arz01]) that [CG(H) : H] < ∞ for any infinite
quasiconvex subgroup H of the word-hyperbolic group G. Consequently, in this case CG(H) is itself
quasiconvex in G.

Definition 12.10 (Virtually Almost Malnormal). The subgroup H is virtually almost malnormal in G
if for each g ∈ G either Hg ∩ H is finite, or g ∈ CG(H).

The notions of height (and width) might have been better crafted in terms of intersections up to
commensurability. We remedy this with the following simple observation:

Lemma 12.11. If H ⊂ G is virtually almost malnormal then CG(H) is almost malnormal in G.

Proof. Suppose that CG(H)g ∩ CG(H) is infinite. Since Hg ∩ H has finite index in CG(H) we see that[(
CG(H)g ∩ CG(H)

)
:
(
CG(H)g ∩ CG(H)

)
∩ (Hg ∩ H)

]
=

[(
CG(H)g ∩ CG(H)

)
: (Hg ∩ H)

]
< ∞. Thus

Hg∩H is infinite, and so [Hg : H] < ∞ by virtual almost malnormality. But then g ∈ CG(H), so CG(H)
is almost malnormal as claimed. �

Lemma 12.12. Let H1, . . . ,Hr be a collection of quasiconvex subgroups of a word-hyperbolic group G.
Let K1, . . . ,Ks be representatives of the finitely many distinct conjugacy classes of subgroups consisting
of intersections of collections of distinct conjugates of H1, . . . ,Hk in G that are maximal with respect
to having infinite intersection. Then {CG(K1), . . . ,CG(Ks)} is an almost malnormal collection of
subgroups of G.
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Note that this is indeed a finite collection by [GMRS98, HW09].

Proof. First observe that by maximality, for each Ki, H j, and g` we have either:

(1) Ki ∩ H
g
`

j is finite.

(2) Ki ⊂ H
g
`

j .

Suppose CG(Ks) ∩ CG(Kt)g is infinite for some g ∈ G. Since each [CG(K) : K] < ∞ we see that
Ks ∩ Kg

t is infinite as well. Now Kt =
⋂m

i=1 Hgit
it

so:

Ks ∩ Kg
t = Ks ∩

m⋂
i=1

Hgit g
it

=

m⋂
i=1

(
Ks ∩ Hgit g

it

)
.

Since the intersection is infinite, we must have alternative (2) that Ks ⊂ Hgit g
it

for each i. But then
Ks ⊂ Kg

t . Likewise Kg
t ⊂ Ks. Since we have chosen representatives of distinct conjugacy classes of

maximal intersections (that is, a maximal number of factors, but a smallest intersection) we see that
s = t, and that Kg

s = Ks, and so g ∈ CG(Ks). �

Lemma 12.13 (Malnormal Intersection). Let {B1, . . . , Bk} be an almost malnormal collection of sub-
groups of G. For each i, let {Bigi jA : j ∈ Ji} denote a collection of distinct double cosets such that
Bg

i ∩ A is infinite if and only if g ∈ Bigi jA for some i j. For each i j, let Mi j = Bgi j
i ∩ A.

Then {Mi j : 1 ≤ i ≤ k, j ∈ Ji} is an almost malnormal collection of subgroups of A.

Proof. Suppose Mi j
a ∩ Mpq is infinite for some a ∈ A. Then Bgi ja

i ∩ Bp is infinite and so by almost
malnormality of {B1, . . . , Bk} in G, we must have i = p. Thus Mi j = Bgi j

i ∩ A for some i j, and
Miq = Bgiq

i ∩ A for some iq. Since (Bgi j
i )a ∩ Bgiq

i ⊃ (Bgi j
i ∩ A)a ∩ (Bgiq

i ∩ A) = Ma
i j ∩ Miq, we see that

(Bgi j
i )a ∩ Bgiq

i is infinite, and so gi jag−1
iq ∈ Bi by almost malnormality. Thus Bi ⊂ [Bigi jA][BigiqA]−1 so

Bigi jA = BigiqA and hence j = q. Finally, Ba
i ∩ Bi ⊃ Ma

i j ∩ Mi j is infinite and so a ∈ Bi by almost
malnormality. �

12.3. The proof of the Special Quotient Theorem.

Proof of Theorem 12.1. Let {K1, . . . ,Ks} denote the collection of infinite maximal intersections of con-
jugates given in the statement of Lemma 12.12. For each i, let Ki denote CG(Ki).

According to Lemma 12.5, G acts properly and cocompactly on a CAT(0) cube complex X̃. Let
J ⊂ G be a finite index torsion-free normal subgroup and let X = J\X̃. Let R be the diameter of a finite
ball U ⊂ X̃, such that JU = X̃, and such that U contains the basepoint x̃ of X̃.

We apply Lemma 8.5 to obtain Hi-cocompact superconvex subcomplexes Ỹi ⊂ X̃ andKi-cocompact
superconvex subcomplexes Z̃i ⊂ X̃, and such that each contains Ũ. We do this so that g−1Z̃ j ⊂ Ỹi

whenever Kg
j ⊂ Hi (using the notation xg = g−1xg). For instance, we can first choose Ki-cocompact

superconvex subcomplexes (which are then Ki-cocompact as well), and then apply Lemma 8.5 again to
ensure that the Hi-cocompact superconvex subcomplexes contain the various translates required above.

There is an upper bound D = D(X̃) on diameters of wall-pieces in translates g jZ̃ j and of cone-pieces
between G-translates of any giỸi and g jZ̃ j with the exception of the case where g−1

j Z̃ j ⊂ g−1
i Ỹi whence

Ki ⊂ H
gig−1

j
j . (Note that this will correspond to a situation below where g jZ j ⊂ giYi under the G action

on X.) The diameters of wall-pieces are bounded because of the superconvexity - and this bounds the
noncontiguous cone-pieces as well. The diameters of the above contiguous cone-pieces are bounded
using the reasoning of Lemma 5.35, since if there is an infinite contiguous cone-piece then since K j is a
maximal intersection it would be contained in the Hi. (One sees this more explicitly in the fiber-product
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interpretation; since an infinite contiguous cone-piece corresponds to a noncontractible component in
a Yi ⊗ Z j fiber-product, which would then necessarily be diagonal by maximality.)

The basepoint translation length of g ∈ G is the combinatorial distance dX̃(x̃, gx̃). Note that a torsion-
element g fixing the basepoint has length 0. (As g < J, the appearance of such a torsion element g will
be reflected later by nontrivial conjugates of the original subgroups, and hence translates gZ j etc. in the
cubical presentation.)

A conjugate (J ∩ Hi)g = J ∩ Hg
i corresponds to J ∩ H j f

i which is the stabilizer in J of j f Ỹi. Since
JU = X̃, the translate f Ỹi contains the basepoint x̃, and we thus choose the basepoint of f Yi → X so
that it maps to the basepoint of X. Therefore (J ∩ Hi)g = (π1( f Yi)) j.

By Proposition 12.8, for each ia, ib, fa, fb there are finitely many double cosets π1( faYia) jπ1( fbYib) in
J such that π1( faYia) j ∩ π1( fbYib) is infinite. Let B denote an upper bound on the basepoint translation
length of a minimal length representative for each.

By residual finiteness, for each j let K◦j denote a finite index subgroup of (K j ∩ J) ⊂ K j such that

||Z◦j || > max
(
8D, 4B, D

α

)
where Z◦j = K◦j \Z̃ j. Looking ahead, we note that:

(1) > D
α with α = 1

24 is to ensure the short innerpath property using Theorem 3.20.
(2) In particular this implies > 1

12 D implying C′( 1
12 ) and thus small-cancellation with the split-

angling by Theorem 3.20.
(3) > D′ is to verify that Yi → X have no missing θ-shells.
(4) > max(8D, 4B) is to satisfy the criteria of Lemma 12.22.

We now apply the construction of Theorem 12.3 to (G,K◦1 ⊂ K1, . . . ,K
◦
k ⊂ Kk) to obtain fi-

nite index subgroups K ′1, . . . ,K
′
k contained in K◦1 , . . . ,K

◦
k (and hence contained in J) such that Ḡ =

G/〈〈K ′1, . . . ,K
′
k〉〉 is virtually special and word-hyperbolic.

Passing to the induced quotient J̄ of J ⊂ G we obtain the end result of this construction: a cubical
presentation of the form 〈X | gZ̈i〉 where π1X = J as above and each π1Z̈i = K′i , but the cubical
presentation contains g translates of them where g varies over the various double cosets JgK′i .

In particular, the group Ḡ has J̄ � π1X∗ as a finite index subgroup, and we shall use the associated
cubical presentation to verify that each H̄i is quasiconvex and that h̄ = HeightḠ{H̄1, . . . , H̄k} < h =

HeightG{H1, . . . ,Hk}.
For each i, let Yi = (Hi ∩ J)\Ỹi so the quasiconvexity of H̄i follows by verifying the quasiconvexity

of the image of the finite index subgroup π1Yi → π1X in J̄. However the induced cubical presentation
Y∗i → X∗ has no missing θ-shells and is thus π1-injective by Corollary 12.18. Since X∗ has short
innerpaths by Theorem 3.20, we are then able to obtain the quasiconvexity of each π1Ŷ∗i → π1X∗ using
Corollary 3.50.

We now verify the height decrease by computing the intersection of conjugates in J and J̄:

J ∩
p⋂

i=1

Hgi
ni =

p⋂
i=1

(J ∩ Hni)
gi =

p⋂
i=1

(J ∩ Hni)
ji fi =

p⋂
i=1

(π1( fiYni))
ji .

Since each | ji| ≤ B and ||Z̈i|| ≥ ||Z̈o
i || > max(4B, 8D), the criteria of Lemma 12.22 are met, and we see

that ∩p
i=1π1( fiYni) ji = ∩

p
i=1π1( fiYni)

ji . Since intersections of conjugates in J̄ are images of intersections
of conjugates in J itself, and since the maximally infinite such intersections project to finite subgroups
of J̄ by construction, we see that h̄ < h as claimed.

Consequently, the theorem follows by induction on the height of {H1, . . . ,Hr} in G. The quotient
group has trivial kernel in the base case where h = 0. �

12.4. Missing θ-shells and injectivity.
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Definition 12.14 (No missing θ-shells). Let 〈A | B j〉 and 〈X | Yi〉 be cubical presentations. A map
between cubical presentations f : A∗ → X∗ is a local isometry f : A → X such that for each j there is
an induced map f : B j → Y f ( j) so that there is a commutative diagram:

B j → Y f ( j)
↓ ↓

A → X

This data corresponds to a combinatorial map A∗ → X∗ sending the base to the base by a local isometry,
sending cone-points to cone-points, and sending vertical 1-cells to vertical 1-cells etc.

Suppose that X∗ is a small-cancellation complex for some angling system. We say f : A∗ → X∗ has
no missing θ-shells, provided that the following two conditions hold:

Firstly, each essential closed curve in a component of A ⊗X Yi lifts to some B j.
Secondly, for any positively curved θ-shell R (so ∂pR = QS is necessarily essential) in a reduced

diagram D → X∗, if the outerpath Q of R lifts to A, then S is path-homotopic in Yi to a path S ′ so that
the lift of Q extends to a lift of QS ′ = ∂pR′ to ∂pR′ → B j for some j with i = f ( j). So that there is a
commutative diagram:

Q → A ← B j
↘ ↗ ↓

∂pR′ → Yi

We note that the first condition is a special case of the second if we include the degenerate situation
of a diagram D consisting of a single cone-cell with ∂pD = QS where Q is the outerpath and S is the
trivial path. This is a degenerate example of a θ-shell whose innerpath is trivial.

Remark 12.15 (Graded Generalization). In the graded case, we can generalize the conditions of Def-
inition 12.14 as follows: The inner path S → Y is path-homotopic to S ′ → X through a disk diagram
DS → X∗grade(Yi)−1. The outerpath Q is path-homotopic to a path Q′ → A through a disk diagram
DQ → A∗ where A∗ is induced from A→ X∗grade(A)−1. (For instance, it suffices that Q be path-homotopic
to Q′ in Y∗i .)

As before we then require that Q′S ′ = ∂pR′ lifts to a cone of A.

Theorem 12.16. Let f : A∗ → X∗ be a map of cubical presentations, and suppose that X∗ satisfies the
C(6) small-cancellation condition. If f has no missing θ-shells then f is π1-injective. Moreover the
map Ã∗ → X̃∗ is injective on the base.

Proof. A path is essential if its lift to the universal cover is not closed. Suppose some essential path
in A∗ projects to a path in X∗ that is not essential. Let (D, P) be a minimal complexity such example,
where P → A∗ is essential, but projects to a path P → X∗ bounding a disk diagram D → X∗, that has
minimal complexity among all such (D, P).

By Theorem 3.40, D must have a cell with positive curvature. We can obviously exclude the case
where D is trivial. If D has a corner of a generalized square on P, then this square lifts to A since
A→ X is a local isometry. This allows us to push P across the square to produce a smaller complexity
counterexample (D′, P′). The same holds if D has a spur, and more generally we can assume that there
are no backtracks in ∂pD along the outerpath of some θ-shell, for then we could fold to expose and
remove a spur. Note that one of these cases (a spur or a corner of a generalized square) must hold if D
is a square diagram, when by the local-isometry hypothesis, the entire diagram D would lift to A.

Now suppose that D has some cone-cell. If D consists entirely of this cone-cell, say associated with
Yi → X, then since there are no missing θ-shells, P is path-homotopic to P′ in A∗ and P′ lifts to a closed
path in some B j, and hence P→ A∗ is not essential.
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If D has some positively curved θ-shell R associated with Yi → X and with outerpath Q and innerpath
S , then again, since f : A∗ → X∗ has no missing θ-shells, we see that Q is path-homotopic to Q′ in
A∗, and S is path-homotopic to S ′ in X∗ through a diagram DS with complexity(DS ) < Grade(R), and
the path Q′ → A factors through a map Q′ → B j that extends to a map Q′S ′ = ∂pR′ → B j such that
f ( j) = i. This contradicts the minimality of the complexity of D.

Since the cone-cell R can be replaced by the union of R′ and the diagrams DS between S and S ′ and
DQ between Q and Q′, and since R′ can be absorbed into A, we see that there is a contradiction of the
minimality of the complexity of D. �

Construction 12.17 (Induced Presentation). Let 〈X | Yi〉 denote a cubical presentation. Let A → X be
a local isometry. The induced cubical presentation is 〈A | A ⊗X Yi〉. We let A∗ denote its associated
complex. Note that there is a natural map A∗ → X∗.

Corollary 12.18. Let 〈X | Yi〉 be a cubical presentation satisfying small-cancellation with short inner-
paths. Let A → X be a local isometry. Suppose that for each i, each component of A ⊗X Yi is either
a copy of Yi or is a contractible complex K with diameter(K) ≤ 1

2 ||Yi||. Let A∗ = 〈A | A ⊗ Yi〉. Then the
natural map A∗ → X∗ has no missing θ-shells and is thus π1-injective.

More generally: each component of A ⊗ Yi either maps isomorphically to Yi or is a complex K such
that diameter(K) < ||Y∗i || and π1K∗m = 1, where m = Grade(Yi) − 1 and the cubical presentation K∗m is
induced from K → X and X∗m which denotes the subpresentation containing only cones of grade < m.

Note that the generalization is arranged so that K lifts to Ỹ∗i . A natural scenario of the generalization
is the particular case when each component of A ⊗ Yi is either a copy of Yi or has diameter(K) < ||Yi||

and is either a contractible cube complex K or a copy of a cone Y j with Grade(Y j) < Grade(Yi).

Proof. Consider a positively curved θ-shell R with outerpath Q and innerpath S . If the two maps
A← Q→ Y determine a map Q→ A ⊗ Y whose image lies in a component K that is a copy of Y , then
the θ-shell is not missing. Otherwise, let Q′ → K denote a geodesic that is path-homotopic to Q → K
in K∗m. So |Q′| ≤ diameter(K) ≤ 1

2 ||Y || where the first inequality holds since π1K∗m = 1 and the second by
hypothesis. Let S ′ → Ỹ∗ be a geodesic with the same endpoints as S → Ỹ∗, so S ′ is path-homotopic to
S in Y∗, and note that |S ′| = ∇Y (S ) < |Q′| by short innerpaths. But then Q′S ′ → Y∗ is null-homotopic
since |Q′S ′| = |Q′| + |S ′| < |Q′| + |Q′| ≤ 1

2 ||Y
∗|| + 1

2 ||Y
∗||. �

Problem 12.19. Is no missing θ-shells preserved by induced presentations? More specifically, suppose
that A→ X, B→ X,C → X are local-isometries, and C is the base component of A ⊗X B. Suppose that
A∗ → X∗ and B∗ → X∗ have no missing θ-shells. Does C∗ → X∗ have no missing θ-shells?

This holds under a strong form of no missing θ-shells (for instance when X is 1-dimensional) where
S lifts to A whenever QS → X is a θ-shell R in a diagram D→ X with S an innerpath and Q outerpath
lifting to A (and no changes on S ).

The more natural weak form of no missing θ-shells allows R to be replaced by a diagram R′ ∪S E
where E has complexity lower than R (so all its cells have lower grade), and where ∂pR′ does lift to A.
I do not know if this weaker form is also preserved.

We note that if D→ A is a local-isometry. and A∗ → X∗ has no missing θ-shells, it is possible for the
composition D∗ → X∗ to have missing θ-shells. For instance, let D→ A be the outerpath of a θ-shell.

12.4.1. ~ Adding Higher Grade Relators. We refer to Figure 152 for an example suggesting the con-
struction in the following:

Lemma 12.20 (Adding Higher Grade Small-Cancellation Relators And Preserving Quasiconvexity).
Consider X∗ = 〈X | {Zi}〉, and finite collections of compact local isometries {Y j → X} and {Wk → X}
such that for some α ≤ 1

24 :
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F 152. Let Ỹ11 and Ỹ12 and Ỹ21 denote the universal covers of the three graphs on the
left, and let X̃ denote the universal cover of the bouquet of three circles. The graded cubical
presentation on the right could be obtained from this initial data following Lemma 12.20.

(1) Each Ỹ j and W̃k is superconvex.
(2) If g jỸ j 1 gkW̃k then either diameter(g jỸ j ∩ gkW̃k) < M or g jỸ j ∩ gkW̃k = giZ̃i for some giZ̃i.
(3) If giZ̃i 1 g jỸ j then diameter(giZ̃i ∩ g jỸ j) < α||Z∗i ||.
(4) If giZ̃i 1 gkW̃k then diameter(giZ̃i ∩ gkW̃k) < α||Z∗i ||.
(5) {π1Y∗j } is an almost malnormal collection in π1X∗.
(6) Each π1Y∗j is residually finite.

There exist covers Y̌∗j → Y∗j such that for any regular covers Ŷ∗j → Y∗j that factor through Y̌∗j we have:

(1) X∗̄ = 〈X | Zi, Ŷ j〉 is C′(α).
(2) Each Y ∗̄j → X∗̄ and W ∗̄k → X∗̄ has no missing θ-shells.

(3) If g jỸ j 1 gkW̃k then diameter(g jỸ j ∩ gkW̃k) < α||Ŷ∗j ||.

Here Ŷ j denotes the cover of Y j that is the cubical part of the cover Ŷ∗j → Y∗j . In our application,

Condition (5) holds because g jỸ j ∩ g j′ Ỹ j′ either equals some giZ̃i or has diameter uniformly bounded
by L.

Proof. By Lemma 2.13, the superconvexity and cocompactness yields a uniform upperbound R on
diameters of rectangles with base on each Ỹ j.

Hypothesis (3) ensures that for any 〈X | Zi, Ŷ j〉 a contiguous cone-piece P between a Ŷ j and a Zi
satisfies ∇Z∗̄i

(P) < α||Z∗i || ≤ α||Z∗̄i || as the length of the shortest essential path does not decrease when
cones are added. (In any case Z∗̄i = Z∗i since the newly added cones of X∗ have higher grade than Zi.)

By almost malnormality and quasiconvexity, there exists a uniform L such that diameter(ḡ jỸ∗j ∩

ḡ j′ Ỹ∗j′) < L unless ḡ jỸ∗j = ḡ j′ Ỹ∗j′ and j = j′.
By residual finiteness, we choose regular covers Y̌∗j → Y∗j such that max(L,M,R, diameter(Zi)) <

α||Y̌∗j ||.

A contiguous cone-piece P between Zi and Ŷ j satisfies: ∇Ŷ ∗̄j
(P) ≤ diameter(Zi) < α||Y̌∗j || ≤ α||Ŷ

∗
j ||.

A contiguous cone-piece P between Ŷ j and Ŷ j′ satisfies: ∇Ŷ ∗̄j
(P) ≤ diameter(g jỸ∗j ∩ g j′ Ỹ∗j′) ≤ L <

α||Y̌∗j || ≤ α||Ŷ
∗
j ||.

Conclusion (3) follows from Hypothesis (2) and our choice of Y̌∗j .
X∗̄ has short innerpaths by Lemma 3.48, and so Corollary 12.18 guarantees that each W ∗̄k → X∗̄ has

no missing θ-shells. Indeed, for each Ŷ j the components of Wk⊗X Ŷ j that are not copies of Ŷ j (or copies
of some lower grade Zi) arise from contractible intersections having diameter < M and diameter(K) ≤
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M < α||Y̌∗j || ≤ α||Ŷ
∗
j || <

1
2 ||Ŷ
∗
j ||. Similarly, a component K of Wk ⊗X Zi satisfies diameter(K) ≤ α||Z∗̄i || <

1
2 ||Z
∗̄
i ||. The analogous explanation shows that Corollary 12.18 applies to Y ∗̄j → X∗̄. �

12.5. Controlling Intersections in Quotient.

Example 12.21. It is possible for A ∩ B = 1 but Ā ∩ B̄ to be infinite under some quotient G → Ḡ. For
instance, let G = 〈a, b | a = Wb〉 for some small-cancellation word W. And let Ḡ = G/〈〈W〉〉. Then
usually, 〈a〉 ∩ 〈b〉 = 1 but 〈ā〉 ∩ 〈b̄〉 � Z. However, the intersection of the images remains trivial if
we quotient by 〈〈Wn〉〉 for large n. This motivates a final step in the proof of Theorem 12.1, where it is
important to know that A ∩ B = A ∩ B.

It is also possible for Ā∩ B̄ḡ to be larger than expected because of identification of conjugators under
the quotient. Here is an example illustrating this:

Let G = 〈a1, a2, c, d | c = Wd〉 where W is some small-cancellation word in the generators. Let
A = 〈a1, a2〉 and let B = 〈ac

1, a
d
2〉. Then for most choices of W the intersection A ∩ B = 1. Let

Ḡ = G/〈〈Wn〉〉. For most values of W, and for n = 1, we have Ā ∩ B̄ = 〈ā1, ā2〉. But for large values of
n, we have Āc̄ ∩ B̄ = 〈ā1〉.

Lemma 12.22. Let 〈X | Y1, . . . ,Yk〉 be a cubical presentation satisfying small-cancellation hypotheses
of Theorem 3.36 as well as the short innerpath condition of Definition 5.4. (I don’t think one uses
negatively curved internal cone-cells here.) Let A1 → X and A2 → X be based local isometries.

Suppose the cubical presentation has “small pieces” in the sense that each cone-piece P in Yi sat-
isfies: ∇Yi(P) < 1

4 ||Yi||, and each wall-piece satisfies ∇Yi(P) < 1
8 ||Yi||. (In the graded case we use the

notation ∇Yi(P) < 1
4 ||Y
∗
i || and ∇Yi(P) < 1

8 ||Y
∗
i ||.)

Suppose the cubical presentation has small pieces relative to A1, A2 in the following sense for each
1 ≤ j ≤ 2 and 1 ≤ i ≤ k: For each pair of lifts Ã j, Ỹi to X̃, the piece P between Ã j, Ỹi satisfies: Either
∇Yi(P) < 1

8 ||Yi|| or Ỹi ⊂ Ã j.
Let π1A1giπ1A2 be a collection of distinct double cosets in π1X. And suppose that for each chosen

representative gi and each cone Y j we have |gi| <
1
8 ||Y j||.

Let G → Ḡ denote the quotient π1X → π1X∗. Then:

(1) [Double Coset Separation] π1A1ḡiπ1A2 and π1A1ḡ jπ1A2 are distinct for i , j.

Suppose now that the cosets π1A1giπ1A2 form a complete set of double cosets with the property that
π1Agi

1 ∩ π1A2 is infinite. Then:

(2) [Square Annular Diagram Replacement] If π1A1
ḡ
∩ π1A2 is infinite for some ḡ ∈ Ḡ, then

π1A1ḡπ1A2 = π1A1ḡiπ1A2 for some i (which is unique by (1)).
(3) [Intersections of Images] For each gi we have: π1Agi

1 ∩ π1A2 = π1A1
ḡi
∩ π1A2.

We will assume in the proof that each gi is a minimal length representative for its double coset.

Proof of Claim (1). Choose a minimal complexity disk diagram D → X∗ with boundary path P =

a1gia2g−1
j , where a1, a2 are closed based local geodesics in A1, A2 and gi, g j are representatives as

above. If D has no cone-cells then D actually factors as a cubical diagram D → X → X∗ and hence
gi, g j represent the same double coset in π1X so i = j. Let us assume that this is not the case, so D
contains at least one cone-cell.

Intuitively, we will now produce a maximal annular diagram B containing the boundary path of D
such that B → X is a cubical diagram, and B is in the local convex hull of the boundary path within
D, in the sense that we obtain B by continually adding squares of D whose corners are already present,
and adding closed edges corresponding to spurs.
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F 153.

More precisely let us begin with E0 = D and Q0 = ∂pD. We will construct a sequence of paths Qi
bounding disk diagrams Ei that are contained in slight modifications Di of D. See Figure 153.

For each i ≥ 0, either:

(1) Qi contains the outerpath of a spur of Ei.
(2) Qi contains the outerpath of a generalized square of Ei.
(3) Qi contains neither.

In the first case, we remove the terminal 0-cell and 1-cell of the spur from Ei to form Ei+1 and
we remove this backtrack to form Qi+1. We continue to repeat the first case until there are no such
backtracks remaining. We then examine the second possibility.

In the second case, we first adjust the interior of Ei to obtain E′i (and thus adjust the ambient diagram
Di to obtain D′i) so that the square actually lies along Qi, we then remove from E′i the open square
and the corner consisting of the two open 1-cells and the open 0-cell. The path Qi+1 is obtained from
Qi by pushing across that square so that we replace the two edges from the outerpath corner by the
opposite two edges. Note that if the outerpath of the square meeting Qi is longer, then Qi+1 will obtain
backtracks which we will omit when we return to the first case. After performing the second case once,
we return to the first.

Since the number of cells in Ei is decreasing, after t steps we terminate at Et and Qt = ∂pEt. Observe
that Et contains all cone-cells originally in D, and in particular Et is nontrivial provided D contains at
least one cone-cell.

At each stage, let Bi denote the annular subdiagram in D′i bounded by P and Qi. We think of the
diagram Bi as the “local convex hull” of ∂P in D, but this is misleading as some cubical replacement
moves were necessary to create it, and D is evolving.

It is important to note that at each stage, and in particular, in the final result, each dual curve in Bi
emerging from an edge of Qi terminates on P. Indeed, this holds initially, and is preserved by each of
the two replacement moves indicated above.

By construction Et cannot have the corner of a generalized square on its boundary path, nor can it
have a spur. As was explained for Bi above, each dual curve emerging from a 1-cube on the boundary
path of Et must terminate on a 1-cell of the boundary of D.

Now apply Theorem 3.40 to see that either Et is a single cone-cell, or Et has at least two positive
curvature θ-shells.

A dual curve emanating from an edge in Qt cannot cross itself in Bt before terminating on P. Indeed,
after crossing itself inwards it must eventually cross itself back outwards since it terminates on P. So
we see that there is either a monogon or bigon dual curve subdiagram in Bt and hence a way to reduce
the area, which is impossible. See the first diagram in Figure 154.

Now consider the family of dual curves emanating from the outerpath on Qt of a single θ-shell R of
Et. As explained above, each such dual curve terminates on P. We claim that they cannot cross each
other, and are thus splayed as in the second diagram in Figure 154.
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F 154.

F 155. Rectangles can self-intersect in the rectified annuli

Indeed, if two such curves crossed each other on the same side of the annulus as in the third diagram
in Figure 154 then there would be an outerpath of a generalized square in Bt on R itself. This yields
a complexity reduction by absorbing the square into the cone of R. This is impossible by the minimal
area of D. (We say that a dual curve emanating from the θ-shell R crosses itself on the “same side” as
R if it crosses itself before crossing a dual curve of the other θ-shell R′.)

We note that this argument shows that if Et is a single cone-cell then its emanating dual curves are
splayed.

Let us now assume there are at least two shells, say R and R′ (of course, there are at least three if Et
is not a ladder). Two such dual curves emanating from R cannot cross by going around to the other side
of the annulus Bt as in the fourth diagram in Figure 154. For then, all the dual curves emanating from
the outerpath of R′ would cross one or the other of these dual curves. We thus see that the outerpath of
R′ is in the union of at most two wall-pieces. Each hyperplane piece H in Y satisfies ∇Y H < 1

4 ||Y ||, so
the outerpath would not be at least half the length of ∂R. This contradicts Condition 5.4 (for instance),
unless ∂R is not essential in Y , in which case D was not of minimal area.

In a similar manner, we see that two dual curves leaving the outerpath of the shell R cannot travel
around the annulus and end on the same subpath a1, a2, gi, g j of P. See the fifth diagram in Figure 154
where the curves both end on a1. For then consider another shell R′, and note that the dual curves
from its outerpath end entirely on two dual curves together with a1, and hence the outerpath has length
< ( 1

8 + 1
8 + 1

8 )|∂R′| which contradicts Condition 5.4.
We conclude that the dual curves from the outerpath of each shell lie in a sequence of at most four

“pieces” in a1, a2, gi, and g j. Since by hypothesis each such “piece” is < 1
8 of ∂R, we see that the

outerpath of R is < 1
2 of |∂R| which contradicts Condition 5.4.

A similar argument works to reach a contradiction when Et is a single cone-cell. Indeed in this case
it suffices to see that each “piece” with one of a1, a2, gi, g j has length < 1

4 ||Y ||. �

Proof of Claim (2). Let D → X∗ be an annular diagram for PQ
1 = P2 where Pi → Ai are based paths

and P1, P2 are boundary paths of D and Q is a path in D joining the basepoints, and Q is homotopic to
a based path g in X that projects to ḡ, and Pi represent infinite order elements in π1X∗.

We can compress replaceable cone-cells and absorb cancellable pairs while preserving the element
representing the conjugating path in Ḡ. Similarly, can also push P1, P2 past any corners of generalized
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F 156.

F 157. An annular diagram with a doubly external cone-cell must be thin, since cutting
along that cone-cell must yield a ladder.

squares, which could be absorbed into A1, A2 since Ai → X are local isometries, and so no Pi contains
the outerpath of a corner of a generalized square in D. We can also assume that D is minimal in the
sense that none of its cone-cells can be absorbed into Ai through Pi on either side of ∂D. (It is here that
our hypothesis on Ai → X are applied.)

We pass to a rectified annular diagram as in Section 3.6. So we can assume that D has no cancellable
pairs, and by local convexity, there are no corners of generalized squares on either boundary path. We
also assume that D is minimal, in the sense that its cone-cells cannot be replaced by square diagrams,
and cannot be absorbed into either boundary path.

A cone-cell of D whose boundary path intersects ∂D in more than two components is negatively
curved. Consider a cone-cell R whose boundary path intersects Pi in exactly two subpaths as in the first
diagram in Figure 156. This cone-cell subtends a subdiagram of D containing R that is a disk diagram
containing at least two positively curved cells, and we would contradict minimality (as any such cell
could be absorbed into Ai). Finally, consider a cone-cell whose boundary path intersects ∂D in a single
subpath of Pi. If it is a (nonnegatively curved) θ-shell then by hypothesis, since it cannot be replaced
by a square diagram, it can be absorbed into Ai thus contradicting minimality. We conclude that each
cone-cell in D must intersect each of P1 and P2 in a single subpath of its boundary, and so D has the
form illustrated on the right in Figure 158. Thus D has the property that all of its cone-cells are external,
and hence it has the form illustrated on the right in Figure 158, though it might not be singular.

We conclude that if D has a cone-cell, then it must be a width 1 annuladder. (Prove this by cutting
out one cone-cell as in Figure 157.) However, this is ruled out by a count on the lengths of boundary
paths of cone-cells, and the lengths of their pieces with each other and with A1, A2. Indeed, each overlap
with the boundary projects to a length of < 1

4 of the girth (of its associated cone), and cone-pieces or
wall-pieces likewise project to length < 1

4 of the girth.
The only remaining possibility is that D is a square diagram. But then we have shown that Q is

path homotopic in X∗ to the element Q′ such that PQ′

1 = P2 in π1X where Pi have infinite order.
Consequently, Q′ is in the same double coset class as one of our finitely many representatives gi.

Finally, this double coset class representative is uniquely determined by Claim (1). �

Proof of Claim (3). It is immediate that π1Agi
1 ∩ π1A2 ⊂

(
π1A1

ḡi
∩ π1A2

)
so we must only verify that

π1Agi
1 ∩ π1A2 ⊃

(
π1A1

ḡi
∩ π1A2

)
.

For each element represented by a closed path P2 → A2 in the intersection π1A1
ḡ
∩ π1A2, there is

a closed based path P1 → A1 and a closed based path Q → X, such that there is an annular diagram
D→ X∗ for PQ

1 = P2. As in the proof of Claim (2), there is a sequence of removals and absorptions of
cancellable pairs, and absorptions of θ-shells to the boundary of the annulus (or replacements of these
by square diagrams). We can pass to a reduced and minimal (in the sense of Claim (2)) annular diagram
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F 158. Before and after: The middle figure illustrates a typical situation where an origi-
nal annulus is turned into a square annulus by pushing out cone-cells through the two bounding
circles and pushing the conjugator out (so it is connected to the new conjugator by a “flap” con-
sisting of a disk diagram in X∗). No extra flap is illustrated on the left diagram - were Q = Q′.
The diagram on the right represents the final impossible annuladder we consider.

D′ → X for P′1
Q′ = P′2 where each P′i is a closed path in Ai that is path homotopic to Pi in X∗ (and

actually in A∗i ), and likewise Q′ → X is path-homotopic to Q in X∗.
As concluded in the proof of Claim (2), D′ → X is a square annular diagram, and so we have found

an element g′ represented by Q′ such that g′ = g and P2 ∈ π1Ag′
1 ∩ π1A2, as P2 is path-homotopic to

P′2 in X∗ (and actually in A∗2), and D′ demonstrates that P′2 ∈ π1Ag′

1 ∩ π1A2.
If P2 represents a nontrivial element in π1X∗, then it represents a nontrivial element in π1X, and

hence so does P′2. But then the conjugacy P′1
Q′ = P′2 shows that Q′ lies in one of the double cosets

π1A1giπ1A2 in π1X. The images in π1X∗ of these double cosets are distinct by Claim (1). However,
since each such Q′ is path-homotopic in X∗ to our conjugator Q (representing ḡ), we see that Q′ maps
to the same element ḡ in π1X∗. Thus, for any P2 chosen above representing a nontrivial element in π1X∗

in the intersection, since the associated conjugator Q′ represents an element mapping to ḡ, Claim (1)
ensures that each Q′ lies in the same double coset π1A1g f π1A2 for some fixed f .

In conclusion, we have thus found that each nontrivial element in the intersection of the images in
π1X∗ (initially represented by PQ

1 = P2), is the image of an element (represented by (P′1)Q′ = P′2) in
the intersection within π1X. And moreover, each element Q′ lies in the same double coset π1A1g fπ1A2
in π1X. Since elements in the same double coset correspond to the same intersection of subgroups, we
reach our desired conclusion:

Nontrivial Elements
{
π1A1

ḡ
∩ π1A2

}
⊂ π1A

g f

1 ∩ π1A2. �

13. A    

13.1. Virtually Special Amalgams.

Theorem 13.1 (Special Hyperbolic Amalgam). Let G = A ∗C B be an amalgamated product where G
is word-hyperbolic and C is quasiconvex. If A, B are virtually compact special then so is G. A similar
result holds for graphs of groups, and in particular: Let G = A∗C be an HNN extension such that G is
word-hyperbolic and C is quasiconvex in G. If A is virtually compact special then so is G.

Remark 13.2. Following the lead that Theorem 13.1 holds when C is already malnormal by Theo-
rem 11.2, it is attractive to attempt to deduce it from Theorem 11.2 by passing to a finite index subgroup
of G whose induced graph of groups has the property that each of its edge groups is malnormal. In fact,
this holds when C is separable.
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Theorem 13.3 (Word-hyperbolic QVH special). Every word-hyperbolic group in QVH is virtually
special.

Proof. This holds by induction on the length of a hierarchy by applying Theorem 13.1. �

We use the notation xy = yxy−1 here but warn the reader that xy = y−1xy is used in other places in
the paper.

Proof of Theorem 13.1. Reduction to HNN case: There is an embedding A ∗C B → D∗C where D =

A ∗ B and the HNN extension D∗C has C embedded in the first factor of A ∗ B, and has Ct embedded in
the second factor. This embedding is quasiconvex, and so C is itself quasiconvex in D. We claim that
if A, B are word-hyperbolic and virtually compact special then so is D = A ∗ B. We recommend that
the reader prove this using a simple covering space argument. Moreover, if D∗C is virtually compact
special, then so is the quasiconvex subgroup A ∗C B. Thus the AFP case follows from the HNN case.

Note that if G′ is a torsion-free finite index subgroup, then its induced graph of groups decomposition
has the required properties, and the virtual specialness of G′ implies the virtual specialness of G.

Strategy of proof: Consider G = A∗Ct=D where A is virtually special, and G is word-hyperbolic
and C is quasiconvex in G. Let h = HeightG(C). We will form a quotient G = A∗Ct=D → Ā∗C̄ t̄=D̄ = Ḡ
where Ā is virtually special, Ḡ is word-hyperbolic and C̄ is quasiconvex, and h̄ = HeightḠ(C̄) < h. The
group Ḡ will therefore be virtually special by induction on height. The virtual specialness of the base
case where h = 0 so C is finite was treated above. (Note that the case h = 1 where the edge group is
almost malnormal is in Theorem 11.2.)

The quotient G → Ḡ will also be chosen to have the property that each intersecting conjugator ki of
C has k̄i < C̄, where k is an intersecting conjugator if Ck ∩ C is infinite but k < C. Note that there are
finitely many C cosets of intersecting conjugators by Proposition 12.8.

Since Ḡ is virtually compact special and word-hyperbolic, and C̄ is quasiconvex, there is a finite
quotient Ḡ → Q such that C̄ is separated from each k̄i in Q, and hence φ(C) is separated from each
φ(ki) in the resulting composition quotient G φ

→Q. Let G′ be the kernel of φ and observe that each edge
group of the induced splitting of G′ is almost malnormal. Consequently, G′ is virtually special by
Theorem 11.2.

The collection of tree stabilizers: For each i, let {Tik : k ∈ Ji} denote representatives of G-orbits of
the finitely many i-edge subtrees with infinite pointwise stabilizer Fix(Tik). Let Bik = Stab(Tik). Each
Bik acts on Tik with a fixed point, and we choose one fixed vertex and declare it to be the root of Tik.
Without loss of generality we assume each Tik is positioned so that its root lies at the base vertex v
of T . Note that Tik already has the structure as a directed graph, since it is a subgraph of the directed
graph T . However, Tik has an additional structure where we regard the root as the highest vertex and
where each edge ascends from its lower vertex to its higher vertex (towards the root). Accordingly,
for each edge e of Tik ascending from the vertex a to the vertex b we have StabBik (a) = StabBik (e)
and [StabBik (b) : StabBik (e)] < ∞. For each k we let S ik ⊂ Tik denote a (fundamental domain) subtree
consisting of unique representatives of the Bik-orbits of vertices and edges of Tik. One constructs S ik by
beginning with the root, and at each stage, including unique representatives of the next highest closed
edges that meet vertices already included. For each k ∈ Ji let Lik ⊂ G index the vertices of S ik, so each
vertex of S ik equals xv for a unique x ∈ Lik. For notational comfort we index the root vertex by 1 = 1G.
We let Hikx denote the subgroup of A whose conjugate Hx

ikx equals Ax ∩ Bik which equals StabBik (xv).
As explained above, if xv ascends to yv in S ik then Hx

ikx is a finite index subgroup of Hy
iky. Hence,

conjugation by the element xy−1 induces a finite-index inclusion Hxy−1

ikx ↪→ Hiky.
The almost malnormal collection in A and the quotient A→ Ā:



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 136

Note that Bhk = CG(Fix(Thk)). The collection {Bhk : k ∈ Jh} is almost malnormal in G since it is
a subcollection of a collection that is almost malnormal by Lemma 12.12. Consequently, {Hhkx : k ∈
Jh, x ∈ Lhk} is an almost malnormal collection of subgroups of A by Lemma 12.13.

We will apply Theorem 12.3 to A where the role of {H1, . . . ,Hr} is played by {Hhkx}. For each k,
the constraint subgroups {Ḧhkx} supplied by Theorem 12.3, embed as finite index subgroups of the root
Hhk1. Indeed there is a sequence of monomorphisms following the ascending path in S hk from xv to
1v. Likewise, the preference subgroups H◦hkx ascend to finite index subgroups of Hhk1. We can thus
choose a finite index subgroup H•hk1 of Hhk1 that is contained in the intersection of all these constraint
and preference subgroups. We choose H′hk1 to be a subgroup of H•hk1 that is normal in Hhk1, and this
descends to a subgroup H′hkx for each x. For each directed edge (xv, yv) in S hk, we thus have:

(H′hkx)xy−1
= H′hky.

The torsion-free finite index subgroup A♀: The group A acts properly and cocompactly on a
CAT(0) cube complex X̃. Let A♀ denote a torsion-free finite index normal subgroup of A, and we let
X = A♀

\X̃. The subgroup A♀ will facilitate our cubical small-cancellation theory computations below.
We let U = (C ∩ A♀)\Ũ and V = (D ∩ A♀)\Ṽ . Note that it is possible that (π1U)t , π1V .

The preference subgroups: We will choose the subgroups H◦hkx ⊂ Hhkx to be small enough that:
(1) each H◦hkx lies in A♀.
(2) cosets corresponding to the transition elements (i.e. between stable letters) in the normal forms

of intersecting conjugators in G of the edge group C are separated by A→ Ā.
(3) double cosets HikxaH` jy corresponding to intersecting conjugators in A of the various Hikx are

separated by A→ Ā where 1 ≤ i ≤ h, k ∈ Ji, x ∈ Lhk and 1 ≤ ` ≤ h, j ∈ J`, y ∈ L` j.
(4) C̄ and D̄ are quasiconvex in Ā.

The conjugation isomorphism Ct = D projects to C̄ t̄ = D̄: We now show how to verify that the
kernel of C → C̄ maps isomorphically to the kernel of D → D̄ under the map C → D, and hence the
conjugation isomorphism Ct = D projects to C̄ t̄ = D̄. We begin with some notation: Let (xv, yv) denote
an edge of S hk that is directed from xv to yv. The element x−1y is of the form αtβ for some α, β ∈ A
where α = α(x, y) and β = β(x, y). There are two points here:

Firstly, as we shall later confirm, we have the following presentations for C̄ and D̄.

C̄ = C/〈〈(H′hkx)α : k ∈ Jh, (xv, yv) ∈ Di-Edges(S hk), α = α(x, y)〉〉

D̄ = D/〈〈(H′hky)β
−1

: k ∈ Jh, (xv, yv) ∈ Di-Edges(S hk), β = β(x, y)〉〉

Secondly, the map C → D induced by conjugation by t, sends (H′hkx)α to (H′hky)β
−1

. Indeed, (Hhkx)xy−1
⊂

Hhky holds by construction, and our “descending choice” of the H′hkx ensures that: (H′hkx)xy−1
= H′hky.

Since xy−1 = αtβ we have: ((H′hkx)α)t = ((H′hkx)xy−1
)β
−1

= (H′hky)β
−1

. Thus the conjugation isomorphism
Ct = D maps the generators of kernel(C → C̄) isomorphically to the generators of kernel(D → D̄).
Thus Ct = D projects to an isomorphism C̄ t̄ = D̄ as claimed.

The associated superconvex subcomplexes: Let {Hikx : x ∈ Lik} denote representatives of the
conjugacy classes in A of intersections with conjugates of Bik. Specifically, each Hikx = Bx−1

ik ∩ A
for some x ∈ G. Each Hikx acts properly and cocompactly on a superconvex basepoint containing
subcomplex Ỹikx. Choosing H111 = C and H11t = D we let Ũ = Ỹ111 and Ṽ = Ỹ11t. For i > i′

if Hikx is conjugate into Hi′k′x′ then the corresponding translate of Ỹikx lies in Ỹi′k′x′ . This property
can be arranged by making the choices with i = h first and then proceeding towards i = 1 to make
the choices inclusively at each stage. There is a constant M such if diameter

(
aỸi jk ∩ a′Ỹi′ j′k′

)
> M

then this intersection of A-translates equals some a′′Ỹi′′ j′′k′′ with i′′ ≥ i, i′ and moreover if i′′ = i then
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a′′Ỹi′′ j′′k′′ = aỸi jk and similarly for i′′ = i′. There is a constant R bounding the diameters of base
rectangles on these superconvex subcomplexes of X̃.

Computing presentations for C̄ and D̄: Assume each H◦h jk ⊂ H♀
h jk and assume each H◦h jk has

||H◦h jk\Ỹh jk|| > 24 max(R,M). Under these assumptions, we verify that our claimed presentations for C̄

and D̄ are correct. The normal subgroup N = ker(A → Ā) we obtain is N = 〈〈π1Ŷh jk〉〉 and is contained
in the normal subgroup A♀ of A since each π1Ŷh jk = H′h jk ⊂ H◦h jk ⊂ A♀. The presentation X∗ = 〈X |

aŶh jk : a ∈ A〉 accurately determines the presentation for Ā♀. Indeed, 〈〈π1Ŷh jk〉〉A is a subgroup of A♀

since each π1Ŷh jk is, and moreover it is the smallest normal subgroup of A♀ containing each π1Ŷh jk that
is also invariant under the A-action by conjugation. Accordingly, 〈〈π1Ŷh jk〉〉A = 〈〈(π1Ŷh jk)a : a ∈ A〉〉A♀ .

The key to computing C∩N is to first observe that C∩N = C∩ (A♀
∩N) = (C∩A♀)∩N = π1U ∩N.

Applying Corollary 12.18, we use no missing θ-shells to compute an induced presentation U∗ from
U → X and X∗. It is of the form: U∗ = 〈U | cŶh jk : c ∈ C〉. And consequently C ∩ N = 〈〈π1Ŷh jk〉〉C .
Likewise D∩N = (D∩A♀)∩N = π1V∩N, and there is an induced presentation V∗ = 〈V | dŶh jk : d ∈ D〉,
and we see that D ∩ N = 〈〈π1Ŷh jk〉〉D.

Separating intersecting conjugators: By Proposition 12.8, there are finitely many double cosets
CgsC in G such that Cgs ∩ C is infinite. Each representative gs can be chosen to be of the form:
gs0tεs1gs1tεs2 . . . tεsrs gsrs where gsk < C if εsk = −1, εs(k+1) = 1, and gsk < D if εsk = 1, εs(k+1) = −1,
and gs0, gsrs < C. Since C and D are separable subgroups of A, there is a finite index normal subgroup
A� ⊂ A such that gsC 1 A�C and gsD 1 A�D as appropriate. We add the intersections H�h jx = Hh jx∩A�

to our list of preferences. Consequently, ḡs < C̄ and likewise ḡs < D̄ etc. and thus in the quotient
A∗Ct=D → Ā∗C̄ t̄=D̄, each normal form maps to a normal form of the same length. Thus length ≥ 1
intersecting conjugators will have length ≥ 1 images, and length 0 intersecting conjugators are also
separated from C̄.

Reduction in height: There is an equivariant map T → T̄ from the G-action on the Bass-Serre
tree T of A∗C to the Ḡ action on the Bass-Serre tree T̄ of Ā∗C̄ . Consider the finitely many subgroups
{Hikx : 1 ≤ i ≤ h, k ∈ Ji, x ∈ Lhk}. By Proposition 12.8, there are finitely many double cosets HikxaH` jy
in A of intersecting conjugators with the property that Hikx ∩ Ha

` jy is infinite. We will show below that
for suitable A → Ā, if an intersection H̄ikx ∩ H̄ā

` jy is infinite, then H̄ikxāH̄` jy is the image of one of the
finitely many HikxaH` jy above. Consequently any finite subtree F̄ ⊂ T̄ with infinite pointwise stabilizer
can be lifted to a finite subtree F ⊂ T with infinite pointwise stabilizer and FixḠ(F̄) = FixG(F).
Consequently any such subtree F̄ has at most h edges, since F does as h = HeightG(C). Moreover, if
F has h edges and infinite pointwise stabilizer then StabG(F) is conjugate to Bhk for some k, and so
StabḠ(F̄) is finite.

Towards height control: We will choose A → Ā so that Hikx ∩ H` jy
ā

is commensurable with
Hikx ∩ Ha

` jy for each such double coset. Indeed, the commensurabilities below are immediate. The

equality holds by Lemma 12.22.(3) applied to A♀
→ Ā♀ = π1〈X | Ŷhkx〉 with respect to {H♀

ikx : i < h}.
(The extra preference is that each ||Ŷhkx|| > 8 times the length of the shortest representatives of the
various intersecting conjugators.)

Hikx ∩ H` jy
ā
∼ H♀

ikx ∩ H♀
` jy

ā
= H♀

ikx ∩ (H♀
` jy)a ∼ Hikx ∩ Ha

` jy.

Moreover each intersecting conjugator in Ā is the image of an intersecting conjugator in A in the sense

that if Hikx∩H` jy
b̄

is infinite then b̄ = a′ for some a′ in a double coset HikxaH` jy of intersecting conjuga-
tors. For this we consider the larger finite set of subgroups {(H♀

ikx)g} where g varies over representatives
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of the left cosets {gA♀
} in A. We apply Lemma 12.22.(2) to a full set of double cosets {(H♀

ikx)gq(H♀
` jy) f }

representing intersecting conjugators: Observe that for some chosen coset representative g and some
β ∈ A♀ we have:

(H♀
ikx) ∩ (H♀

` jy)
b̄

= (H♀
ikx) ∩ (H♀

` jy)
gβ

= (H♀
ikx) ∩ (H♀

` jy)g
β

Thus by Lemma 12.22.(2), β̄ = c′ for some c′ ∈ H♀
ikxc(H♀

` jy)g where c and hence c′ is an intersecting

conjugator so H♀
ikx ∩

(
(H♀

` jy)g)c′ is also infinite. Consequently Hikx ∩
(
(H` jy)gc′) is infinite so a′ = gc′ ∈

Hikxa(H` jy) for one of the known intersecting conjugators a. Thus b̄ = a′ as claimed.
Hyperbolicity of Ḡ and Quasiconvexity of C̄: Observe that Ā is hyperbolic as indicated in The-

orem 12.3, and C̄, D̄ are quasiconvex in Ā since C̄♀ and D̄♀ are quasiconvex in Ā♀ by Corollary 3.50.
Consequently the finite height of C̄ in Ḡ implies that Ḡ is hyperbolic by the “no long annulus” criterion
of [BF92], and then C̄ is quasiconvex in Ḡ by [Mit04]. �

Remark 13.4. An alternative way to structure the proof is to note that the procedure can also be iterated
until, at the last step, C and D are quotiented to a finite group, and we have separated C from the
intersecting conjugators in a group that is an HNN extension of a virtually-compact special hyperbolic
group along a finite subgroup. This accomplishes the objective which enables the strategy - but without
induction on height to know that Ḡ is virtually special. Instead the onus is on a strong form of the
special quotient theorem.

Problem 13.5. Let G act properly on a CAT(0) cube complex. Is G � π1X∗ where X∗ is a small-
cancellation cubical presentation? If G is word-hyperbolic and acts properly and cocompactly, can X∗

be chosen so that X̃ is δ-hyperbolic? Perhaps the canonical associated cube of spaces or some variation
of it works. The grading should be in reverse order of the dimension.

14. H 3-      

Let M be a finite volume hyperbolic 3-manifold with an incompressible geometrically finite 2-sided
surface S . There exists a (topological) hierarchy for M which begins by cutting the 3-manifold along
S and proceeds by cutting along further incompressible surfaces until only balls remain. It is known
that geometrical finiteness is equivalent to quasiconvexity (even when there are cusps) [Hru10]. All
further cuts in the hierarchy correspond algebraically to splittings along quasiconvex subgroups, as it
is a theorem of Thurston’s that finitely generated subgroups of a geometrically finite infinite volume
group are themselves geometrically finite [Can94]. In the hyperbolic case, the 3-manifold hierarchy
induces a quasiconvex hierarchy of π1M, and we thus have:

Theorem 14.1. Let M be a closed hyperbolic 3-manifold with an incompressible surface S such that
π1S ⊂ π1M is geometrically finite. Then π1M has a finite index subgroup that is the fundamental group
of a compact special cube complex.

A group G is residually finite rational solvable (RFRS) if there is a decreasing sequence of finite
index normal subgroups G = G0 > G1 > G2 · · · such that ∩Gi = {1G} and such that for each i we have
Gi+1 > Ki where Gi/Ki is torsion-free abelian. To absorb the definition, imagine repeatedly passing to
a finite index subgroup by pulling back a large index subgroup of the free abelianization at each stage.
The following is proven in [Ago08]:

Lemma 14.2. Every right-angled Artin group is (virtually) RFRS.

Corollary 14.3. Every closed hyperbolic 3-manifold M with a geometrically finite incompressible sur-
face satisfies:
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(1) π1M is a subgroup of a right-angled Artin group (right-angled Coxeter group).
(2) π1M is virtually fibered.
(3) π1M is subgroup separable.

Proof. Since π1M has a quasiconvex hierarchy, we see that π1M is virtually special by Theorem 13.3.
Since π1M has a finite index subgroup that lies in a right-angled Artin group it is RFRS by Lemma 14.2.

Agol’s virtual fibering criterion [Ago08] applies to the finite cover M̂ with π1M̂ special.
A consequence of the tameness theorem [Ago04, CG06], is that subgroups of π1M are either geo-

metrically finite or virtual fibers. The latter are easily seen to be separable using an index 2 normal
subgroup with Z quotient. We proved in [HW08] that quasiconvex subgroups of a compact word-
hyperbolic special cube complex are separable, as they are virtual retracts. But geometrically finite
subgroups are precisely the same as quasiconvex subgroups [Hru10]. �

We will handle the case of a cusped hyperbolic 3-manifold in Section 14.4.

Problem 14.4. Let M be hyperbolic 3-manifold with an incompressible geometrically finite subgroup.
Does M (virtually) have a hierarchy where the tori don’t get cut until the last steps?

Problem 14.5. Show that every fibered hyperbolic 3-manifold has a finite cover with an incompressible
geometrically finite surface.

14.1. Virtual separation and largeness.

Lemma 14.6. Let D ⊂ X be a separating hyperplane in a connected special cube complex, and suppose
that D is essential in the sense that neither D → X+ nor D → X− is π1-surjective so π1X splits
nontrivially along π1D. There is a finite cover X̂ → X such that no component of D̂ separates X̂.

Proof. Let α+ → X+ and α− → X− be closed based paths representing elements outside of π1D. Use
the separability of π1D in π1X to pass to a finite quotient of π1X such that ᾱ+ < π1D and likewise such
that ᾱ− < π1D. Let X̂ denote the corresponding finite cover. Let D1, . . . ,Dr denote the components of
the preimage of D, and consider the dual graph Γ whose vertices correspond to components of X̂−∪iDi

and whose edges correspond to components Di. Note that Γ is connected since X̂ is connected. By
construction, each vertex has valence ≥ 2. And by regularity, π1X acts transitively on the edges of Γ. If
some edge separated, then each edge would separate, and so the finite regular tree would be an n-pod
for some n. Consequently, no Di separates. �

Remark 14.7. The properties discussed here hold in the framework where D is a “codimension-1
subspace” in the sense that D separates any open neighborhood N(D) of D in X. And D is compact
and π1-injective and π1D is separable in π1X. In our situation separability automatically holds because
hyperplanes are always separable.

Lemma 14.8. Let D ⊂ X be a hyperplane in a special cube complex. Let Y = X − No(D) where No(D)
denotes the open cubical neighborhood. Let D+ and D− denote the sides of N(D) � D × [−1, 1], so
there are maps D+ → Y and D− → Y.

Suppose that D is nonseparating (Y is connected), and at least one of D+ → Y or D− → Y is
not π1-surjective. Or, suppose that D is separating (let Y = Y+ t Y−), and [π1Y+ : π1D+] ≥ 3 and
[π1Y− : π1D−] ≥ 2.

Then there is a finite cover X̂ → X such that the dual graph of hyperplanes in the preimage of D has
negative euler characteristic. Consequently, π1X̂ surjects onto the free group F2.

Proof. This is similar to the proof of Lemma 14.6. When D is nonseparating and say α ∈ π1Y+−π1D+,
then we choose a finite regular cover X̂ such that ᾱ < π1D. Then the dual graph for D1, . . . ,Dr in X̂ has
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each vertex of valence ≥ 3, since each component of X̂ − ∪iDi has at least one edge for a D− type side,
and at least two edges corresponding to D+ type sides that are connected by a lift of α.

In the case where D is separating, we let α0, α1, α2 be representatives of distinct nontrivial cosets
of π1D+ in π1Y+, and we let β0, β1 be representatives of distinct nontrivial cosets of π1D− in π1Y−.
We choose a finite quotient of π1X maintaining the distinctness of the three cosets and the two cosets,
and we let X̂ be the corresponding finite cover. Then each vertex in the dual graph corresponding
to a component of the preimage of Y+ has valence at least three, and each vertex in the dual graph
corresponding to a component of the preimage of Y− has valence at least two.

Thus the dual graph has negative euler characteristic in both cases, and the quotient of X̂ to the dual
graph yields a noncyclic free quotient. �

Example 14.9. We now describe a finite dimensional example X where F2 � π1X but X does not admit
a compact local isometry Y → X where π1Y is nontrivial.

Let X̄ be the standard 2-complex of 〈a1, a2, b1, b2 : [ai, b j]〉, so X̄ is isomorphic to the cartesian
product of two bouquets of two circles and π1X̄ � F2 × F2.

Let X → X̄ be the based covering space with π1X̄ = 〈a1b1, a2b2〉. Note that π1X̄ has trivial inter-
section with 〈a1, a2〉 and with 〈b1, b2〉. Consequently, for each nontrivial element g ∈ π1X̄, there is
a unique flat plane Fg in X̃ such that is stabilized by g, and in fact, g acts by translations along its
diagonal. Moreover, Fg does not contain a nonempty proper convex subcomplex stabilized by g.

It follows that for any compact local isometry Y → X, we have π1Y = 1.

The punchline of this section is the following strengthening of the Tits alternative for groups acting
properly on finite dimensional CAT(0) cube complexes [SW05].

Theorem 14.10. Let X be a finite dimensional virtually special cube complex. Then π1X is either large
or virtually abelian.

Proof when X is compact. By possibly passing to a finite cover, we can assume without loss of gen-
erality that X is special. Consider a hyperplane D ⊂ X. By induction on dimension, either π1D is
large or virtually abelian. In the former case, we see that π1X is large since there is a virtual retraction
C(D→ X) → D. In the latter case, either π1X is virtually π1D o Z and hence virtually abelian, or the
splitting along D has some large index on at least one side, and so there is a finite index subgroup with
a free quotient by Lemma 14.8. (This follows the plan used in [SW05] but avoids the algebraic torus
theorem.) �

Proof in the general case. We can pass to a finite cover where all hyperplanes are 2-sided and em-
bed. We can also assume that X is minimal in the sense that it does not contain a locally convex
π1-isomorphic subcomplex. Hence for each hyperplane D, either D is nonseparating or π1D has index
≤ 2 on each side of X − D.

Suppose X contains a hyperplane D where π1D is virtually abelian. Consideration of the π1D on its
two sides in X, we can either apply Lemma 14.8 to obtain largeness, or we obtain one of the following:
Either π1D has index 2 on both sides in the separating case, or π1D has index 1 on each side in the
nonseparating case. These two situations lead to short exact sequences of the form: 1 → π1D →
π1X → Z or 1 → π1D → π1X → Z2 ∗ Z2 → 1. And in each case, we obtain that π1X is virtually
polycyclic and hence virtually abelian.

Now suppose some hyperplane D is not virtually abelian. Then D itself must contain a hyperplane
E where π1E has nontrivial index on both of its sides within D. We then let D′ be the hyperplane of X
with D ∩ D′ = E, and we see that π1D′ has nontrivial index on both its sides within X. And so again,
largeness follows from Lemma 14.8. �
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Perhaps Theorem 14.10 can be strengthened to: If X is special and finite dimensional then: Either
π1X is abelian or π1X has a noncyclic free quotient. In particular, I suspect that G � Zn whenever G
is both special and virtually abelian. Note that the Klein bottle group is virtually special and virtually
abelian, but not special as it is not residually torsion-free nilpotent.

Consideration of the proof of Theorem 14.10 suggests the following might hold.

Conjecture 14.11. Let X be a finite-dimensional nonpositively curved cube complex. Suppose that π1D
is virtually abelian for each hyperplane D of X. Then π1X is either A or A-by-S where A is virtually
abelian and S is a non-elementary quasifuchsian group.

14.2. Cutting all tori with first surface.

Lemma 14.12 (Together in free-abelianization). Let G be virtually compact special and word-hyperbolic.
Let σ1, . . . , σk be elements of infinite order in G. There exists an index n characteristic subgroup G′

such thatσn
1, . . . , σ

n
k (and all their conjugates by G) map to nontrivial elements in the free-abelianization

G′ → H1(G′;Z).

Proof. Let G act properly and cocompactly on the CAT(0) cube X̃, and let J be a finite index charac-
teristic subgroup such that X = J\X̃ is special and compact. See Lemma 12.5.

We can assume without loss of generality that each σi generates a maximal cyclic subgroup (pass to
a smaller and better generator), and we can assume that no σi, σ j have conjugate powers (remove one
from the list). After this assumption, we know by hyperbolicity that no σi is conjugate to itself by an
infinite order element.

By Lemma 8.5, for each i, let Ỹi be a 〈σi〉-cocompact superconvex subcomplex of X̃, and let Yi be
the quotient of Ỹi by J ∩ 〈σi〉 so there is a map Yi → X. For each i, let X̂i = C(Yi → X), so there is a
retraction X̂i → Yi. Let X̂ denote a finite cover with π1X̂ characteristic in G factoring through each X̂i

and let n = [G : π1X̂]. Then for each i, the composition X̂ → X̂i → Yi shows that σn
i is nontrivial in

H1(X̂). �

Remark 14.13. It appears that Lemma 14.12 holds for a collection of tori in a group that is hyperbolic
relative to tori, that is virtually the fundamental group of a sparse special cube complex.

Proposition 14.14. Let M be a finite volume hyperbolic 3-manifold. There exists a filling M̄ of M such
that π1M̄ is word-hyperbolic virtually compact special.

Remark 14.15. It is adequate for the later applications to prove a weaker form of Proposition 14.14
that allows one to pass to a finite cover of M with a large Dehn filling that is virtually special. This is
considerably easier.

Proof. One way to prove this is to use the fact that there exists a hyperbolic filling M̄ that contains a
geometrically finite immersed incompressible surface which lifts to an embedding in a finite cover [?].
Thus π1M̄ is word-hyperbolic and compact virtually special by Theorem 14.1.

Another approach is to choose large fillings of all but one cusp and thus obtain a hyperbolic one-
cusp manifold. Then following ideas that we will later develop, observe that one-cusp manifolds are
virtually special, and that their large fillings are as well. �

Corollary 14.16. Let M be a finite volume hyperbolic 3-manifold with cusps T1, . . . ,Tk (where k ≥ 1).
There exists a finite cover M̂ → M and an incompressible surface S ⊂ M̂ such that each cusp T̂i of M̂
contains a boundary curve τi of S .

Proof. By Proposition 14.14, there exists large fillings of T1, . . . ,Tk to obtain a closed hyperbolic 3-
manifold M̄ with π1M̄ virtually compact special and word-hyperbolic, and such that π1T1, . . . , π1Tk
map to nontrivial cyclic subgroups generated by σ1, . . . , σk.
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By Lemma 14.12, there is a finite index subgroup G′ of G = π1M̄ such that σn
1, . . . , σ

n
k are nontrivial

in H1(G′;Z).
Let M̂ denote the cover of M induced by the finite index subgroup G′. Let H1(G′;Z) → Z be a

quotient such that each σn
i has nontrivial image.

Consider the resulting map M̂ → S 1, make this transversal to a point of S 1 after doing the same
to each T̂i. The preimage is a surface. Now compress to an incompressible surface with the same
boundary. (It might not be connected.) �

Remark 14.17. The statement and proof of Corollary 14.16 is unnecessarily complicated. In particular
it is unnecessary to pass to a finite cover M̂. Given a 3-manifold M with boundary consisting of a
collection of tori T1, . . . ,Tk, for each i, the map H1(Ti) → H1(M) has infinite image. Indeed, this
follows immediately by considering the Mayer-Vietoris long exact sequence associated to a Dehn filling
Mi = Di ∪Ti M where Di is a solid torus. Consequently, each H1(Ti) has nontrivial image in the free
abelianization of H1(M). But for any finite collection of nontrivial elements in a free-abelian group,
there is an infinite cyclic quotient in which they all survive. This gives a map φ : M → S 1 such that
each Ti → S 1 is essential. We homotope φ so that it is transversal to a point of S 1, and let S be the
preimage surface, and then compress to obtain an incompressible surface whose boundary cuts each Ti
as claimed.

It will be useful to know that (each component of) the incompressible surface S produced in Corol-
lary 14.16 is geometrically finite. Indeed, this will support the proof of virtual specialness in the finite
volume case. The above surface S is sufficient if the goal is merely to show that M virtually fibers
since we stop here if S is a virtual fiber, and otherwise proceed with the proof of Theorem 14.29 if it is
geometrically finite. We shall now be a bit more careful in a more elaborate construction of S , I believe
all of this might be done more directly with constructions involving surfaces in 3-manifolds but it is
interesting that we can essentially proceed with a few fundamental 3-manifold facts: Firstly: Haken
3-manifolds have a hierarchy. Secondly: This is a quasiconvex hierarchy in the hyperbolic case pro-
vided that the first cut is geometrically finite. Thirdly: The one cusp case contains an incompressible
geometrically finite surface (Proposition 14.25.(1)).

We now provide a geometrically finite strengthening of Corollary 14.16.

Lemma 14.18. Let M be a finite volume hyperbolic 3-manifold with cusps T1, . . . ,Tk (where k ≥ 1).
There exists a finite cover M̂ → M and an incompressible geometrically finite surface S ⊂ M̂ such that
each cusp T̂i of M̂ contains a boundary curve τi of S .

A key point in the proof below is the production of a codimension-1 quasiconvex subgroup W such
that no power of any σi is conjugate into W. See Problem 14.19.

Proof. Adding extra wall: There exists an incompressible geometrically finite surface S with no ac-
cidental parabolics (see Definition 14.21). Indeed, a geometrically finite incompressible surface in
the 1-cusp case exists by Proposition 14.25.(1), and consequently, such a surface exists in the general
cusped case, because we can choose hyperbolic large Dehn fillings for all but one cusp. Note that
accidental parabolics of S that are different from a boundary slope of S in some cusp T cannot ex-
ist. Indeed, if σ is an accidental parabolic and τ is a boundary slope, then the intersection number
#T (σ, τ) = 0 since #M(S , τ) = 0 as σ can be homotoped away from S in N(S ) � S × I. We can avoid
arbitrary accidentals (including those that are powers of the boundary slope) after we avoid boundary
slope accidentals by applying Lemma 14.22.

We can pass to a finite cover M′ so that all the cusps are very large. Now quotient by the boundary
slopes of S ′ together with arbitrary slopes of other bounding tori. Small-cancellation shows that S ′
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maps to a closed g.f. surface of the filled manifold M̄, and that the element σ generating the π1-image
of each π1T ′i is either split by the surface (in the former case), or not homotopic into it (in the latter
case).

By Lemma 14.14, let M̄ be a Dehn filling of M such that π1M̄ is hyperbolic. Let σ1, . . . , σk be
generators for the images of π1T1, . . . , π1Tk.

A quotient group: Let J be a finite index subgroup of G such that X = J\X̃ is compact and special.
Let W be a hyperplane of X (say corresponding to the codimension-1 subgroup π1S̄ ′ with the property
that no σ̂n

i is homotopic into W. Let H = π1W. (If we wish we can assume that H is malnormal in J by
passing to a further finite index subgroup.) Let Ho be a finite cover of H such that each σi maps to an
infinite order element in G/〈〈H′〉〉, and hence in J/〈〈H′〉〉 (normal closure in different groups). Such Ho

exists by small-cancellation theory.
Apply Theorem 12.1 to J,H′ relative to Ho to obtain a finite cover Y of a superconvex hull of

N = N(W), and let N̂ denote the corresponding cover of N. Note that H′ = π1Y = π1N̂. The resulting
quotient J/〈〈H′〉〉 is represented by the cubical small-cancellation presentation 〈X | Y〉.

Preparing the vertex group: Let α1, . . . , αm denote all elements (σg j
i )n where n = [G : J] and

G = ∪giJ, which constitute a full collection of generators representing commensurability classes of
conjugates of cyclic subgroups J ∩ 〈σi〉

g. By Lemma 14.12 we can pass to an index r normal subgroup
K of J̄ such that each (αr

i )
j is nontrivial in the free-abelianization K → H1(K;Z).

Preparing the edge group: Observe that J̄ splits as a graph of groups U∗F where U = 〈N | N̂〉
and F is represented by the image of π1(X −W). Consequently K has an induced splitting as a graph
of groups with trivial edge groups. We can pass to a finite subgroup L of K with the property that
the elevations of αi pass through edges spaces at most once. (Either count intersection number with
hyperplane of the edge space, or readjust K so that it is the fundamental group of a graph of spaces
where all the edge spaces are isolated edges. Then use residual finiteness in similarly to the analogous
argument for a collection of immersed cycles in a graph.)

Using a single edge space in the induced splitting of L we see that L � V∗E where E is trivial. The
elevations of σi are now of two types: Those that are conjugate into V , and those that pass through
the stable letter of E exactly once. The homomorphism K → H1(K;Z) that projects each (αr

i )
j to a

nontrivial element, shows that V → H1(V;Z) has the same property. There is thus a quotient V → Z
with the property that for each element β in V with a power βp conjugate to some σq

i in G, the element
β maps to a nontrivial element of Z.

The large action: This yields a homomorphism V∗E → Z∗E � F2 with the property that each β
above survives.

Pulling back the splitting to the corresponding finite cover M̂ of M yields the desired surface. (Make
M̂ → B2 transversal to the midpoints of 1-cells, and the preimage is a surface. Then compress to an
incompressible surface with the same boundary.) The resulting incompressible surface cannot be a
virtual fiber because of the dual action on the large tree. �

Problem 14.19 (Missing Wall). Let σ1, . . . , σk be infinite order elements of a virtually compact special
word-hyperbolic group G. Does there exist a quasiconvex codimension-1 subgroup H ⊂ G such that
no σi has a power conjugate into H?

Let F ⊂ G be an infinite index quasiconvex subgroup (e.g. 〈σn
1, . . . , σ

n
k〉 for some large n). Does

there exist a quasiconvex codimension-1 subgroup H such that no nontrivial element of F is conjugate
to an element of H?

The following variant of Problem 14.19 has an affirmative answer when there is only one cusp
[MZ08]. Presumably the multiple cusp case can be deduced from the single cusp case, or can be
reproven using the same methodology.
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Problem 14.20. Let M be a cusped hyperbolic 3-manifold. Does M contain the fundamental group of
a closed surface containing no nontrivial parabolic elements?

Definition 14.21. Let S be an incompressible surface in a hyperbolic 3-manifold M. An accidental
parabolic σ in S is a closed essential path in S that is homotopic to a path in a torus of ∂M but not
homotopic to a path in ∂S .

Lemma 14.22 (No accidental parabolics). Let S ⊂ M be an incompressible surface. Then there is an
incompressible surface S ′ with ∂S ⊂ ∂S ′ such that S ′ has no accidental parabolics.

Remark 14.23. We note that if each component of the original surface has geometrically finite funda-
mental group then the same holds for each component of the result. Indeed, the fundamental group of
the surface obtained by compressing the annulus maps to a subgroup of the fundamental group of the
original. Consequently, if the original is geometrically finite then so is the result.

Proof. Consider the manifold M̄ obtained by cutting M along S . An essential annulus in M̄ with one
bounding circle on a copy of S and another bounding circle on a cusp T , would imply an embedded
essential annulus A in M̄ with the same property. The result of compressing along N(A) yields a new
surface S ′ with the same euler characteristic but with two additional boundary components. Thus
the complexity consisting of genus of components decreases. Therefore this procedure can only be
implemented finitely many times. Note that after performing this procedure we can pass back to an
incompressible surface by compressing along discs without affecting the boundary. �

Remark 14.24. The goal of this subsection was to produce a splitting of π1M̂ as a graph of groups
where the edge groups are quasiconvex and have no accidental parabolics, and the vertex groups are
word-hyperbolic.

In my initial planning, this was an intermediate goal towards a shortcut version of cubulation which
sidestepped the malnormality of edge groups (by substituting aparabolicity on one side). In retrospect,
it appears that it was unnecessarily strong, and that there is an adequate quasiconvex hierarchy available
that jives with Theorem 16.28.

Indeed, M has a geometrically finite incompressible surface because we can choose large Dehn
fillings of all but one cusp, to obtain a new hyperbolic manifold M̄, and then note that M̄ has an
incompressible geometrically finite surface S̄ by Proposition 14.25.(1). A preimage S of this surface
in M is thus likewise geometrically finite and incompressible. (If it were a virtual fiber it would have
virtually cyclic index in M and hence in M̄ as well.) We can cut S along annuli and increase its
boundary to ensure that it has no accidental parabolics as in Lemma 14.22 and the result is again
geometrically finite by Remark 14.23. This exact procedure is followed for subsequent splittings. We
thus see that M has a hierarchy whose edge groups are geometrically finite and have no accidental
parabolics.

A source of geometrical finiteness for the first cut is the following result of Culler and Shalen [CS84].

Proposition 14.25. Let M be a hyperbolic 3-manifold with one cusp. Then:
(1) M contains a (separating) geometrically finite incompressible surface with boundary.
(2) M contains a second separating geometrically finite incompressible surface with boundary hav-

ing a different slope.

14.3. Omnipotence. An ordered set of elements {g1, . . . , gr} is independent in G if each gi has infinite
order, and the subgroups 〈gi〉, 〈g j〉 do not have conjugates with nontrivial intersection for i , j.

A group G is omnipotent if for each independent set of elements {g1, . . . , gr} there is a number K ≥ 1
such that for each set of positive natural numbers {n1, . . . , nr} there is a quotient G → Ḡ such that ḡi
has order niK for each i.



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 145

We note that the conclusion of omnipotence is similar to the special quotient theorem applied to a
collection of cyclic subgroups of G. In [Wis00] we proved that free groups are omnipotent and we
now generalize this to:

Theorem 14.26. Let G be a virtually special word-hyperbolic group. Then G is omnipotent.

Proof. We can assume without loss of generality (it just affects the constant K) that each Hi = 〈gi〉

is a maximal cyclic subgroup, so that {H1, . . . ,Hr} is a malnormal collection of subgroups. For each
i we apply Theorem 12.3 to

(
G, {H1, . . . , Ĥi, . . . ,Hr}

)
, where the notation Ĥi indicates that we have

omitted the i-th subgroup, to obtain a virtually special quotient G → Gi where each H j has finite
image. Moreover, by choosing the (H j)′ large enough, we can guarantee that Hi injects in Gi.

We now apply Lemma 14.12 to Gi to obtain a characteristic finite index subgroup Ji ⊂ Gi such that
conjugates of Hg

i ∩ Ji survive in the free-abelianization Ji → Zi.
There is a constant Ki, such that for each mi, there is a quotient Zi → Qi = Zi/miZi such that gpi

i has
order miKi, where pi = [Gi : Ji].

We now use the quotients G →
∏

i Gi →
∏

i Zi →
∏

i Qi that are parametrized by mi.
With a bit of fiddling with the constants, (and at the expense of making it quite large) we can deter-

mine a uniform constant K claimed above, and use the images of the homomorphisms G →
∏

i Qi to
obtain the desired G → Ḡ. �

Remark 14.27. What is needed here is that each G is the fundamental group of a virtually special cube
complex, such that each cyclic subgroup has a compact core associated with it.

In the relatively hyperbolic case, we could use maximal abelian subgroups to obtain a corresponding
result.

We can avoid using the malnormal special quotient theorem, if we can obtain trivial wall projections
of elevations of these cores, and then apply Lemma 14.12. This gives an elementary proof, that is a
more direct generalization of the proof in [Wis00].

Conjecture 14.28. Let G be a virtually special word-hyperbolic group. Let g1, . . . , gr be an indepen-
dent set of elements. There exists N1, . . . ,Nr such that for any ni ≥ Ni the group Ḡ = G/〈〈gn1

1 , . . . , g
nr
r 〉〉

satisfies:
(1) Ḡ is virtually torsion-free.
(2) Ḡ is residually finite.
(3) Ḡ virtually splits as a graph of groups.
(4) Ḡ is virtually special.

We note that Ḡ acts properly on a CAT(0) cube complex for large Ni (see Section 5.4). This already
follows from [Wis04] when G is free, which is the most important test case for Conjecture 14.28. The
euler characteristic calculation for a finite index torsion-free subgroups shows that (for large ni, the
virtual torsion-freeness yields virtually large first betti number and hence some splittings. One hopes
that this might be enough to get a hierarchy, which would be a quasiconvex hierarchy by [MW08].

14.4. The cusped case.

Theorem 14.29. Let M be a finite volume cusped hyperbolic 3-manifold. Then π1M is virtually the
fundamental group of a compact special cube complex.

Proof. By Lemma 14.18, there is a finite cover M̂ of M such that G = π1M̂ splits as a graph of groups
where each vertex group is word-hyperbolic and each edge group is quasi-isometrically embedded in G.
Moreover, by Lemma 14.22, we can assume that the splitting has no accidental parabolics in the edge
groups. Consequently, for an edge group E with images E+, E− in the vertex group V of its associated
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splitting, E+ and E− have trivial intersection with rank 2 subgroups of V . (Note however, that they can
have infinite intersection with rank 2 subgroups of G, and in particular, E+, E− have conjugates in V
that intersect in an infinite cyclic subgroup of a rank 2 subgroup of G.)

The vertex groups have quasiconvex hierarchies since they are fundamental groups of irreducible
hyperbolic 3-manifolds with boundary, and so each vertex group is virtually compact special. We thus
find that G is virtually compact special by Theorem 16.28. Consequently π1M is as well. �

One can deduce that π1M is consequently the fundamental group of a sparse cube complex that is
virtually special.

Problem 14.30. Let M be a cusped hyperbolic 3-manifold. Is π1M the fundamental group of a compact
nonpositively curved cube complex.

Problem 14.31. Let M be a hyperbolic 3-manifold. Does π1M have a finite index subgroup that is the
fundamental group of a 3-dimensional nonpositively curved cube complex?

Let M be a hyperbolic 3-manifold with boundary. Does π1M have a finite index subgroup that is π1
of a 2-dimensional nonpositively curved cube complex?

In general, the 3-manifold itself may not be homeomorphic to a nonpositively curved cube com-
plex. Indeed, Li showed that if M is orientable and irreducible with ∂M a torus, and M contains no
closed nonperipheral embedded incompressible surfaces, then only finitely many Dehn fillings of M
yield 3-manifolds homeomorphic to nonpositively curved cube complexes [Li02]. However, for some
valid 3-dimensional cases see the work of [AR90]. A motivating 2-dimensional case is Weinbaum’s
observation that the Dehn complex of a prime alternating link is nonpositively curved (see [Wei71] and
[Wis06]).

15. L   

We now give a self-contained explanation of the word-hyperbolicity of hyperbolic fillings of cubu-
lated groups that are relatively hyperbolic. We also show prove the persistence of quasiconvexity of
certain subgroups under suitably large fillings. This is a limited special case of results obtained by Osin
and Groves-Manning [Osi07, GM08] but there is a fairly natural proof within our framework.

We will use the following result of Papasoglu proven in [Pap95]:

Proposition 15.1. Let Γ be a graph. Suppose each geodesic bigon in Γ is ε-thin, in the sense that each
side lies in the ε-neighborhood of the other side. Then each geodesic triangle is δ-thin, and so Γ is
δ-hyperbolic.

We also need the following result suggested by Figure 159. It can be deduced from [DS05, Thm 1.12].

Proposition 15.2. Let G be hyperbolic relative to subgroups P1, . . . , Pr. Suppose G acts properly and
cocompactly on the geodesic metric space X̃, and each Pi cocompactly stabilizes a nonempty connected
subspace Z̃i. There exists a constant κ with the following property:

Let γ1, γ2 be a pair of geodesics in X̃ with the same endpoints. Then there is a sequence of cosets
{giPni} such that γ1, γ2 asynchronously κ-fellow travel relative to {giZ̃ni} in the sense that for 0 ≤ t1 ≤
|γ1| and reparametrization θ, either d

(
γ1(t), γ2(θ(t))

)
≤ κ, or γ1(t), γ2(θ(t)) both lie in Nκ(giZ̃ni), where

giZ̃ni varies with t.
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F 160. The diagram E between γ1, γ2 must decompose as the union of a “stemmed lad-
der” D surrounded by two square diagrams D1,D2.

With a bit of care, the proofs generalize to a sparse cube complexes, and we have separately sketched
the details in that setting. In addition to the Propositions stated here, we will need the “isometric core
property” and Lemma 16.6 to support the proof in the cosparse case.

Theorem 15.3. Suppose that X is a nonpositively curved cube complex such that:

(1) X̃ is sparse with flats F1, . . . , Fk,
(2) G = π1X is hyperbolic relative to subgroups P1, . . . , Pr.

For each i, there is a finite subset S i ⊂ Pi − {1G} such that if P′i is a hyperbolic-index normal subgroup
of Pi that is disjoint from S i, then the quotient G/〈〈P′1, . . . , P

′
r〉〉 is word-hyperbolic.

Remark 15.4. Theorem 15.3 applies in the relatively hyperbolic case provided an isometric cocompact
subcomplex X̃o ⊂ X̃ exists. It is only to guarantee its existence that we use require the sparse hypothesis
here.

Proof in compact case. By Lemma 8.5, for each i, let Ỹi be a superconvex subcomplex that Pi acts on
cosparsely.

The superconvexity and malnormality of the collection {Pi} ensures that the wall-pieces and cone-
pieces between the Ỹi are of uniformly bounded diameter ≤ B. Let S i consist of the nontrivial elements
of Pi with translation distance < 1

24 B in Ỹi.
Let P′i be a hyperbolic-index normal subgroup disjoint from S i for each i. Let Ŷi = P′i\Ỹi, so the

cubical presentation 〈X | Ŷ1, . . . , Ŷr〉 satisfies the C′( 1
24 ) small cancellation condition.

Consider geodesics γ1, γ2 in X̃∗. Let E → X∗ be a minimal complexity disk diagram between γ1
and γ2, with the following properties: There are geodesics λi → E with the same endpoints as γi such
that each pair λi, γi bounds a square subdiagram Di of E, and E = D1 ∪λ1 D ∪λ2 D2, and where D has
minimal complexity among all possible such choices.

We note that γi, λi are geodesics in X̃, for otherwise γi would not be a geodesic in X̃∗.
We will show that D is α-thin and show that each Di is β-thin, and consequently E is (α + 2β)-thin.

Since α, β will depend only on X and the choices of the P′i , we see that X̃∗ has (α+ 2β)-thin bigons. We
thus conclude that the 1-skeleton of X̃∗ has (α + 2β)-thin geodesic bigons, and is thus δ-hyperbolic by
Proposition 15.1.

Observe that there is no θ-shell in D whose outerpath is a subpath of either λi for this would con-
tradict that λi is a geodesic, indeed X∗ is C′( 1

24 ) so has short innerpaths by Lemma 3.48. Observe that
there is no generalized corner of a square in D whose outerpath is on λi, for we could then push the
square out to Di, and reduce the complexity of D.

We conclude from Theorem 3.36 that D is either an arc, or is a ladder or single cone-cell with a
(possibly trivial) arc attached at each end. Moreover, we note that the square parts of D are actually
grids, since a square within a shard of D could be passed into D1 or D2, thus violating our minimal
choice of D. We refer the reader to Figure 160 for a picture of a typical D within E.
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Let α be a constant so that for any pair of geodesics in one of the finitely many Ŷ j, if the endpoints
of these geodesics are within B of each other then the geodesics are within α of each other, and note
that α ≥ B.

As in Definition 3.35.(2), each λi is a concatenation λi1λi2 . . . λi`, where λ1 j and λ2 j are on opposite
sides of successive cone-cells and grids within the ladder. Observe that the distance between end-
points in λ1 j and λ2 j is bounded by the maximal diameter B of a piece. Consequently, the geodesics
λ1 j, λ2 j accordingly either B-fellow travelers within a grid, or α-fellow travelers within the cone that is
a translate of Ŷn j . Thus λ1, λ2 are in α-neighborhoods of each other.

By Proposition 15.2, there exists µ such that γi, λi must µ-fellow travel relative to translates g jỸn j .
Consider subpaths γ′i , λ

′
i that bound a geodesic rectangle in Nµ(Ỹ) whose left and right sides have

length ≤ µ. There exists δ such that the finitely many spaces P′i\Nµ(Ỹi) are δ-hyperbolic (they are just
thickenings of the Ŷi). Let β be such that for any pair of geodesics in one of these Ŷi thickenings, if
the endpoints are µ-close then the geodesics β-fellow travel, and note that β ≥ µ. Then γi, λi must
β-fellow travel since they piecewise β-fellow travel. �

Proof in cosparse case. By Lemma 16.6, there is a connected π1-surjective subcomplex Xo ⊂ X such
that X̃o ⊂ X̃ is an isometric embedding, and moreover, the complementary components X̃ − X̃o are
contained in unique quasiflats g jF̃ j of X̃. Let Ỹo

i denote the intersection X̃o ∩ Ỹi, and we will later let
Ŷo

i denote the quotient of Ỹo
i corresponding to Ŷi.

As in the compact case, we consider a pair of geodesics γ1, γ2 with the same endpoints, but now
assume that they lie in X̃∗o, which denotes the preimage of Xo in X̃∗. We then consider a minimal
complexity E = D1 ∪λ1 D∪λ2 D2 → X̃∗. As before D is a ladder. By the minimality of E, the boundary
path of each cone-cell C of D lies in X̃∗o, and so can be regarded as a path in X̃o. Indeed, for an edge e
in ∂pC, either e is on ∂E which implies that e is in X̃o since each γi is in X̃o, or there is a subsequent
cell s or C′ meeting C along e. If it is a neighboring cone-cell C′ then e lies in gỸ ∩ g′Ỹ ′ which lies in
X̃∗o. If it is a square s, then either s ⊂ X̃∗o or s lies in Ỹ − X̃o and so could be absorbed into C.

We now consider the (possibly degenerate) rectangular parts of D. Their top and bottom boundaries
are geodesics in X̃ that are path-homotopic to paths in X̃o. We replace E by a diagram E′ that contains
these X̃o paths as illustrated in Figure 161. This gives us geodesics λ′1, λ

′
2 with the same endpoints as

λ1, λ2 that bound diagrams D′1 and D′2 within E′, and also a diagram D′ that is a thickening of the ladder
D.

D′1,D
′
2 are thin by Proposition 15.2 applied to X̃o as before. And D′ is thin as before, by breaking

it up into cone-cells and thickened rectangles, each of which has a geodesic top and bottom in Ŷo
n j

or
in X̃o respectively. As in the compact case, we regard each cone-cell as mapping to a word-hyperbolic
Ŷo

n j
. However, the thickened rectangles are treated again as we treated D1,D2. �

Remark 15.5. It is likely that there is a more general version of Theorem 15.3 that takes as input a
small-cancellation cubical presentation X∗ with π1X∗ relatively hyperbolic.
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Theorem 15.6. Continuing with the notation of Theorem 15.3. Let H be a relatively quasiconvex
subgroup of π1X that is full. There exist (slightly larger) finite subsets S +

i ⊂ Pi − {1} such that H
projects to a quasiconvex subgroup of π1X∗.

Proof in compact case. By Proposition 8.2, let Ã be an H-cocompact superconvex core, and let A =

H\Ã. There exists M such that for each g, i either gỸi ⊂ Ã, or diameter(Ã ∩ gỸi) ≤ M.
We can thus choose S +

i so that the map of the induced presentation A∗ → X∗ has no missing θ-shells,
and is hence π1-injective by Corollary 12.18.

Suppose that cone-pieces in X∗ are small in the sense that ∇Yi(P) < 1
8 ||Y
∗
i || whenever P is a cone-piece

between distinct Ỹi, gỸ j.
Suppose that overlaps between cones Yi and A are small in the sense that for any path P in the

intersection of translates Ỹi, Ã in X̃, either ∇Yi(P) < 1
4 ||Yi|| or Ỹi ⊂ Ã.

Then Ã∗ → X̃∗ is a convex subcomplex by Lemma 3.52. �

Proof in sparse case. Let Ã denote an H-invariant superconvex subcomplex that is cosparse.
The complex X̃ equals GK ∪i gF̃i where each F̃i is a quasiflat, and distinct giF̃i, g jF̃ j intersect in

GK. By Lemma 16.6, there is a connected π1-surjective subcomplex Xo ⊂ X such that X̃o ⊂ X̃ is an
isometric embedding, and moreover, GK ⊂ Xo so the complementary components X̃− X̃o are contained
in unique quasiflats of X̃.

We make our choices as in the cocompact case. As before Ã∗ is a convex subcomplex of X̃∗. Let
X̃∗o denote the preimage of Xo in X̃∗. Let Ã∗o denote the intersection between Ã∗ and X̃∗o. We will show
that Ã∗o is connected and convex in X̃∗o. Let γ be a geodesic in X̃∗o whose endpoints lie in Ã∗o. By the
convexity of Ã∗ in X̃, we see that γ lies in Ã∗. But then γ ⊂

(
Ã∗ ∩ X̃∗o

)
= Ã∗o.

As Ã∗o is an H̄-invariant subcomplex of the Ḡ-cocompact complex X̃∗o (where Ḡ denotes π1X∗), this
proves the quasiconvexity of H̄ in Ḡ. �

16. R H C

16.1. Introduction. The main goal of this section is to prove Theorem 16.28 whose most important
case is the following:

Theorem 16.1. Let G be torsion-free and hyperbolic relative to virtually abelian subgroups. Suppose
that G splits as a graph of groups where each edge group is quasiconvex and each vertex group is
word-hyperbolic and virtually compact special. Then G is virtually compact special.

Theorem 16.28 generalizes Theorem 13.3 to a setting that includes many groups that are hyperbolic
relative to abelian subgroups. Our motivation is to the 3-manifold application since by Corollary 14.16,
for each cusped hyperbolic 3-manifold M there is a finite cover M̂ such that π1M̂ has the type of
hierarchy specified in Theorem 16.1.

We expect that a complete generalization of Theorem 13.3 would be as follows:

Conjecture 16.2. Let G be (torsion-free) and hyperbolic relative to virtually abelian subgroups. Sup-
pose that G has a quasiconvex hierarchy terminating at finite groups. (So all edge groups are quasi-
isometrically embedded.) Then G is virtually cosparse/compact special.

A potential direct approach towards Conjecture 16.2 would require reworking the results in [HWa]
and [HWc] so that they apply in a relatively hyperbolic context. The main obstacle towards a relatively
hyperbolic generalization of [HWa] is to provide a relatively hyperbolic version of the “trivial wall
projection lemma”. What is missing from [HWc] is a cubulation criterion that allows more flexibility
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F 162. Jiggled Walls: The wallspace on an infinite strip on the left has dual cube complex
homeomorphic to R. If we “jiggle” the walls so that they cross their neighbors, then one
obtains a thicker cube complex as on the right. Similar “thickenings” occur if we jiggle typical
wallspaces on Rn.

in the interaction between the edge groups and the parabolic subgroups. In particular, we would need
to drop the aparabolicity requirement on the edge groups.

We will will follow a less direct approach that circumvents these obstacles at the expense of devel-
oping some additional tools to prove (a limited form of) the relatively hyperbolic case as a consequence
of the hyperbolic case. We emphasize that for both (2) and (3) below we prove separability in a rela-
tively hyperbolic group by carefully quotienting to a virtually compact special hyperbolic group. This
separability is used in (4) to pass to a finite cover with an easier hierarchy.

(1): A virtually special parabolic filling theorem that is an analog of the malnormal special quotient
theorem except that only parabolic subgroups are filled.

(2): We show that sparse cube complexes with hierarchies (i.e. all their hyperplanes embed) are
virtually special by combining the parabolic special quotient theorem with the double coset crite-
rion for separability. There are some complications here because the small-cancellation method of
Lemma 12.22.(1) doesn’t quite apply without a patch.

(3): Subgroup separability of graphs of relatively hyperbolic groups whose vertex groups are vir-
tually special. Here we apply (1) to the vertex groups to obtain a quotient that is a graph of small-
cancellation virtually special groups. This quotient group has a suitable quasiconvex hierarchy, and
is hence virtually special, so separating quasiconvex subgroups from elements in such quotients is
sufficient.

(4): We then prove the theorem by using the separability to pass to a finite index subgroup that has
a revised splitting along a “cage” with more controlled interactions with the parabolic subgroups. This
better splitting is aparabolic on at least one side, and so we are able to cubulate. Virtual specialness
then holds by (2).

16.2. ~ Sparse complexes.

Definition 16.3 (Quasiflat). A quasiflat is a CAT(0) cube complex dual to a proper action of a virtually
abelian group P on a wallspace, with finitely many orbits of walls.

The canonical example of a quasiflat F̃i is isomorphic to the universal cover of the standard ni-torus
T ni for some ni, perhaps corresponding to a collection of ni parallelism classes of hyperplanes in Rm

with a Pi = Zm action. The general case is not much more complicated: The typical situation is
obtained by “jiggling” these hyperplanes somewhat so that they aren’t convex (see Figure 162). Many
such situations arise naturally in [Wis04].

Definition 16.4 (Sparse). A nonpositively curved cube complex X is sparse if it is a finite union K ∪⋃
i Fi where K is compact and Fi ∩ F j ⊂ K for i , j, and each Fi equals Pi\F̃i where Pi is a f.g.

virtually abelian group acting freely on a quasiflat.
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F 163. The smallest subcomplex containing a convex subspace is isometrically embedded.

Likewise we say that a group G acts cosparsely on a CAT(0) cube complex X̃ if there is a compact
subcomplex K, and finitely many quasiflats F̃i such that X̃ = GK ∪

⋃
i GFi and giF̃i ∩ g jF̃ j ⊂ GK

unless i = j and g−1
i g j ∈ Stab(F̃i). See Figure 142 for a “picture” of a cosparse cube complex, and see

Example 16.11 for potential overcubulated groups.
Note that when G is torsion-free then X = G\X̃ is sparse as above. However, when there is torsion

the quotient space X can be a “sparse orbihedron”. Nevertheless, X will be quasi-isometric to the wedge
of finitely many flats and half-flats.

Remark 16.5. In practice we can assume that each F̃i has finitely many Pi-orbits of hyperplanes.
X̃ is minimal if it has no G-invariant convex proper nonempty subcomplex. By assuming that X̃ is

minimal with respect to the action of G = π1X one can assume that each hyperplane H of X̃ crosses
GK. For otherwise we can replace X̃ by the intersection of all cubical halfspaces g

−→
H corresponding to

translates of the halfspace of H containing GK.

The following plays a role in the sparse versions of the results in Section 15. The CAT(0) cube
complex F̃ has the isometric core property with respect to the action of a group H, if each H-cocompact
subcomplex K̃ ⊂ F̃ lies in an H-cocompact isometrically embedded subcomplex K̃′. The property is
immediate when F̃ is H-cocompact. This property always holds whenever H is virtually abelian and
F̃ is a quasiflat. To see this, note that there exists an H-cocompact CAT(0) convex subspace Ũ ⊂ F̃,
and moreover, Nr(U) is likewise H-cocompact and CAT(0) convex and any K̃ lies in some Nr(U). The
smallest subcomplex containing Nr(U) is our desired isometric core. See Figure 163. (It appears that
this property holds whenever there is an H-cocompact CAT(0) convex subspace (not subcomplex!) of
F̃.) Let G act properly and cocompactly on a CAT(0) cube complex X̃, and let H ⊂ G be a finitely
generated subgroup that is not quasi-isometrically embedded. Then X̃ does not have the isometric core
property with respect to H. Conversely, it appears likely that the isometric core property holds exactly
when H is quasi-isometrically embedded in this case.

Lemma 16.6. Let G act on the CAT(0) cube complex X̃ which is a union GKo ∪
r
i=1 GF̃i with Ko

compact, and where giF̃i ∩ g jF̃ j ⊂ GKo unless giF̃i = g jF̃ j. If each F̃i has the isometric core property
with respect to its stabilizer, then X̃ has the isometric core property.

In particular, if X̃ is sparse, then it has the isometric core property.

Proof. Let B̃ be a G-cocompact subcomplex of X̃, and assume without loss of generality that GK ⊂ B.
Let B̃i = X̃ ∩ F̃i. By the isometric core property of F̃i, the subcomplex B̃i extends to a Stab(F̃i)-
cocompact subcomplex B̃′i ⊂ F̃i.

Let B̃′ = B̃ ∪i GB̃′i . We now show that B̃′ ⊂ X̃ is isometrically embedded (though perhaps not
convex). Indeed, for any geodesic γ in X̃ joining points in B̃′, consider a subpath γi where γ departs
B̃′ and travels within F̃i. Then γi has the same length as a path γ′i in B̃i ∩ B̃′ with the same endpoints.
Successively replacing γi by γ′i , we pull γ′ to path with the same endpoints in B̃′ such that |γ′| = |γ|. �
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F 164. Closing up two infinite cylinders in base space.

16.3. ~ Closing up infinite quasiflats. The following result is sometimes helpful for providing a
shortcut via a cocompact interpolation. In particular, it can be used to simplify versions of Theo-
rem 16.20 and Theorem 15.3.

Lemma 16.7. Let X be a sparse cube complex with fundamental group G. There exists a group G′ such
that:

(1) G′ splits as a tree Tr of groups where Tr is an r-pod.
(2) The central vertex group of Tr is G.
(3) Each edge group of Tr is a peripheral subgroup Pi of G.
(4) G′ acts properly and cocompactly on a CAT(0) cube complex X̃′.
(5) Moreover, if each Pi is free-abelian then we choose each P′i � Pi × Z

s for some s.
(6) Moreover, if X has a hierarchy then X′ has a hierarchy.

The motivating case here is where the cube complexes Fn
i associated to the peripheral subgroups,

have F̃n
i isomorphic to standard cubulations Fn

i of En, though the peripheral subgroup might only
be virtually Zm with m � n. In this case, it is easy to imagine quotienting each such Fn

i by a Zn−m

subgroup, to obtain cocompactness, and with a large enough fundamental domain so that the new space
looks locally like the old - so nonpositive curvature is maintained. We give a very simple example of
this in Figure 164. Since each F̃n

i looks only coarsely like En, we will instead adopt an approach using
the method of Section 7.2.

Proof. The proper action of G on X̃ provides a collection of subgroups H together with H-walls. Indeed
these H-walls arise from the hyperplanes of X̃. (We could assume that X̃ is minimal and hence each
such H is actually codimension-1 but the proof does not require this).

The plan of the proof is to construct G′ as indicated by extending each peripheral subgroup P to a
peripheral subgroup P′, so that each H-wall in G extends to an H′-wall in G′, and moreover, each P′

will act properly and cocompactly on the cube complex C(P′) that is dual to the induced wallspace on
P′. It follows from Proposition 7.5 that G′ acts properly and cocompactly on the CAT(0) cube complex
X̃′ = C(G′) that is dual to our wallspace on G′.

Besides actually being able to extend the H-walls of G into the relevant P′ subgroups of G′, to
ensure that the action of P′ on C(P′) is proper and cocompact, we must ensure that the wallspace of
P′ is “sufficient” so that each element of P′ is transverse to some wall, and also “efficient” in the sense
that the number of distinct commensurability classes of walls in P′ equals the dimension of P′.

We identify P with Px̃ where x̃ ∈ F̃ is a 0-cell in a minimal P-invariant subcomplex Ẽ. An H-wall
can interact with P in several ways: Either it partitions P into two deep parts, and hence cuts P along
a codimension-1 subgroup, or P lies entirely on one side of the H-wall, or P stabilizes the H-wall and
index 2 cosets of P lie on opposite sides. Indeed, we can pass to a finite index subgroup of Po so that
the translates of the H-hyperplane in Ẽ do not cross each other. The Po-translates of the H-hyperplanes
then yield an action on a tree. We then either find that H ∩ Po is codimension-1, or the action has a
fixed vertex, or a stabilized edge. These yield the three cases above.

It is the first type above - the essential walls in P that will guide us in constructing P′.
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We now let H1, . . . ,Hn be representatives of the P-orbits of essential walls in P coming from various
H-walls of G. We emphasize that a single H-wall in G can contribute several Hi-walls in P, since there
might be several G-translates of the H-wall that are not also P-translates. However, when the H-wall
in G does not cross any of its G translates, its resulting Hi,H j-walls for P will not cross each other in
P (be they essential walls or not).

We will now give an explicit construction under the assumption that each peripheral subgroup P is
free-abelian, the general case will be treated later.

Again, H1, . . . ,Hn are the distinct stabilizers of walls in PZm, and let P′i = Pi × Z
n−m. For each k,

we extend Hk to a codimension-1 subgroup H′k of P′k, moreover, we do this so that {H′1, . . . ,H
′
n} are

sufficient to cubulate P′i .
Indeed, let {v1, . . . , vn} be vectors in Zm that span Rm and such that each vi is orthogonal to the

hyperplane of Hi, then we can choose {v′1, . . . , v
′
n} to be vectors in Zn, such that the first coordinates of

v′k yield vk, and such that they span Rn, and let H′k be the intersection of Hk × Z
n−m with the stabilizer

of the orthogonal complement of v′k. (Remark: The vectors vi, v j are parallel whenever Hi,H j are
commensurable. We could alternately then let n be the number of commensurability classes. We would
then choose our vectors ~v′i so that it is a “basis with multiplicity” so that ~v′i = ~v′j when ~vi = ~v j, and
commensurable Hi,H j would extend (in parallel) to commensurable H′i ,H

′
j in P′.)

Assuming Hk is deep, the Hk-wall of Pi has a unique coarse extension to an H′k-wall of P′i .
For an H-wall that overlaps Pi at a finite index subgroup Hi of P, we use the separability of Hi ⊂ P′

to let H′i be a finite index subgroup of P′ such that H′i ∩ P = Hi.
We build G′ from G by amalgamating each Pi with the corresponding subgroup of P′i .
For each H-wall of G, we first extend the subgroup H ⊂ G to a subgroup H′ ⊂ G by forming an r-

pod of groups whose central vertex is H and whose type Pi leaves are subgroups H′k amalgamated with
H along edge groups Hk supplied above at P by H. It is easy to see that each H′ is quasi-isometrically
embedded in G′.

Let us now examine how we extend Hi-walls of P to H′i -walls of P′. For an essential Hi-wall of P,
there is coarsely a unique way to extend this to an H′i -wall of P′. When H ∩ P is commensurable with
P, then H′i ∩ P′ = H′i ∩ P and we extend the Hi-wall of P to an H′i -wall of P′ that contains P′ on both
sides.

A limited special case of Proposition 7.8′ provides the wallspace structure on G′, with a proper action
of G′ on the dual cube complex. By construction, the induced cubulations of each P′i is cocompact, and
so the dual cube complex is cocompact by Proposition 7.5.

We now consider the case where Pi is virtually abelian but not necessarily free-abelian. By Re-
mark 16.9 the virtually Zm group Pi embeds in the virtually Zn group P′i in such a way, that by con-
struction, each codimension-1 subgroup in Hk : 1 ≤ k ≤ m of Pi extends to a codimension-1 subgroup
H′k of P′i , and furthermore, the action of P′i on the associated dual cube complex C(P′i) is free and
cocompact. The rest of the explanation is similar. �

Generalizing the statement of Lemma 16.7 would require a generalized version of Lemma 16.8. See
for instance Problem 16.10 and Example 16.11.

Lemma 16.8. Every torsion-free virtually Zm group H is a subgroup of a virtually Zn group G that
acts freely and cocompactly on the standard n-dimensional cube complex.

Proof. Suppose H has a finite index subgroup K with K � Zm. Then H acts properly and cocompactly
on Em as proven by Zassenhaus [Rat94, Thm 7.4.5]. Choose m distinct walls in Em that are isometric
copies of Em−1 and dual to a basis of K. The action of H on this collection of (cocompact) walls gives
a (possibly larger but still locally finite) family of n parallelism classes of walls. As nonparallel walls
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cross, applying Sageev’s construction of Section 7.2, the dual cube complex is the standard cubulation
X̃ of En, and moreover, H acts properly on X̃.

Let G◦ = Aut(X̃), and note that G◦ acts properly and cocompactly on X̃. We have thus shown
that an arbitrary virtually Zm group H has a finite kernel quotient which is a subgroup of a group G◦
acting properly and cocompactly on the standard cubulation of En for some n. In particular, as H is
torsion-free it embeds in G◦.

It was proven in [BL77] that each maximal torsion-free subgroup of a polycyclic-by-finite group is
of finite index. We therefore conclude the proof by letting G be a maximal torsion-free subgroup of G◦
that contains H. �

Remark 16.9 (Virtually Zm extension property). The proof of Lemma 16.8 shows the following: Let
P be virtually Zm. Let {H1, . . . ,Hr} be a collection of codimension-1 subgroups of P, with chosen
Hk-walls, such that P acts properly on the associated dual cube complex. Then there exists a virtually
Zn group P′, such that each codimension-1 subgroup Hk extends to a codimension-1 subgroup H′k of
P′, and the Hk-walls in P extends to H′k-walls in P′, so that P′ acts properly and cocompactly on the
associated dual cube complex.

Problem 16.10 (Stabilization). Continuing with the notation of Lemma 16.8: Can we moreover choose
G so that G � H × Zd for some d?

Example 16.11 (Overcubulated Euclidean groups). Allowing torsion, the (3, 3, 3) and (2, 3, 6) triangle
groups are virtually Z2 but do not act on the standard cubulation of E2. On the other hand, the (2, 4, 4)
triangle group does act properly on the standard cubulation of E2.

I am grateful to Bill Dunbar for explaining the following torsion-free example to me: Let G = Z2oφZ

be the group where φ : Z2 → Z2 is an order-6 automorphism. So G � 〈a, b, t | [a, b], at = b, bt = a−1b〉.
Then G is virtually Z3, but G does not act freely on the standard cubulation of E3. Indeed, in an
action of G on E3, the element t acts by a screw-motion rotating by π

3 about its axis. Now, G acts by
automorphisms on the sphere at ∞, and 〈t〉/〈〈t6〉〉 would act faithfully there, but this action also gives
rise to an action on a 3-cube which does not admit an order 6 orientation preserving automorphism.

Consequently G cannot act freely and cocompactly on any CAT(0) cube complex X̃, for then by
Lemma 16.12, G would act freely and cocompactly on the standard cubulation of E3 which is impossi-
ble.

Lemma 16.12. Suppose that G is virtually Zn and suppose that G acts properly and cocompactly on a
CAT(0) cube complex X̃. Then G acts properly and cocompactly on the standard cubulation of En.

We note that X̃ might not contain a convex subcomplex isomorphic to T̃ n. For instance, let X̃ denote
the cartesian product of tree copies of the cube complex in Figure 162 with the associated Z3 action.

Proof. The flat torus theorem of [BH99] shows that X̃ contains a G-invariant isometric copy F of En.
There is a wallspace structure on F arising from the intersections of hyperplanes H̃ ⊂ X̃ with F. If
X were minimal then it would be impossible for H̃ ∩ F = F or H̃ ∩ F = ∅, but without assuming
minimality, we simply ignore these intersections. Each intersection H̃ ∩ F is an isometric copy of En−1

and if several hyperplanes of X̃ intersect F in the same wall then we simply identify these from the
viewpoint of the wallspace, so a single wall of F could correspond to several hyperplanes of X̃. We
emphasize that crossing hyperplanes of X̃ might intersect F in parallel hyperplanes.

Suppose there are exactly m parallelism classes of walls in F, and observe that m ≤ n for otherwise X̃
would coarsely contain a copy of Em, and this is impossible since X̃ is quasi-isometric to Zn. Applying
Sageev’s construction of Section 7.2, we see that G acts on the cube complex T̃ m dual to the wallspace
of F. Note that T̃ m is the standard cubulation of Em since there are m-parallelism classes of walls. The
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action is proper by Proposition 7.4. The dimension m = n after all, since Zn ⊂ G cannot act freely on
T̃ m with m < n. And finally it is cocompact since Zn must act cocompactly on T̃ n since it is of finite
index in Aut(T̃ n). (I expect the subdivision of F is isomorphic to T̃ n.) �

16.4. Parabolic fillings that are virtually special. We now describe a variant of Theorem 12.3 for rel-
atively hyperbolic groups that is restricted to quotienting only by finite index subgroups of the parabolic
groups. Our focus, which is Lemma 16.13, provides a relatively hyperbolic variant of Theorem 12.3
and a special case of Conjecture 19.1. (The full case of Conjecture 19.1 can probably be proven by
combining Lemma 16.13 with Theorem 12.3 as in the proof of Theorem 12.1.) The reader not yet
familiar with sparseness can assume the cube complexes are compact.

Lemma 16.13. Let X be a sparse nonpositively curved cube complex. Suppose that π1X is hyper-
bolic relative to subgroups P1, . . . , Pr stabilizing quasiflats F̃1, . . . , F̃r, where X is sparse relative to
F1, . . . , Fr. Suppose that X is virtually special. There exist finite index subgroups Po

1, . . . , P
o
r such that

for any further finite index subgroups Pc
i ⊂ Po

i the quotient group G/〈〈Pc
1, . . . , P

c
r〉〉 is a word-hyperbolic

group virtually having a quasiconvex hierarchy within the cubical small-cancellation category.
Specifically, let Ẽi denote the superconvex hull of F̃i, and let Ec

i = Pc
i \Ẽi for each i. Then the cubical

presentation 〈X | Ec
1, . . . , E

c
r〉 is B(6) small-cancellation, and has a finite cover satisfying the B(6)

hierarchical conditions.

Remark 16.14. Lemma 16.13 should hold more generally for any smaller virtually cyclic index sub-
groups P′i ⊂ Po

i in the sense that Pi/P′i is virtually cyclic.

Proof. Note that the Pi-action on F̃i extends to an action on Ẽi. The definition of sparse implies that the
F̃i are isolated from each other, and after passing to Ẽi, they are isolated from external hyperplanes as
well, since any large overlap would be absorbed in Ẽi. There is thus an upper bound D on the diameter
of wall-pieces in the Ẽi, and of cone-pieces between distinct translates of the Ẽi, Ẽ j.

Let X̂ be a finite special cover, so that the induced covers Êi have systole exceeding 12D. Let Ẍ be
the finite cover corresponding to the wall homomorphism #W, and likewise let Ëi be the induced covers.
There is a wallspace on each Ëi induced by the hyperplanes of X̂. This (or rather 〈Ẍ | Ëi〉) satisfies the
B(6) hierarchical condition. For any further cover Ec

i → Ëi, we give Ec
i the induced wallspace structure

of Construction 9.4. We are proving a limited version of the Malnormal Special Quotient Theorem in a
relatively hyperbolic framework. Hyperbolicity holds for π1X∗ by Theorem 15.3. The hierarchical B(6)
condition persists - but for 〈Ẍ | Ec

i 〉. Letting Po
i = π1Ëi gives the desired finite index subgroups. �

Implicit in the statement of Lemma 16.13 is the following variation on omnipotence (see Sec-
tion 14.3) that is related to the work of Behrstock-Neumann on quasi-isometric classification of 3-
manifolds.

Corollary 16.15. Let M be a finite volume hyperbolic manifold and let ∂M = ∂1 t ∂2 t · · · t ∂r. There
exist finite covers ∂◦i → ∂i such that for any further finite covers ∂c

i → ∂◦i , there is a finite cover M̂ → M
such that for each i, the cover of ∂i induced by M̂ is isomorphic to ∂c

i .

Proof. We use that π1M = π1X where X is a virtually special sparse cube complex, as proven in
Theorem 14.29.

We can assume without loss of generality that M is orientable and hence each component of ∂M is
a torus. Indeed, if M̂ → M is a finite cover, and ∂i j are the various preimages in M̂ of some ∂i, then
we can choose ∂◦i to be a finite cover factoring through all covers ∂◦i j as j varies. Thus proving the

statement for M̂ implies the statement for M itself.
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For each i, let Pi = π1∂i. By Lemma 16.13, there are finite index subgroups P◦i such that for each
π1M/〈〈Pc

1, . . . , P
c
r〉〉 is virtually special for any finite index subgroups Pc

i ⊂ P◦i . Moreover, we can
assume that 〈X | E◦1, . . . , E

◦
r 〉 satisfies the C′( 1

12 ) small-cancellation condition (and in fact, some such
assumption enables the proof of Lemma 16.13). It follows that 〈X | Ec

1, . . . , E
c
r〉 is also C′( 1

12 ) for any
finite index normal subgroups Pc

i ⊂ Pi with Pc
i ⊂ P◦i . It is here were we use that each Pi is free-abelian,

and hence Ec
i → Ei is automatically regular, so pieces between Ec

i and itself, already arise between E◦i
and itself.

Let X∗ = 〈X | Ec
1, . . . , E

c
r〉. Observe that Ec

i lifts to an embedding in X̃∗ by Theorem 4.1. It follows
that the kernel of Pi → π1X∗ equals Pc

i . Alternately, this follows from Theorem 12.16 since the map
〈Ei | Ec

i 〉 → 〈X | E
c
1, . . . , E

c
r〉 has no missing θ-shells.

Since π1X∗ is virtually special, it is in particular, virtually torsion-free. Let π1X∗ → Q be a finite
quotient whose kernel is torsion-free. The kernel of the composition π1M → π1X∗ → Q corresponds
to a cover M̂ → M whose boundary tori are ∂c

i as desired. �

16.5. Separability for relatively hyperbolic hierarchies.

Theorem 16.16. Let G be hyperbolic relative to abelian subgroups and suppose that G splits as a
graph of groups whose edge groups are quasiconvex and whose vertex groups are fundamental groups
of virtually special sparse cube complexes. Then each quasiconvex subgroup of G is separable.

Remark 16.17. The proof of separability for the edge groups and probably for the cages (used in the
proof of Theorem 16.28) is simpler.

Proof. Let G split as a graph Γ of groups with vertex groups Gv and edge groups Ge, and let H be
a quasiconvex subgroup and g < H. By suitably filling the parabolic subgroups, we will produce a
word-hyperbolic quotient G → Ḡ with ḡ < H̄, such that H̄ is still quasiconvex and is also separable
since Ḡ has a quasiconvex hierarchy and is thus virtually compact special. The existence of a consistent
choice of parabolic fillings where all vertex quotient groups Ḡv are virtually compact special holds by
Lemma 16.13. The hyperbolicity of Ḡ and the quasiconvexity of H̄ hold by [Osi07, Thm 1.1]. (See
also Theorem 15.3 and Theorem 15.6.) The virtual specialness of Ḡ follows from Theorem 13.3.

Choosing Po: We now describe how to choose quotients Gv → Ḡv that are virtually compact special
hyperbolic, and that consistently induce quotients Ge → Ḡe of the edge groups, so there is an induced
quotient G → Ḡ that splits as a graph of groups each of whose vertex groups Ḡv is virtually compact
special hyperbolic. Each parabolic subgroup P of G intersects the vertex groups Gv in finitely many
conjugacy classes of subgroups (some of which might be cyclic) denoted by Pvi. By Lemma 16.13,
there are finite index subgroups Po

vi of these Pvi, so that any further normal finite index subgroups
Pc

vi yield virtually compact special hyperbolic quotients Ḡv/〈〈Pc
vi〉〉. Note that P can have multiple

intersections (i.e. with more than one vertex groups and/or conjugacy class within a vertex group).
When P is elliptic relative to Γ we let Po be a finite index subgroup such that Po ∩ Pvi ⊂ Po

vi for each
Pvi. Otherwise P is split nontrivially by Γ and all the Pvi are commensurable with subgroups contained
in a single codimension-1 normal subgroup P∗ of P, and we let Po be a characteristic finite index of P∗

such that (Po ∩ Pvi) ⊂ Po
vi for each Pvi.

We now choose the the subgroups Pc so that Ḡ is word-hyperbolic, so that the quasiconvexity of
each Ḡv in Ḡ is maintained, so that H̄ is quasiconvex, and so that ḡ < H̄. Consequently Ḡ is word-
hyperbolic and virtually compact special by Theorem 13.1, and thus the quasiconvex subgroup H̄ can
be separated from ḡ in a finite quotient of Ḡ and hence of G.

�

16.6. Residually verifying the double coset criterion.
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Proposition 16.18 (Double Coset Criterion). Let X be a nonpositively curved cube complex with finitely
many immersed hyperplanes. Then X is virtually special if (and only if) for each pair of immersed
hyperplanes A, B and choice of basepoint x ∈ A ∩ B, the double coset π1Aπ1B is separable in π1X.

We refer the reader to [HW08] and especially [HW10] where a version of this criterion is given that
works in the presence of torsion.

Definition 16.19. A hierarchy for a nonpositively curved cube complex X is a sequence of cube com-
plexes X0, X1, . . . , Xr where X0 = X and Xr = X0 is a set of 0-cells, and for 0 ≤ i < r there is a 2-sided
embedded hyperplane Di in the cube complex Xi such that Xi+1 = Xi − No(Di), where No(D) denotes
the open cubical neighborhood of D.

Every compact nonpositively curved cube complex whose hyperplanes are 2-sided and embedded
has a hierarchy, so in particular this holds for any compact special cube complex. To accommodate
infinite situations (and with an eye towards the corresponding hierarchy for π1X) we could allow the
possibility that Di is a collection of disjoint hyperplanes. In the compact case, this could permit a
lower length hierarchy. In the infinite case, this might be the only way for the hierarchy to be of finite
length. With this level of generality, any X with finitely many hyperplanes each of which is 2-sided and
embedded has a hierarchy.

There are also relevant generalizations where each component of Xr has some property, and we
would say the hierarchy terminates with this property - e.g., a hierarchy terminating at tori.

Theorem 16.20. If X has all of the following properties then X is virtually special.
(1) X is sparse.
(2) π1X is hyperbolic relative to the collection of virtually abelian subgroups Pi stabilizing the

quasiflats in the action of π1X on X̃.
(3) X has finitely many distinct immersed hyperplanes (see Remark 16.5).
(4) X has a hierarchy.

When X is compact and π1X is hyperbolic, Theorem 16.20 is a geometric special case of Theo-
rem 13.3.

Proof. Let us first describe our strategy for showing that G = π1X is virtually special. For each non-
trivial double hyperplane coset π1Agπ1B , π1Aπ1B, let U = π1A and V = π1B. We will produce a
quotient G → Ḡ where ŪḡV̄ , ŪV̄ , and Ḡ is hyperbolic and virtually compact special, and Ū, V̄ are
quasiconvex subgroups. Since quasiconvex double cosets are separable for word-hyperbolic groups
with separable quasiconvex subgroups [Git99, Min04], we see that there is a finite quotient Ḡ → Q
where these double cosets are separated, and this separates our original double cosets of G. (In fact,
it appears that Ū, V̄ correspond directly to a double hyperplane coset in a word-hyperbolic virtually
compact special cube complex, in which case the separability would follow from the “only if” part of
Proposition 16.18.) Consequently, X is virtually special by Proposition 16.18.

With this strategy in mind, let us examine how to choose Ḡ. For each Pi, we let Ẽi denote the
superconvex hull of F̃i in X̃ and note that Ẽi ⊂ F̃i ∪GK for each i. We will let Ēi denote a high-systole
quotient of Ẽi by a normal subgroup Pc

i of Pi that is either of finite index or virtually Z index. Our
quotient Ḡ is π1X∗ where X∗ = 〈X | Ēi〉.

The double cosets remain distinct by a form of Lemma 12.22.(1) as indicated in Remark 16.21.
By induction on the length of the hierarchy, the vertex group(s) corresponding to the cube complex

obtained by cutting along the first hyperplane are virtually special. As described in the proof of Theo-
rem 16.16, we are thus able to apply Lemma 16.13 to choose normal subgroups Po

i that are finite index
or virtually-cyclic index in Pi depending on whether or not Pi is elliptic with respect to the splitting of
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the first hyperplane. These choices ensure that for any finite index characteristic subgroups Pc
i ⊂ Po

i ,
the result will yield cubical small-cancellation word-hyperbolic quotients for all the vertex groups, that
is consistent on the edge groups so that we obtain a quotient to a graph of word-hyperbolic groups. We
emphasize that we are not quotienting by a finite index subgroup of entire parabolic subgroups that are
not elliptic. This avoids “damaging” the stable letters of our graph of groups - as we aim to provide a
graph of quotiented groups.

By Theorem 15.3, the group Ḡ is word-hyperbolic since we have performed a large filling on each
peripheral subgroup. By Theorem 15.6, the subgroups Ū, V̄ are quasiconvex in Ḡ.

Finally, the group Ḡ has a quasiconvex hierarchy because we chose each Ēi so that 〈X | Ēi〉 satisfies
the hierarchical B(6) conditions. Some care is needed here to make sure that the original hierarchy
for X projects to a hierarchy for X∗, and that the images of hyperplane groups have the expected
presentations and are quasiconvex. (Use no missing θ-shells for the former property, and additionally
short innerpaths for the latter property.) �

Remark 16.21. The statement and proof of Lemma 12.22.(1) does not quite apply in the proof of
Theorem 16.20. To fit into our framework, we would need to add a graded set of cones that also
includes the various hyperplanes of various codimensions in a filled torus. The grade of a cone is (d− i)
when it is associated to i-hyperplanes.

One then follows the proof of Lemma 12.22.(1) using a minimal complexity diagram. Even so,
there is an extra issue to explain that has not arisen before. Recall that the diagram D for a1g1a2g−1

2
that corresponds to a double coset intersection in π1X∗, decomposes into an annulus Bt surrounding a
subdiagram Dt (we avoid the notation Et used there) and that the strategy of the argument is to show
that if Dt has a positively curved cone-cell then there is a contradiction.

We assume that each Ēi is chosen so that the injectivity radius of carriers of hyperplanes in Ēi

exceeds five times the maximal diameter of wall-pieces and cone-pieces arising in the various Ẽi, and
moreover, the same should hold for intersections of Ēi with the boundaries of such carriers. This
assumption ensures that the following statement holds:

A typical positively curved θ-shell in Dt, as illustrated on the left in Figure 165, would be absorbable
into A1 and allow us to produce a lower complexity example. And such a θ-shell exists unless Dt is
a single cone-cell or ladder with one end on g1 and the other end on g2, as illustrated in the second
diagram of Figure 165.

However, in this ladder case, there is no guarantee that the two π-shells of the ladder absorb (or the
single cone-cell absorbs in the degenerate case), as it is impossible to ensure that the overlap of each
Ai with a flat F j is bounded - indeed some hyperplanes do pass through flats. In particular, the “no
missing θ-shell” style hypothesis bounding the overlap between Ãi and Ẽi (called Ỹi in the statement of
Lemma 12.22.(1) ) cannot immediately be achieved.

Instead we shall further assume that the cones Ēi are product tori (in the cosparse case, either first
apply Lemma 16.7 or require a product “up to the extra dimensions”). Now each cone-cell in the ladder
is an essential path in Ēi that is the concatenation of paths α1 → A1 and α2 → A2 with bounded subpaths
concatenated between α1, α2. It therefore corresponds to a meridian-longitude path as illustrated in the
fourth diagram of Figure 165, or perhaps a path that is just a single meridian or longitude. Consequently,
that cone-cell can be decomposed into the concatenation of two “lower grade” cone-cells (and perhaps
some squares). Subsequently, these two lower grade cone-cells can be absorbed into A1, A2 as on the
right in Figure 165.

The reason why the fourth diagram in Figure 165 is applicable in higher dimensions is because we
collapse the dimension of the torus corresponding to the codimension-2 hyperplane A1 ∩ A2. So Ēi
fibers over the illustrated torus with fiber corresponding to the A1 ∩ A2 parallelism class. The path in
our drawing can be interpreted as being closed “up to a path in N(A1) ∩ N(A2)”.
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F 165. Peripherally Separating Hyperplanes:

Remark 16.22. Theorem 16.20 is a bit neater to prove under the additional direct assumption that
hyperplanes are separable. In that case one can use a co-finite filling of the peripheral subgroups
instead of a co-cyclic filling.

We note that the vertex groups are virtually special by induction on the dimension, and so we could
apply the separability argument in Theorem 16.16 to see that the edge groups are separable, and use
this to pass to a large cover relative to the initial splitting. This would enable a total filling the vertex
peripheral subgroups.

Theorem 16.23 (Separability in sparse case). Let X be sparse and special, and let H ⊂ π1X be a
quasi-isometrically embedded subgroup. Then H is separable in π1X.

Let H1,H2 be quasi-isometrically embedded finitely generated subgroups of π1X. Then each double
coset H1H2 is separable.

Proof. It is interesting to collect various available modes of proof.
Let us first sketch the proof given in [SW]: First apply Lemma 16.7 to assume without loss of

generality that X is compact. Then extends H to a full subgroup by amalgamating with finite index
subgroups of the parabolic subgroups where necessary, to obtain a subgroup H+ (that retracts to H).
The subgroup H+ is represented by a compact based local isometry Y → X by Proposition 8.2. We then
apply Proposition 6.3 to obtain a finite cover C(Y → X) that retracts to Y , to see that π1Y is a virtual
retract, and is hence separable. This mode of proof was first introduced in a very primitive form in
[Wis00].

Another proof is available through Lemma 16.13, since the image of H̄ is quasiconvex for a large
enough filling by Theorem 15.6, and ḡ < H̄ when g < H is a small element compared to the size of the
filling.

Of course, this is a specific reenactment of the proof of Theorem 16.16, which proves Theorem 16.23
without knowing cubulation or even specialness.

Finally, Theorem 16.20 can be applied to the cube complex X	 that is the mapping cylinder of based
sparse local isometry Y → X. One then sees that X	 is virtually special, and now a finite index subgroup
of H is now associated with a hyperplane.

This last viewpoint allows us to prove the double coset separability as well: Indeed, having formed
X	 as above with H = H1, we now let Y2 → X be a sparse based local isometry that was thickened up
to contain at least one 1-cell dual to the newly added hyperplane corresponding to Y1. We then form X⊕
to be the mapping cylinder of Y2 → X	. The sparse cube complex X⊕ has a hierarchy (since X does)
and is thus virtually special. The double hyperplane coset provides the double coset separability. �

16.7. Relative malnormality and separability. We now revisit the notions of height from Section 12.2
in the relatively hyperbolic case. This will be used in the proof of Theorem 16.28.

Definition 16.24 (Relative Height and Malnormality). Let G be relatively hyperbolic.
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The relative height of H ⊂ G is the smallest number h such that for any h + 1 distinct cosets
{Hg1, . . . ,Hgh+1} the intersection ∩iHgi is either parabolic or elliptic.

The subgroup H of G is relatively malnormal if H ∩ gHg−1 is either elliptic or parabolic for each
g ∈ G − H.

Thus H is relatively malnormal exactly when its relative height is 0 or 1. In particular, any malnormal
subgroup and any parabolic or elliptic subgroup is relatively malnormal.

The following was proven in [HW09]:

Proposition 16.25. Let H ⊂ G be a relatively quasiconvex subgroup of a relatively hyperbolic group.
Then H has finite relative height.

The following was proven in [HW09, Thm 9.3]:

Proposition 16.26. Let H be a separable, relatively quasiconvex subgroup of the relatively hyperbolic
group G. Then there is a finite index subgroup K of G containing H such that H is relatively malnormal
in K.

A subgroup H ⊂ G is isolated from parabolics if for each parabolic subgroup P and each g ∈ G, the
intersection H ∩ Pg is either finite or equal to Pg. When H is isolated from parabolics, the following
Lemma strengthens the conclusion of Proposition 16.26 to obtain almost malnormality.

Lemma 16.27. Let G be relatively hyperbolic, and let H be a quasiconvex subgroup that is isolated
from parabolics. If H is separable then there exists a finite index subgroup G′ ⊂ G such that H is an
almost malnormal subgroup of G′.

Sketch. If HgiH is a double coset with the property that Hgi∩H is infinite, then H and giH have infinite
coarse intersection in the sense that Nr(H) ∩ giH has infinite diameter for some r. Consider a geodesic
rectangle of width r and length R � r whose four vertices are in H and giH. We cut this rectangle into
two relatively δ-thin triangles and find that either there are large overlapping peripherals in the middle
that also have large overlaps with H and giH, or there is a bounded short cut from one side to the other
down the middle. Thus, either H and giH have large fellow travel with some parabolic P and hence
H,Hgi contain P, or H, giH are within a bounded distance of each other.

Consider the finitely many double cosets HgiH corresponding to the bounded distance case. The
separability of H allows us to choose a finite index normal subgroup N ⊂ G such that the images of
these double cosets are separated in G/N. We let G′ = NH.

Let g ∈ G′ be such that Hg∩H is infinite, and note that our choice of G′ ensures that gH and H have
large overlap with the same parabolic P. Note that by isolation, P ⊂ H.

Considering an infinite rectangle whose sides are stabilized by h and hg we see that both h and hg

are in P, and thus since |h| = ∞ and since P is almost malnormal, we see that g ∈ P.
But then g ∈ H which was our desired conclusion. �

16.8. Hierarchy with all peripherals busted at first stage. We now describe a generalization of
Theorem 13.1 that holds in particular for a group that is hyperbolic relative to abelian subgroups, and
that splits over a collection of quasiconvex subgroups with word-hyperbolic virtually compact special
vertex groups. Our motivation is to the 3-manifold application since by Corollary 14.16, for each
cusped hyperbolic 3-manifold M there is a finite cover M̂ such that π1M̂ has such a hierarchy. As
usual, the case of a graph of groups can be deduced from the case of a loop or edge of groups.

Theorem 16.28. Let G be torsion-free and hyperbolic relative to virtually abelian subgroups. Suppose
that G splits as a graph of groups where each edge group is quasiconvex and each vertex group is
word-hyperbolic and virtually compact special. Then G is virtually compact special.
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Definition 16.29 (Accidental parabolic). Let G be hyperbolic relative to peripheral subgroups {Pi}.
Suppose G splits as a graph of groups. Let e be an edge in the Bass-Serre tree T of the splitting. An
element g in Ge = Stab(e) is an accidental parabolic if g is conjugate to an infinite order element in
some parabolic subgroup P, but e lies outside a (minimal) nonempty P-invariant subtree of the Bass-
Serre T of G.

From the viewpoint of the graph of groups, an accidental parabolic corresponds to an infinite order
parabolic element of an edge group such that the parabolic subgroup isn’t essentially “split” by that
edge. This notion agrees with the notion of accidental parabolic in an incompressible surface S by
considering the splitting of π1M along π1S .

Remark 16.30. As stated, Theorem 16.28 is limited to the case where all abelian subgroups have
rank ≤ 2. However, we actually prove a slightly more general statement handling the case where:
G is hyperbolic relative to virtually abelian groups, and G splits as a graph of groups where each
edge group is quasiconvex, and there are no accidental parabolics in edge groups, and moreover each
inclusion of each edge group into π1 of the subgraph(s) of groups omitting it does not intersect any
noncyclic parabolic subgroups.

Moreover, if the vertex groups are virtually compact/sparse special then so is G.

Strategy of proof: If each edge group were aparabolic, then combining Theorem 16.16 with Propo-
sition 16.26, we could pass to a finite index subgroup G′ whose edge groups are malnormal and
aparabolic. We could then use the hierarchy associated to a sequence of splittings associated with the
graph of groups Γ′. At each stage Proposition 7.8 can be applied to cubulate, and then Theorem 16.20
is applied to obtain virtual specialness.

The trickier situation where edge groups are not aparabolic is instead handled using a “variant hier-
archy” associated to the sequence of edges of Γ′ yielding a sequence of subgraphs Γ′r. When an edge
group E of Γ′r is malnormal (and aparabolic) then we use the usual splitting as above. Otherwise we use
a different splitting E+ ∗KE VE along a “cage” KE that is malnormal and aparabolic in VE = π1Γ′r+1. The
group E+ is readily seen to be virtually special. This allows us to employ the general version of Propo-
sition 7.8. The resulting cube complex at each stage is sparse (or compact in favorable circumstances)
and we can thus apply Theorem 16.20 to obtain virtual specialness at each stage.

Proof. For an edge group E of a group G splitting as a graph of groups Γ, the expanded edge group E+

consists of the multiple HNN extension with base vertex group E and with edge groups corresponding
to the various infinite intersections of maximal parabolic subgroups with E. We think of E+ as a graph
of groups with “initial” and “terminal” vertex groups isomorphic to an edge group E, and then a collec-
tion of arcs starting and ending on these initial and terminal vertex groups. The internal vertex and edge
groups of each such arc are all isomorphic to the same subgroup of a parabolic group which is associ-
ated to as many arcs as the number of its conjugates intersecting E. Finally, there is a homomorphism
E+ → G which is induced by a map of underlying graphs of groups. See Figure 166.

The cage KE associated to the edge E is the graph of groups obtained from the graph of groups for
E+ by removing the open edge associated to E itself. It thus has two distinguished vertex groups - the
initial and terminal image groups of E, and otherwise has arcs with parabolic stabilizers that start and
end on these respectively. We will not consider the cage KE in the disconnected case.

Step 1: Cage π1-injectivity, quasiconvexity, and malnormality: By first passing to a finite index
subgroup G′ of G we can assume that the cages have the following properties:

(1) Each cage maps injectively into G′.
(2) Each cage maps quasi-isometrically into G′.
(3) Each cage maps to a malnormal subgroup of the group VE ⊂ G′ that is the graph of groups

obtained by removing the open edge E.
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F 166. A graph of spaces on the left (the peripherals are highlighted on inside), an ex-
panded edge space in the middle, and its associated cage on the right. In this example, the
two parabolic subgroups are represented by immersed tori. The bold vertical lines in the cage
correspond to the initial and terminal images of the edge space, the small circles in the cage
correspond to places where the parabolic torus passes through vertex spaces, and the cylinders
in the cage correspond to places where the parabolic torus passes through edge spaces.

Explanation in our setting: Each edge group in the graph of groups is quasi-isometrically embed-
ded and thus relatively quasiconvex. It therefore has finite relative height by Proposition 16.25. Let n
be the number of edge groups, and let m be the maximal height of these edge groups. Then for any
arc A in the Bass-Serre tree T , if |A| > mn then Stab(A) is parabolic or elliptic. Indeed, one notes
that stabilizers of distinct edges of A correspond to distinct cosets of edge groups, and then applies the
pigeon-hole principle.

We choose a finite index subgroup of G with the property that in its associated graph of spaces, if
two tori enter a vertex space through the same edge space, and leave through different edge spaces
in the universal cover, then they leave through different edge spaces in this finite cover. In particular,
tori cannot backtrack from an edge space by entering a vertex space, and returning essentially to the
same edge space. This involves two steps: Firstly there is a finite index subgroup of each vertex group
which separates the finitely many double cosets of edge groups corresponding to the overlaps that must
be distinguished. Secondly, we use separability of the finite index subgroups of the vertex groups to
obtain the separation in a finite index subgroup of the whole group. Finally, we pass to a finite cover
induced by covers of the underlying graph to obtain girth > nm.

Now expanded edge groups correspond to nearly embedded subspaces in the induced cover of graph
of spaces. It is then easy to recognize that expanded edge groups inject using the normal form theorem
for graphs of groups. They can also be proven to quasi-isometrically embed along these lines.

More general explanation: By residual finiteness, maximal abelian subgroups are separable (both
are consequences of Theorem 16.16), and so we can pass to a finite index subgroup such that all
peripheral subgroups are free-abelian. So let us assume that G has this property to begin with.

For each expanded edge group E+ and each n, there is an immersed expanded edge group E+
n and a

map E+
n → E+. The group E+

n is a multiple HNN extension of E where each stable letter centralizes the
intersection between E and a peripheral subgroup. Moreover, each peripheral subgroup of E+

n wraps
n times around the corresponding peripheral subgroup of E+. An exact definition is a bit tedious, but
we refer the reader to Figure 167.

It follows from basic results about quasigeodesics in relatively hyperbolic spaces that E+
n → G is a

quasi-isometric embedding for all sufficiently large n (see e.g. [HWc]). Moreover, each E+
n is isolated

from peripheral subgroups, in the sense that Ẽ+
n ∩NL(P) has finite diameter unless P is commensurable

with one of the peripheral subgroups appearing in E+
n .



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 163

F 167. The high girth expanded edge space E+
3 .

Since (immersed) expanded edge groups are separable by Theorem 16.16, by Lemma 16.27, for each
E there exists a finite index subgroup JE ⊂ G such that E+

n is a malnormal subgroup of JE . We let G′

denote a finite index normal subgroup of G that is contained in each JE .
Since each expanded edge group E+ is malnormal in G′, it follows that each cage KE is malnormal

in the group VE (the cage splitting would have underlying graph a bouquet of two edges). Moreover,
this statement is inherited by further cages and subgraphs as we proceed down the hierarchy. Assuming
there are no accidental parabolics, if E+ = E then E is already malnormal and aparabolic in G, and we
will use the usual splitting of G. When E+ , E then since each torus passing through E is actually
split by E, we see that E does not disconnect the underlying graph of VE and we will use the splitting
E+ ∗KE VE along the associated cage.

Step 2: Splitting along cages: Each cage corresponds to a graph of spaces whose two vertex spaces
are the original incoming and outgoing edge spaces (the two sides of the associated edge space), and
whose edge spaces look like split peripherals (codimension-1 subgroups of peripherals intersecting
edge groups).

For each edge E of the underlying graph of the splitting of G′, we now describe an alternate splitting
of G′ as an amalgamated free product along the cage associated to E. One vertex group of this splitting
is the group VE corresponding to the graph of groups obtained by omitting E. The other vertex group is
the expanded edge group E+. The edge group is the cage KE . So we claim that G′ � E+ ∗KE VE where
the inclusions of KE are the natural ones.

To verify this we will rethink it geometrically as follows. Let φ : Y+ → X be the inclusion of the
graph of spaces corresponding to E+ into the graph of spaces X corresponding to the splitting of G′.
The mapping cylinder Mφ deformation retracts to X by pushing the cylinder forwards, so π1Mφ � π1X.
There is another deformation retraction which pushes the edge space corresponding to E upwards to
the copy of this edge space in Y+. The resulting space is isomorphic to the graph of spaces naturally
corresponding to an amalgamated product E+ ∗KE VE .

Step 3: The new vertex groups are cubulated: We now show how to cubulate each expanded edge
group E+. We contract the edge associated to E so that the edge group isomorphic to its initial and
terminal vertex groups is now a single base vertex group. Each arc in the underlying graph is associated
to a particular parabolic subgroup, and collecting them together according to this equivalence relation,
we find that they form a collection of “parabolic cycles” in the underlying graph of the splitting, so that
each edge lies in a unique cycle. We reform the underlying graph (see Figure 168) so that it consists
of a disjoint union of circles corresponding to the parabolic cycles above, and there is an edge joining
the base vertex to a vertex on the circle when the corresponding point on the parabolic cycle passes
through the base vertex.

Easy case: There is an easier way to proceed in the special case where each circle has exactly one
connecting edge to the base vertex, and where each parabolic is a trivial torus bundle over the circle
(but without assuming that parabolics are virtually Z2). We choose a fixed cubulation B of the base
vertex group. Each torus Ti, is attached to the base along a subgroup represented by Bi → Y . We let
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F 168.

Ti � Bi × (S 1)ri and then attach the two using an edge space Bi × [−1, 1]. The motivating case is where
ri = 1 but the argument works in general. Note that the resulting cube complex is compact if and only
if the base cube complex is compact as this implies that Bi is compact.

In general: The general case is handled similarly.
Assume that the finite index subgroup G′ ⊂ G is normal and assume that all peripheral subgroups

are actually free-abelian and not just virtually abelian.
If each edge group Ē of G has a finite index subgroup Eo with a compact cubulation, then by Theo-

rem 16.16, we can assume that each edge group E of G′ factors through the corresponding Eo.
Recall that we assumed the covering space corresponding to G′ factors through covers that contained

expanded edge groups E+
n each of whose tori intersects E in a single subtorus. This property is not stable

under further covers, but it does imply that in G′, each E+ has the property that the automorphism group
of the covering space E → Ē between edge spaces of the graph of spaces, extends to an action on E+.
(We use E, Ē for corresponding edge spaces associated to G′,G.)

Thus, each torus intersects E in a collection of “isomorphic places”. Choosing a cubulation of Ē
there is an induced cubulation of E, and this extends to a cubulation of E+. The easiest way of doing this
is to choose local isometries representing the intersections with the peripherals, and then gluing these
together to a common torus. In our case of interest this amounts to attaching a collection of A× [−1, 1]
to the cubulation B of E using the various isomorphic cores to attach A × {±1}. A more general form
of this which works without the restriction on accidental parabolics must handle tori attached along
higher codimension summands. In this case we form a graph of spaces akin to that illustrated on the
right in Figure 168. The central vertex space is the cubulation B of E. Each peripheral subgroup has a
cubulation A× (S 1)nA for some nA, where A is isomorphic to the way this peripheral subgroup (possibly
accidentally) overlaps with the cubulation B of E, and then we attach various copies A × [−1, 1] to
corresponding locations in A × (S 1)nA and B.

We note that when E has a compact symmetric cubulation (as is the case when Ē does, then the
cubulation of E+ is compact.

Step 4: The cubulation: Since each cage KE is malnormal in the old vertex group VE and quasi-
convex in the whole group, we obtain a cubulation as follows:

Choose cubulations of the new vertex groups (the expanded edge groups) as in Step 3. By passing
to a finite index subgroup (E+)′ of E+, and using the walls from its cubulation corresponding to the
intersection of the original codimension-1 subgroups with (E+)′, we can assume that the stabilizers of
walls of the cubulation of the cages from the new vertex groups lie in special subgroups of the old
vertex groups.

Observe that by Proposition 8.2, the embeddings of the cages are represented by compact local
isometries in the cubulations of the old vertex groups, since the cages are malnormal and quasiconvex.
More precisely, when the old vertex group VE has a compact cubulation then we obtain compactness of
these representations, and otherwise we obtain sparseness. In the stated version of the theorem, cages
are aparabolic and thus we obtain a compact representation in the cube complex of VE .
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We can thus apply the extension property of Theorem 6.11 to extend walls into the old vertex groups.
We note that VE is virtually special [compact/sparse] and cubulated by induction.

We will thus be able to apply the variant of Proposition 7.8 indicated by Restatements (5′) and (6′).
(We refer to this as Proposition 7.8′.)

To preserve the cocompactness, we note that as explained in Remark 6.13, the new walls do not
provide new commensurability classes of codimension-1 subgroups in the parabolic subgroups, and so
we will not “overcubulate” them. So the relative cocompactness provided by Theorem 7.5 is genuine
cocompactness, since the cubulations Ci of Pi remain cocompact after adding the new walls.

Conclusion: The result now follows by induction using the hierarchy obtained by successively
splitting along the edge groups of the induced splitting of G′. While cages might be a bit smaller within
a subgraph of groups, their malnormality and injectivity properties persist. To clarify, the splitting of
G′ yields a hierarchy (just split along the various edges). Again, as we progress through this hierar-
chy, a separating edge yields a splitting whose edge group is malnormal on each side, and while the
vertex groups are relatively hyperbolic, the edge group contains no noncyclic parabolic subgroups and
so the result can be cubulated directly using Proposition 7.8. For a nonseparating edge, we use the
splitting along the cage. Either way, we obtain the desired cubulation. After each level in the hierarchy,
after cubulating, we apply Theorem 16.20 to verify the virtual specialness of the cubulation that was
produced. �

Repeating the theme of Problem 14.4 we have:

Problem 16.31. Let G be hyperbolic relative to virtually abelian subgroups, and suppose that G is
virtually special. Does G (virtually) have a hierarchy terminating at the parabolic subgroups?

17. ~ L G  A H

The goal of this section is to examine some extremely simple quasiconvex hierarchies which are of
specific interest. We apply the results of Section 16 to prove that limit groups are virtually compact
special in Section 17.1. We prove that relatively hyperbolic groups with abelian hierarchies are virtually
sparse special in Section 17.2.

17.1. Limit groups. A fully residually free group or limit group is a group J with the property that for
any finite set of nontrivial elements { j1, . . . , jk} there is a free quotient J → J̄ such that j̄i is nontrivial
for each i ∈ {1, . . . , k}. It was shown in [KM98] that every limit group is a subgroup of a group Gr
constructed through the following hierarchical structure:

(1) G0 is a trivial group.
(2) For each i ≥ 0, we have Gi+1 � Gi ∗C A where C is a malnormal abelian subgroup of Gi and

A � C × B is a finite rank free-abelian group.

Remark 17.1. Considering the corresponding topological space (a bouquet of circles with a sequence
of tori attached to it along maximal pre-existing tori), we see that each maximal torus in the resulting
space can be attached at the initial stage where its first rank ≥ 2 torus is attached along some cyclic
root. We thus find that we can assume that each subgroup C above is cyclic.

Lemma 17.2. Each group Gr above is the fundamental group of a compact cube complex that is
virtually special.

Proof. The cubulation of Gi induces a cubulation of C whose walls extend to walls of A � C × B using
the product structure, so we can assume they don’t cross in the flat corresponding to A. The other walls
of A are induced from B using the product structure. The cubulation now follows from Proposition 7.8.
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We note that it is unnecessary to utilize turns, so a compact cubulation of Gi provides a compact
cubulation of Gi+1. �

Since finitely generated subgroups of Gr are quasi-isometrically embedded [Kap02], we can apply
Proposition 8.2 to obtain the following consequence:

Corollary 17.3. Every f.g. limit group is the fundamental group of a virtually special sparse cube
complex.

Using Sela’s retractive tower description of limit groups [Sel03], one obtains the stronger result that:

Theorem 17.4. Every limit group is the fundamental group of a compact nonpositively curved cube
complex that is virtually special.

Proof. We must verify the preservation of the virtually compact special property under two construc-
tions:

In the first case G = A ∗C (C × Zn) where A is compact and virtually special, and C is a malnormal
subgroup of A. In this case let X be a compact nonpositively curved cube complex with A = π1X, and
let Y → X be a compact representation of C by Proposition 8.2. Let Z = (Xt(Y×(S 1)n))/(y, 0, . . . , 0) ∼
φ(y) : y ∈ Y . Then Z is a nonpositively curved cube complex with π1Z � G. Let X̂ be a special cover
of X, and let Ẑ be the cover of Z induced by the retraction Z → X. Then Ẑ is a nonpositively curved
cube complex with a quasiconvex hierarchy and π1Ẑ is hyperbolic relative to virtually free-abelian
subgroups, so Ẑ is virtually special by Theorem 16.20.

In the second case G splits as a graph of groups with two vertex groups A, B where A is compact
virtually special, and B � π1S with S an orientable surface. The edges of the graph correspond to the
boundary circles of S . Each edge group is infinite cyclic and maps to A on one side, and embeds in B
as the fundamental group of the corresponding boundary circle. Finally, there is a retraction G → A.

If S is a cylinder, then the retraction map shows that the two boundary circles represent elements
that are conjugate in A, and hence this was covered by the first case (with n = 1). Otherwise, each edge
group is malnormal and aparabolic in S . There is a version of Proposition 7.8′ that can handle this graph
of groups situation, but instead, we add dummy squares to obtain a new splitting as an amalgamated
product A ∗Fr (B ∗ Fr−1) over a free group (where ∂S has r components).

Of course, as the group has not changed, there is still a retraction to A. Topologically, this corre-
sponds to the dummy squares having two opposite edges on edge spaces, and one edge on a topological
space for A, and the free face in the vertex space for B ∗ Fr−1. An easy fiber product argument shows
that Fr is malnormal in B ∗ Fr−1, and of course Fr is aparabolic in B ∗ Fr−1 and quasiconvex in G. We
apply Proposition 7.8 to cubulate, and then pass to a finite cover so that the A part of the cube complex
is special.

We must also make sure that the B∗Fr−1 part of the cube complex has a hierarchy. That can be done
using the details of the proof of Proposition 7.8′. It can also be achieved by using Wilton’s result of
separability which follows from Corollary 17.3. The last possibility is to avoid this by proving a form
of Theorem 16.20 that allows some virtualness in the hierarchy. �

I don’t know if passing to a finite index subgroup is necessary:

Problem 17.5. Is every limit group the fundamental group of a special cube complex?

In [KM98] it was shown that every limit group can be produced from free-abelian groups and free
groups using a separated cyclic hierarchy whose splittings are all free products, or HNN extensions or
amalgamated free products over an infinite cyclic subgroup where the cyclic edge group is malnormal
on at least one side, and its two inclusions do not have intersecting conjugates in the vertex group (in
the HNN case). This is also apparent from the retractive tower viewpoint.
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Theorem 17.6. Every group with a separated cyclic hierarchy is the fundamental group of a sparse
nonpositively curved cube complex that is virtually special.

Proof. We described how to cubulate a free-abelian extension of an infinite cyclic subgroup above.
Of course, if the original group has a sparse cubulation, then the extension is sparse as well, since the
geometric result is of the form X∗A (A×(S 1)n) for some n where A→ X is a local isometry representing
the maximal abelian subgroup (that is cyclic in this case).

Now consider an HNN extension G � H∗Ct=D where H is the fundamental group of a sparse non-
positively curved cube complex that is virtually special, and C is infinite cyclic, and C is malnormal in
H, and C,D do not have conjugates in H with nontrivial intersection.

The reader will require an understanding of the HNN version of Proposition 7.8′ to understand this
proof.

By Lemma 16.13 and Remark 16.14, we pass to a quotient H → H̄ with the property that {C̄, D̄}
form a malnormal collection of subgroups. (The key is for D̄ to equal the image of the centralizer of
D.) Following the style of proof in Section 14.3, we choose a finite index normal subgroup N̄ ⊂ H̄ and
a quotient N̄ → Z such that D̄∩ N̄ has trivial image in Z but C̄ ∩ N̄ has infinite image. This allows us to
produce walls in H that hit C but miss D. These can be represented by finitely generated codimension-1
subgroups (which must then be quasi-isometrically embedded because of the structure of H: indeed
all its finitely generated subgroups are quasi-isometrically embedded (see [Kap02] and the references
therein). We can thus recubulate H so that C passes through more hyperplanes than D. The cubulation
result now follows from the HNN version of Proposition 7.8.

The details of Proposition 7.8 are comparatively easy here: Cubulate G by extending all walls of D
into C, and then turn the excess walls from H into C back to H. (Turns are discussed in [HWc].)

The cubulation is sparse by Corollary 7.7, and thus virtually special by Theorem 16.20. �

Problem 17.7. Is every group with a separated cyclic hierarchy virtually a limit group?

17.2. Abelian hierarchies (preliminary).

Definition 17.8. G has an abelian hierarchy if it has a hierarchy where at each step, the edge group C
in A ∗C B or A∗Ct=C′ is a finitely generated free-abelian group.

Remark 17.9. Let G be hyperbolic relative to free-abelian subgroups. We note that G then has the
property that any nontrivial abelian subgroup C ⊂ G is contained in a unique maximal abelian subgroup
of G. Consequently, if G also has an abelian hierarchy then it has a hierarchy terminating at free-abelian
subgroups where at each stage either:

(1) C is a free-abelian subgroup of A∗C B and C is malnormal in A and lies in a maximal malnormal
abelian subgroup of B

(2) C is a free-abelian subgroup of A∗Ct=C′ and C′ lies in a maximal abelian subgroup D ⊂ A, and
{C,D} is malnormal in A.

The following is proven in [Dah03, BW]:

Lemma 17.10. Suppose that G is hyperbolic relative to free-abelian subgroups, and that G has an
abelian hierarchy. Then every finitely generated subgroup of G is quasi-isometrically embedded.

Lemma 17.11 (Absorbing walls). Let X be a virtually special sparse cube complex, where G = π1X
is hyperbolic relative to {P = P0, P1, . . . , Pr}, and each Pi is free-abelian. Let H be a codimension-
1 subgroup of P with associated H-wall WH of P. There exists a finite cover X̂ and an embedded
“base” K-wall WK in X̂ that extends WH , so that WK crosses copies of P only in one or more immersed
submanifolds parallel to H, and crosses no Pi with i ≥ 1.
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F 169. The wall WH is indicated within the torus P0 at the bottom on the right. Its
“absorbing wall” extension is indicated in the covering space on the left.

Proof. Let P′0 be a sufficient finite index subgroup of H, and let P′i be a sufficient finite index subgroup
of Pi for each i ≥ 1, so that the group Ḡ = π1X/〈〈P′0, P

′
1, . . . , P

′
r〉〉 is virtually compact special hyperbolic

by Lemma 16.13 (as varied in Remark 16.14.
Let J be a special finite index subgroup of Ḡ, and let Z0 denote J ∩ P̄0. Proposition 6.3 provides a

finite index subgroup J′ ⊂ J and a retraction J′ → Z0.
For each i, let φi : Fi → X be a local isometry with Pi = π1Fi, after adjusting basepoints. Let

X} =
(
X t tiFi × [−1, 1]

)
/(φi(x) ∼ (x,−1) : x ∈ Fi) be obtained from X by attaching a copy of

Fi × [−1, 1] along each Fi. We let Ti = Fi × {1} be the corresponding subspaces of the cube complex
X}, and we note that the Ti are disjoint from each other. Let X̂} be the based cover of X} corresponding
to J′.

Identify Z0 with π1S 1, where S 1 is a circle consisting of a single 0-cell and 1-cell with barycenter
b. The retraction J′ → Z0 allows us to choose a map X̂} → S 1 such that covers T̂0 j of T0 map to S 1

transversely at b. In particular, the preimage of b in each T̂0 j consists of subtori “parallel” to H. For
i ≥ 1, the various T̂i j can be chosen to map to the 0-cell of S 1. The map tT̂i j → S 1 extends to a map
ψ : X̂} → S 1 that is transverse to b.

The base component W of ψ−1(b) yields our desired K-wall in X̂}, where K = π1W is the fundamen-
tal group of the base component. The image of K in X} gives an immersed K-wall extending several
immersed copies of covers of our H-wall. �

When G is a finite volume hyperbolic 3-manifold group with a cusp P, we can interpolate a step in
the proof, so that there are multiple cusps, and then the construction shows that K cannot be a virtual
fiber (since it misses some cusps!). Consequently K is geometrically finite. We are then able to obtain
the following:

Corollary 17.12. Let M be a compact 3–manifold whose interior admits a complete hyperbolic metric
of finite volume. Let C be a circle in ∂M. Then there is a finite cover M̂ with an oriented properly
embedded incompressible geometrically finite surface S with ∂S covering C.

Theorem 17.13. Suppose that G is hyperbolic relative to free-abelian subgroups, and that G has an
abelian hierarchy terminating in virtually special groups. Then G is virtually sparse special.

In particular, we obtain the following:

Corollary 17.14. Suppose that G is hyperbolic relative to free-abelian subgroups, and that G has an
abelian hierarchy. Then G is virtually sparse special.

Proof of Theorem 17.13. We will prove that G has a finite index subgroup G′ such that G′ � π1S where
S is a sparse cube complex with a hierarchy. It follows that S is virtually special by Theorem 16.28.

By Remark 17.9, G has a hierarchy terminating in free-abelian subgroups (these base cases are
obviously cubulated), with certain malnormality properties. It suffices to consider the case of an HNN
extension: A∗Ct=C′ . The case where C is trivial is easy, so let us assume that C is infinite. Then C′ lies
in a maximal abelian subgroup D, and {C,D} is malnormal in A.
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Let A = π1X where X is sparse and virtually special - by induction on the length of the hierarchy.
By Lemma 17.11, we can extend the system of immersed walls in X, or rather X} as in Lemma 17.11,
to a new system such that considering the isomorphism between C and C′ represented by T → T ′,
each commensurability class of wall in C is represented by an immersed wall in C′ that extends to an
“absorption” wall in X� that does not interact at all with C, and similarly, each commensurability class
of wall in C′ is represented by an immersed wall in C that extends to an “absorption” wall in X� that
does not interact at all with C′. Since the new walls have quasi-isometrically embedded stabilizers, the
cube complex dual to the associated wallspace in X} is cosparse, and we obtain a new cube complex Y
with π1Y � π1X, and with the property that C,C′ are now represented by local isometries E → Y and
E′ → Y .

A finite special cover of X has a hierarchy, and the corresponding cover of Y has this same cubical
hierarchy, so Y has a finite special cover Y1 by Theorem 16.28.

As in Corollary 16.15, we now apply Lemma 16.13 to Y1 in order to obtain a cover Y2 so that π1Y2
induces the same finite index subgroups of C,C′. Finally, we subdivide the absorption hyperplanes of
C and of C′ so that there are the same number of hyperplanes on these tori in Y2. (It is easier to think
of subdividing within Y , and letting that induce subdivisions in Y2.)

In conclusion, we can now choose a one-to-one correspondence between the E and E′ tori eleva-
tions in Y2, and the walls within them of various types, and cubulate a finite index subgroup of G as
planned. Again the cubulation is sparse since the wall stabilizers are quasi-isometrically embedded by
Lemma 17.10 and so Proposition 7.5 applies. �

Problem 17.15. Suppose G is relatively hyperbolic and has an abelian hierarchy. Does G virtually
have a compact cubulation?

We now attempt to provide a more cutting version of Lemma 17.11 that is more along the lines of
Section 6.5. This is preliminary.

Lemma 17.16. Let G be virtually special and hyperbolic relative to abelian subgroups. Let P be a
full quasiconvex malnormal subgroup with a codimension-1 quasiconvex subgroup H and H-wall WH
within P. Suppose P1, . . . , Pk are other subgroups that contain no infinite order element conjugate into
P. There exists a quasiconvex codimension-1 subgroup K and an extension of WH to a K-wall WK ,
so no infinite order element of Pi is conjugate into K for i ≥ 1, and WK cuts P in a single component
(within the universal cover).

Proof. We work under the assumption that G is torsion-free. We can apply Lemma 16.7 to assume that
G lies in a subgroup G′ that is virtually compact special. The subgroup P equals G ∩ P′ where P′ is
full and quasiconvex in G′. Moreover, a retraction P′ → P shows that the quasiconvex subgroup H of
P′ extends to a quasiconvex subgroup H′ of P′, and the H-wall extends to an H′-wall in P′.

The group G′ has the extension property with respect to P′, and so the H′-wall extends to a K′-wall
in G′. We now recubulate G′ using this additional wall to obtain a dual cube complex X′ = G′\X̃′.
This additional wall is then associated to a hyperplane stabilized by K′, which then intersects the P′-
cocompact convex subcomplex Ỹ ′ in a hyperplane Ṽ ′ stabilized by H′.

Let Y ′ = P′\Ỹ ′, and form C(Y ′ → X′). As explained in [HWa], the canonical retraction ensures
that the canonical copy of Y ′ that is a retract of C(Y ′ → X′) is wall-injective, in the sense that each
hyperplane of C(Y ′ → X′) intersects Y ′ in at most one hyperplane of Y ′. Furthermore, the preimage
of a hyperplane U′ of Y ′ is equal to a collection U′i of hyperplanes of C(Y ′ → X′) that map to the
hyperplane of X′ containing U′. (More correctly, they are parallel within a cubical subdivision of
C(Y ′ → X′)). In particular, the preimage of V ′ in C(Y ′ → X′) is just the cover of Ŵ′ containing V ′,
where W′ is the hyperplane of X′ containing U′.
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If Y ′ were already wall-injective in X′, then W′ would be our desired wall extension. However, this
might not be the case. We therefore work with the wall-injective copy of Y ′ within C(Y ′ → X′), which
yields W′ with the desired properties.

We now apply the malnormal special quotient theorem to crush the other elevations of Y ′. The details
of the malnormal special quotient theorem proof ensure that in the new cubulation, the hyperplane W′

(or rather its lift in a cubulation of a torsion-free finite index subgroup) will only cross the living
elevations of Y ′ in copies of covers of V ′ - which was our goal.

The codimension-1 subgroup we obtained induces one for P by taking intersections. �

Remark 17.17. Next thing needed to complete the relatively hyperbolic case is to clarify that we can
proportionately readjust to make E, E′ isomorphic in a cover after cubulating. One option is to first fill
the parabolics (proportionately) and then apply the special quotient theorem etc.

18. A  - 

18.1. Overview. We now provide an application resolving the conjecture of Gilbert Baumslag on the
residual finiteness of one-relator groups with torsion.

In analogy with Haken 3-manifolds, every one-relator group has a hierarchy terminating in a group
isomorphic to Fr ∗ Zn for some r, n.

We describe the hierarchy in Section 18.2, and prove in Lemma 18.8 that it is a quasiconvex hierarchy
when n ≥ 2. Without the torsion assumption, there are simple examples where the hierarchy is not
quasiconvex, as described in Example 18.3.

Theorem 18.1. The Magnus-Moldavanskii hierarchy is quasiconvex for any one-relator group with
torsion.

Combining Theorem 18.1 with Theorem 13.3, we obtain the following result strongly affirming
Baumslag’s conjecture:

Corollary 18.2. Every one-relator group with torsion has a finite index subgroup that is the fundamen-
tal group of a compact special cube complex.

We now describe a word-hyperbolic one-relator group whose Magnus hierarchy is not a quasiconvex
hierarchy. I wonder if there is a natural characterization of such examples (probably not).

Example 18.3. Consider the presentation 〈a, b, c, t | abc−1, at = b, bt = c〉. Its group is an HNN
extension of the free group 〈a, b, c | abc−1〉 � 〈a, b | −〉 � F2, and in fact, a semi-direct product F2 oφ Z
using the automorphism induced by: φ(a) = at = b and φ(b) = bt = c = ab.

By choosing words with no repeated letters (or even primitive words), that are complicated relative
to the index shift isomorphism between Magnus subgroups, we can obtain a small-cancellation group,
with similar behavior.

For instance, letting xy denote yxy−1 the HNN extension: 〈a1, . . . , ar+1, t | a1 . . . ar+1, at
i = ai+1 :

1 ≤ i ≤ r〉 is isomorphic to the one-relator group: 〈a1, t | a1at
1at2

1 . . . a
tr
1 〉 which equals 〈a1, t |

a1ta1t2a1t3 . . . a1tr〉 which is a C′( 1
6 ) small-cancellation group for r > 21. Indeed, pieces have length

at most 2r but the word has length r +
r(r+1)

2 = r2+3r
2 > 12r. (In fact the group is C′( 1

4 ) − T (4) when
r > 13.)

Since the HNN extension is a semi-direct product, the vertex group and hence the edge groups are
normal of infinite index and thus cannot be quasiconvex. It may be that some alternate one-relator
presentation provides a quasiconvex malnormal hierarchy, but I reckon there are examples that have no
quasiconvex hierarchy. Nevertheless, I expect the following holds:
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Conjecture 18.4. Every word-hyperbolic one-relator group has a finite index subgroup with a quasi-
convex hierarchy.

18.2. The Magnus-Moldavanskii Hierarchy.

Construction 18.5 (Magnus-Moldavanskii Construction). Following [LS77], we shall now describe
a variation on Moldavanskii’s variant of Magnus’s inductive construction of one-relator groups. I am
grateful to Hadi Bigdely and Eduardo Martinez-Pedroza for editing this section.

We start with a one-relator group 〈S | Wn〉 where the generating set is S , and W is cyclically reduced
word in the generators that is not equal to a proper power. We define the repetition complexity of W to
be |W | minus the number of distinct letters that occur in W. Equivalently, this is the sum of the number
of times that letters occurring in W are repeated, so the complexity of aba−1bbc would be 1 + 2 + 0 = 3.
Having a given presentation in mind, we refer to the complexity of a one-relator group as the repetition
complexity of the relator in this presentation.

Note that when the complexity is zero, and more generally, when some generator appears exactly
once in W, then the group presented by 〈S | Wn〉 is isomorphic to a virtually free group F ∗ Zn where
the rank of F equals |S | − 1.

Assuming that no generator appears exactly once, we show that G′ = G ∗ Z splits as an HNN
extension K∗M of a one-relator group K over a Magnus subgroup. The complexity of K is less than the
complexity of G, and so this process stops after finitely many steps. It is clear that this induces an actual
hierarchy (that terminates at finite cyclic groups), since a splitting of G∗Z induces a splitting of G, and if
it is a quasiconvex splitting, then it induces a quasiconvex splitting. The free factor with Z is an artifice
that facilitates the combinatorial group theory description. The stable letter t of the HNN extension
conjugates one Magnus subgroup to another by an “index shift”. A Magnus subgroup of a one-relator
group 〈S | Wn〉 is a subgroup generated by a subset of the generators omitting some generator appearing
in the relator Wn. Magnus’s “Freiheitsatz” theorem states that these specific generators freely-generate
the Magnus subgroup of a one-relator group. We state a general formulation of the Freiheitsatz in
Proposition 18.10.

Let us now describe this process a bit more carefully. We add a new further generator t to the
presentation, so that the resulting finitely presented group G′ is isomorphic to G ∗ 〈t〉. We let S̄ denote
a new set of generators in one-to-one correspondence with the generators in S , so s ↔ s̄. We will
choose an integer ps for each s ∈ S , and perform a substitution s 7→ s̄tps , that rewrites the relator W
as a word W̄′ in terms of S̄ ∪ {t}, so we have a new presentation 〈t, s̄ ∈ S̄ | W̄′〉 for G′. There are
Tietze transformations justifying this: we first add generators s̄ with relators s−1 s̄tps , and then rewrite
the relator by substituting s̄tps for each s in W, and finally, we remove the old generators s and relators
s−1 s̄tps .

For each generator x of a free group F, there is a homomorphism #x : F → Z induced by sending
x to 1 and all other generators to 0. For a word V , the value #x(V) is the exponent sum of the letter x in
the word V ,

We shall now assume that the integers ps are chosen so that the resulting word satisfies #t(W̄) = 0.
Indeed, assuming that W contains at least two letters, there is always a way of doing this: If #a(W) = 0
for some generator a ∈ S , then we let pa = 1 and let ps = 0 for all s , a. Otherwise, we can choose
a, b ∈ S with #a(W) , 0 and #b(W) , 0, and we then define pa = #b(W) and define pb = −#a(W), and
define ps = 0 for all s , a, b.

In this way, our word W in S becomes a word W̄′ in S̄ ∪ {t}. For each s̄ ∈ S̄ let Ls̄ ≤ Rs̄ be
the smallest and greatest values of #t(U) where U is a prefix of W̄′ preceding an occurrence of s̄±1 so
Us̄±1V = W̄′. In the degenerate case where W̄′ contains no occurrence of s̄±1 then we assign Ls̄,Rs̄ = 0.
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F 170. The subcomplex Y1 ⊂ X̂ for the word W̄ ′ = at3bt−2at3bt−4 is illustrated in bold.
The reader should check that the base lift of W̄ ′ at the basepoint only passes through two b
edges and two a edges, but we include their intermediate Z-translates.

We introduce new generators s̄i : Ls̄ ≤ i ≤ Rs̄, and new relators s̄i = ti s̄t−i : Ls̄ ≤ i < Rs̄. Adding
these generators and relators, we thus obtain a new presentation for G′. Finally, since #t(W̄′) = 0, we
see that W̄′ is freely equivalent to a word W̄′′ in (ti s̄t−i) : s̄ ∈ S̄ , and we use the introduced relators to
rewrite W̄′′ as a word W̄ in our new generators s̄i.

Exchanging the relations {s̄i = ti s̄t−i : Ls̄ ≤ i < Rs̄} for relations of the form s̄t
i = s̄i+1 (here we use

the notation xy = y−1xy), the resulting presentation for G′ is the following:

〈t, s̄i : Ls̄ ≤ i ≤ Rs̄, s̄ ∈ S̄ | W̄n, s̄t
i+1 = s̄i : Ls̄ ≤ i ≤ Rs̄, s̄ ∈ S̄ 〉

Thus G′ is an HNN extension of the one-relator group K presented by 〈S̄ | W̄n〉 with stable letter t,
and Magnus subgroups Mt

+ = M− where: M− = 〈s̄i : Ls̄ ≤ i < Rs̄〉, and M+ = 〈s̄i : Ls̄ < i ≤ Rs̄〉. We
note that when G and hence G′ is f.g. then so is K.

Observe that |W | = |W̄ | and the number of generators occurring in W̄ exceeds the number occurring
in W by

∑
s̄∈S̄ Rs̄ − Ls̄. Recall that the complexity is the difference between the relator length and the

number of occurring generators, and hence the complexity decreases by
∑

s̄∈S̄ Rs̄ − Ls̄. If t appears at
least once in W̄′ we can hope that Rs̄ > Ls̄ for some s̄, and hence the complexity will decrease. To this
end we must choose our ps integers a bit more carefully, and will explain how to do so below.

Recapitulation and Geometric Interpretation: We began with a one relator group G with presen-
tation 〈S | W〉. We define G′ = G ∗ 〈t〉, which obviously has the presentation 〈S , t | W〉. Using different
generators s̄ = st−ps , and rewriting W in terms of these new generators, we obtain a new presentation
for G′ of the form 〈S̄ , t | W̄′〉. The word W̄′ has occurrences of s̄ in one-to-one correspondence with
occurrences of s in W, but there are additional occurrences of t. We then express G′ as an HNN ex-
tension whose base group K is a new one-relator group. Let X denote the standard 2-complex of the
presentation 〈S̄ , t | W̄′〉. Let X̂ → X be the Z-covering space induced by t 7→ 1, s̄ 7→ 0, and note that
this extends the homomorphism φ : G → Z induced by s 7→ ps.

Consider the based lift of the closed path W̄′ to X̂. Let Y denote the subcomplex of X̂ that contains
the closure of the based lift of the 2-cell of X, and also contains all Z-translates of a 1-cell s̄ that lie
between the first and last such s̄ 1-cell that W̄′ passes through. We refer the reader to Figure 170.

The group K = π1Y ⊂ π1X̂. To obtain a presentation for K we contract the t-tree within Y , and
our s̄i generators correspond to the loops attached to this t-tree. The new relator W̄ is closely related
to our original word W, but with some of its generators subscripted - the temporary t-letters have now
disappeared. More precisely, regarding a t-path as a maximal tree in Y1, there is a natural generator
system for π1Y1 consisting of conjugates of the original generators of π1X1. Namely: {s̄i = t−i s̄ti : Ls̄ ≤

i ≤ Rs̄}. We also include a single loop s̄0 for each generator of S̄ that doesn’t appear in W̄′.
Finally, the complexity of the presentation for K decreases precisely if W̄ contains more distinct

generators than occurred in W. This happens precisely if the closed path W̄′ passes through two non-t
one-cells of X̂ that map to the same 1-cell of X. This occurs precisely if φ : G → Z “separates two
occurrences of a generator” which we will define and examine in the explanation below of how to make
the choices so that the complexity decreases.
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Complexity Reduction: We will now show that for suitable choices of the integers ps above, the
new one relator group K has lower complexity than the original one-relator group G.

A homomorphism φ : F → Zwith φ(W) = 0 corresponds to a choice of integers ps = φ(s). Consider
two occurrences of a generator s in W corresponding to a subword of the form s±1Us±1 in W. We say
that φ separates these two occurrences provided that either: φ(sU) , 0 in case of sUs; or φ(s−1U) , 0
in case of s−1Us−1; or φ(U) , 0 in case of sUs−1 or s−1Us. We refer the reader to the later geometric
interpretation below. When φ separates occurrences of s, we have Rs̄ > Ls̄ and hence this choice yields
a complexity reduction.

Suppose there is a generator a with #a(W) = 0. If some pair of successive appearances of a±1 in
W have the same sign, then they are separated by #a. So let us consider the alternating case where
W = aA1a−1A2aA3 · · · and each Ai is nonempty and contains no a±1. If some generator b occurs in
both Ai, A j with i .2 j then the #a homomorphism separates these two occurrences of b. So, let us
assume that no generator appears in both an odd and an even syllable.

We call b a zero letter of W if #b(W) = 0 and call b a nonzero letter of W if #b(W) , 0. Considering
aA1a−1A2aA3 · · · , we see that either each Ai contains at least one nonzero letter b, or some Ai consists
entirely of zero letters.

Suppose some Ai consists entirely of zero letters, and consider an innermost pair b±1Cb±1 ⊂ Ai
with the property that b < C. We can assume that C is nonempty for in the case bb or b−1b−1 the #b
homomorphism separates the occurrences of b. Now for any c ∈ C, we have #c(C) , 0 so #c separates
the surrounding occurrences of b±1.

Let us therefore consider the case where each Ai contains a nonzero letter. There is thus an “even”
nonzero letter b in A2 and an “odd” nonzero letter c in A1, and we use the φ = wc#b − wb#c homo-
morphism, where we use the notation wx = #x(W). Let Ai be a syllable with #b(Ai) , 0, and note that
c < Ai since i is even, so φ separates the two occurrences of a around Ai.

We now assume that #a(W) , 0 for each letter a occurring in W. Suppose some letter occurs with
both signs. Then we can choose aεBa−ε such that a±1 does not occur in B, and such that |B| is minimal
among all such choices with a, B allowed to vary. Observe that #b(B) , 0 for any letter b occurring
in B, for then b+1, b−1 both occur in B and this would violate the minimality of |B|. We then use the
homomorphism wa#b − wb#a which separates the two occurrences of a around B.

Without loss of generality, we may assume that each occurring letter occurs only positively. Express
W as aA1aA2aAn where each Ai is nonempty and has no occurrence of a. If #b(Ai) = 0 but b occurs in
W, then wa#b −wb#a separates the a’s around aAia. If #b(Ai) ≥ 2, but b occurs in W, then wa#b −wb#a
separates the occurrences of b in Ai. We thus have #b(Ai) = 1 for each b occurring in W.

We may thus assume that each Ai contains each letter occurring in W, and moreover it occurs exactly
once. It follows that |Ai| is constant, so each occurrence of a within W occurs in the same position
modulo the total number of letters occurring in W. The same statement applies for each letter occurring
in W. Consequently, W = Un where each letter occurs exactly once in U.

18.3. Quasiconvexity using the strengthened spelling theorem. Let X be a staggered 2-complex.
Such 2-complexes are discussed in Section 18.4, but in particular, we have in mind the motivating case
where Let X be the standard 2-complex of 〈a, b, . . . | Wn〉. In this case, a 2-cell in a disk diagram
D → X is extreme if more than n−1

n of its boundary path is a subpath of the boundary path ∂pD of D.
Such a subpath is the outerpath of the extreme 2-cell. More generally, for a staggered 2-complex X we
say r is an extreme 2-cell if this outerpath has length exceeding n−1

n |∂pr| where n is the exponent of r.
The Newman spelling theorem (see [LS77] and the references therein and [HW01] for the staggered

case) states that a reduced diagram D → X that is nontrivial, spurless, and not a single 2-cell, must
contain at least two extreme 2-cells. The following amplification of this is proven in [LW]:
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F 171. Pac-Man: The first figure shows the only two places where an extreme cell could
lie, the second figure shows the subdiagram D′ subtended by r, the third figure illustrates a
bridge, and the fourth and fifth figures illustrate bridges that are not outermost.

Proposition 18.6. Let X be a staggered 2-complex. Let D → X be a reduced spurless disk diagram
with an exponent n internal 2-cell r (meaning that ∂r ∩ ∂D ⊂ D0). Then D contains at least 2n extreme
2-cells.

Proposition 18.6 is most interesting when each 2-cell of X has exponent ≥ 2, as arises in the moti-
vating case of a one-relator group with torsion.

Lemma 18.7 (Fellow Traveling). Let X be a staggered 2-complex with torsion. whose 2-cell attaching
maps have the form Wni

i with ni ≥ 2. Let M = max{ni|Wi|} and let κ = 3
2 M.

Let D → X be a reduced diagram between λ and γ. Suppose that γ lifts to a geodesic in the 1-
skeleton of X̃. Suppose λ and γ are immersed combinatorial paths, and that neither contains a subpath
that is the outerpath of an extreme 2-cell.

Then γ ⊂ Nκ(λ).

Proof. Without loss of generality, we can assume that D is spurless. Indeed, the only possible spurs
occur at an initial or terminal agreement between λ and γ, and removal of these does not effect the
claim. By Proposition 18.6, D cannot contain an exponent n internal 2-cell, because then D would have
2n extreme 2-cells, but D can accommodate at most two such 2-cells - one at each end, by hypothesis
on λ, γ.

Claim: For each open 2-cell r in D, the intersection ∂r ∩ γ is connected.
Indeed, otherwise r would subtend a subdiagram D′ with D′ , r̄, so by the spelling theorem, D′ has

at least two extreme 2-cells which is impossible by hypothesis on γ.
A bridge in D is a pair of 2-cells a , b such that ā∩b̄ , ∅ and ∂a, ∂b both intersect γ. See Figure 171.

The base vertex p of the bridge is the endpoint of ā ∩ b̄ on the λ-side of the bridge. It is conceivable
that ā ∩ b̄ is disconnected, in which case we choose the lowest such point.

Observe that the subpath γ′ ⊂ γ subtended by the bridge satisfies |γ′| ≤ M and so γ′ ⊂ NM(p).
Indeed, γ is a geodesic, and thus so is γ′. The endpoints of γ′ are joined by a pair of subpaths of ∂a, ∂b,
which are of length ≤ 1

2 M. Thus |γ′| is bounded by the sum of these lengths.
A bridge is outermost if its subtended path γ′ is not properly contained in the path subtended by

another bridge.
Let e be an edge on γ and suppose that e is not on λ. Then e lies on some 2-cell r of D. Either:

(1) ∂r ∩ λ contains a 1-cell,
(2) some 2-cell r′ is incident with both r and λ [This becomes case (1) when r′ = r]
(3) no 2-cell is incident with both r and λ.

We consider case (3). Since there are no internal 2-cells in D, each 2-cell around r must have a 1-cell
on γ. Traveling around r, we denote the 2-cells r1, r2, . . . , rt, where ∂r1 ∩ γ precedes ∂r2 ∩ γ in the
orientation on γ as in the first diagram in Figure 172.
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F 172.

Since r1 intersects γ before r, and rt intersects γ after r, there must be some i such that ri intersects
γ before r and ri+1 intersects γ after r. We thus find that r and hence e lies in a subdiagram subtended
by a bridge as in the second diagram in Figure 172.

As in the third diagram in Figure 172, let s1, s2 be 2-cells of a outermost bridge subtending a subdi-
agram containing r, and let p be the basepoint of this bridge. Either:

(1) p ∈ λ,
(2) p lies on a 2-cell containing a 1-cell of λ,
(3) p lies on a 2-cell s3 distinct from s1, s2, such that s3 contains a 1-cell of γ.

Note that Case (3) is impossible because then, as in the fourth and fifth diagrams of Figure 172,
either s3, s2 or s1, s3 would form an even larger bridge contradicting that s1, s2 is maximally outermost.

We are thus left with cases (1) and (2).
We conclude that e lies in NM(p) and p lies in N 1

2 M(λ), so e lies in Nκ(λ). Thus γ lies in Nκ(λ) as
claimed. �

Lemma 18.8. K is quasiconvex in G [or G ∗ Z ].

Proof. Suppose that G = 〈t, a1, a2, · · · | Wn〉 such that #t(W) = 0 where #x(Y) denotes the exponent
sum of the letter x in the word W. Let X be the standard 2-complex of the presentation for G, and let
X̂ → X be the Z-cover corresponding to the quotient induced by ai 7→ 0 and t 7→ 1. Let Y denote
the subcomplex of X̂ that equals the closure of the based lift of the 2-cell of X. By the Moldavanskii-
Magnus construction, π1Y � K.

Note that Y ⊂ X̂ is π1-injective. When n ≥ 2 this follows from the Newman spelling theorem
[LS77, HW01]. Indeed, any other lift of W is shifted over from the based lift. Consequently Y → X
has no missing extreme cell bounded by a path Wn, since Wn would travel 2n-times through a lift of a
translate of a t-edge that is not in Y .

Let Ỹ ⊂ X̃ be a component of the preimage of Y in X̃. Note that Ỹ also has no missing Wn−1 paths.
Let γ be a geodesic whose endpoints lie on Ỹ . Let D be a minimal area diagram between γ and a
path λ → Ỹ with the same endpoints, such that Area(D) is minimal among all possible choices of λ.
Observe that D has no extreme cells whose outerpaths lie in λ or γ, for then we could find a smaller area
diagram in the first case, and contradict that γ is a geodesic in the second. Consequently, Lemma 18.7
shows that γ ⊂ Nκ(λ) ⊂ Nκ(Ỹ).

We note that the Magnus subgroup corresponding to the edge group of the HNN extension is the
intersection of two conjugates of K and is hence itself quasiconvex. (But the proof we gave can be
applied to it directly.) �

18.4. Staggered 2-complex with torsion. A 2-complex X is staggered if there is a linear order on
a subset of the 1-cells, and a linear ordering on the 2-cells, such that each 2-cell has an ordered 1-
cell in its attaching map and max(a) < max(b) and min(a) < min(b) whenever a < b are 2-cells.
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Here we let max(a) denote the greatest 1-cell in ∂a and let min(a) denote the least. The spelling
theorem [HP84, HW01] shows that a finite staggered 2-complex has word-hyperbolic fundamental
group provided that the attaching map of each 2-cell is a proper power wn for some path w → X1 and
some nontrivial closed immersed path w, and some n ≥ 2. We refer to such a 2-complex as a staggered
2-complex with torsion.

Finally, for each finite staggered 2-complex X, either X has a single 2-cell, in which case π1X
is virtually special by Corollary 18.2, or else π1X splits as an amalgamated product of staggered 2-
complexes with fewer 2-cells, where, as we shall explain, the amalgamated subgroup is quasiconvex
and malnormal. It follows that π1X is virtually compact special by Theorem 11.2. We thus obtain the
following result:

Theorem 18.9. Every staggered 2-complex with torsion has virtually special π1.

By initially adding some additional unordered 1-cells, we can assume that all 0-cells are connected
by a path of unordered 1-cells. This has the effect of adding a free factor to the fundamental group and
doesn’t effect the existence of a quasiconvex hierarchy, but facilitates its description by maintaining
connectedness. The splitting now arises geometrically as follows: One factor is π1 of the 2-complex
consisting of the closure of the top 2-cell together with the unordered 1-skeleton, and the second factor
is π1 of the 2-complex consisting of the closure of all other 2-cells together with the unordered 1-
skeleton.

Let X be a staggered 2-complex. A Magnus subcomplex Z ⊂ X is a connected subcomplex with the
following properties:

(1) if C is a 2-cell of X, and all the ordered boundary 1-cells of C lie in Z, then C ⊂ Z.
(2) the ordered 1-cells of X contained in Z form an interval.

We note that the intersection of Magnus subcomplexes is a Magnus subcomplex. The following gen-
eralization of the Freiheitsatz was shown in [HW01, Thm 6.1] (though the result is incorrectly stated
there) for Magnus subcomplexes as defined above:

Proposition 18.10. If Z is a Magnus subcomplex of a staggered 2-complex, then Z → X is π1-injective.

We augment Proposition 18.10 with the following two statements, the second of which generalizes
Newman’s result that Magnus subgroups of one-relator groups with torsion are malnormal.

Lemma 18.11. Let Z ⊂ X be a Magnus subcomplex of a staggered 2-complex with torsion. Then
(1) Z̃ → X̃ is convex.
(2) π1Z is a malnormal subgroup of π1X.

The following proof presumes familiarity with the mode of proof in [HW01] rather than its main
theorem.

Proof of convexity. Let γ be a geodesic in X̃ such that γ∩ Z̃ consists precisely of the endpoints of γ Let
D → X̃ be a disk diagram between γ and a path λ → Z̃, and assume that D is of minimal area among
all such (D, λ) with γ fixed, so in particular D is reduced. We can assume that D does not map entirely
into Z̃, so can assume that some 2-cell of D maps to a 2-cell above or below the Magnus complex Z -
and shall assume that it maps above, without loss of generality.

We choose a maximal cyclic tower lift φ : D → T , and then consider the greatest 2-cell r in T and
note that by Howie’s Lemma [How87], ∂pr is of the form (Qe)n where Q does not traverse e, and n is
the exponent of r, and no other 2-cell is incident with e. The 1-cells in φ−1(e) are all in ∂D, for otherwise
there would be a cancellable pair. Moreover, since r is above Z, we see that φ−1(e) lies entirely in γ.
However, if n ≥ 2, we see that consideration of a single 2-cell in φ−1(r) shows that γ is not a geodesic,
which is a contradiction. �
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Proof of malnormality. Consider a reduced annular diagram A → X where the two boundary paths of
A map to Z. We will show that any such A maps to Z, and since Z is a connected subcomplex of X, this
shows that π1Z is malnormal.

Choose a shortest path γ → A whose endpoints lie on the disjoint circles in ∂A. Choose d ∈ Z =

Aut(Ã→ A) sufficiently large that the translates 0γ̃ and dγ̃ in Ã do not both intersect a common 2-cell.
Cutting Ã along 0γ̃ and dγ̃, we obtain a disk diagram D → X with ∂pD = λ1γλ

−1
2 γ−1 where λ1, λ2

each travel d times around the distinct boundary cycles of A.
As in the proof of convexity, A and hence D must contain a 2-cell that does not map to Z. Consid-

eration of a maximal tower lift, shows that the preimage of a highest 2-cell in a maximal tower lift,
has all of its highest 1-cells on ∂D (since D is reduced), and hence on γ, γ−1 since λ1, λ2 map to Z.
Moreover, our choice of d ensures that the 2-cell has all its highest 1-cells on either γ or on γ−1. When
the exponent n ≥ 2, we can thus travel along the inner path of this 2-cell to find a shorter path in Ã, and
hence in A between the two boundary paths.

The base case, where A is singular, and |γ| = 0 yields a contradiction, since there is no room at all
for a highest 2-cell in D, so we see that there was a cancellable pair of 2-cells. �

19. P

Generalize this to relatively hyperbolic CAT(0) cube complexes. Are they always virtually special?
Do they have pseudograph CAT(0) quotients? Perhaps there is an argument by induction on dimension
and/or depth. An important test case are the negatively curved square complexes.

Generalize the virtual special quotient theorem so that there exists finite index subgroups H′i such
that G/〈〈H′′i 〉〉 is virtually special for any finite index subgroups H′′i ⊂ H′i . This appears to work in the
cyclic case.

Let H be a codimension-1 subgroup of G. Does there exist a finite index subgroup H′ ⊂ H such that
H/〈〈H′〉〉 is also codimension-1 in G/〈〈H′〉〉?

The following should be proven following the scheme of the proof of Theorem 12.1, by repeatedly
using a relatively malnormal special quotient theorem in the sparse case. Alternatively, the graded
small-cancellation approach should work (assuming G initially has this structure).

Conjecture 19.1 (Relatively Hyperbolic Virtually Special Quotient Theorem). Let G be hyperbolic
relative to virtually abelian subgroups. And suppose G is virtually sparse special. Let H1, . . . ,Hk be
quasiconvex subgroups. And let Ho

i ⊂ Hi be finite index subgroups. There exist finite index subgroups
H′i ⊂ Hi such that G/〈〈H′1, . . . ,H

′
k〉〉 is virtually sparse special.

Problem 19.2. Suppose G is hyperbolic relative to virtually abelian subgroups. Suppose G is virtually
sparse special. Is G virtually compact special?

Finding general conditions under which the following problem has an affirmative answer will yield
many applications.

Problem 19.3 (Virtual Haken problem for cube complexes). Let X be a compact nonpositively curved
cube complex. Does there exist a finite cover X̂ with the property that the immersed hyperplanes of X̂
are actually embedded?

The following example shows that there exists a nonpositively curved cube complex with no finite
cover whose hyperplanes embed.

Example 19.4. Let Y denote a compact nonpositively curved cube complex with no finite cover but
with π1Y nontrivial. We can choose Y so that link(y) is a complete bipartite graph for each y ∈ Y0

(see [BM97, Wis07]). We can choose a closed path σ → Y such that the lift σ̃ → Ỹ is an isometry
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F 173.

(the path σ travels through ends of 1-cells in the same class of the bipartite structure in each link). Let
A = [−1, 1] × [0, n] be a flat strip of length n = |σ|, and glue A to Y along σ by identifying σ with
{−1} × [0, n]. Finally, add an extra square S at the basepoint along the two 1-cells [−1, 1] × {0} and
[−1, 1] × {n} corresponding to the first and last 1-cells of A. Let X be the resulting complex which is
heuristically illustrated in Figure 173. Since X deformation retracts to Y , it has no finite covers. Since
there are no corners of squares along the interior of σ we see that X is a nonpositively curved square
complex. However, the hyperplane of X containing {0} × [0, n] self-crosses within the square S , and
hence within X.

Conjecture 19.5. Let G be a word-hyperbolic group acting properly and cocompactly on a CAT(0)
cube complex C. Then G has a finite index subgroup F acting specially on C.

Problem 19.6 (Codimension-1 subgroups in C(6) groups). Is there an example of a C(6) presentation
with infinite fundamental group but with no codimension-1 subgroup? Is there such an example with
Property-(T)? Can such examples be identified using a generalized or appropriately aimed version of
Zuk’s spectral gap criterion [Żuk96].

20. ~ A G

Let (x, y)m denote the initial half of the word (xy)m. A f.g. Artin group is presented by
〈
a1, a2, . . . |

(ai, a j)mi j = (a j, ai)m ji : i , j
〉

where M is a symmetric square matrix whose entries are natural numbers
that are ≥ 2. We allow mi j = ∞ = m ji, in which case there is no relation between ai, a j among the
relators

For each i < j, let Yi j denote the 1-skeleton of the universal cover of the standard 2-complex of
〈ai, a j | (ai, a j)mi j = (ai, a j)mi j〉. When mi j = ∞, we omit Yi j.

Let A = A(M) be an Artin group as above. Then A has the following cubical presentation satisfying
the C(6) condition:

(3) 〈a1, a2, . . . | Yi j : i < j and mi j < ∞〉

Theorem 20.1. Suppose that 3 ≤ mi j ≤ ∞ for each i, j. Then the cubical presentation in Equation (3)
satisfies the C(6) property.

More generally, suppose that there is no triangle of form (2, 3, 3), (2, 3, 4), (2, 3, 5), or (2, 2, n), in the
graph associated to the Artin presentation. Then the cubical presentation satisfies the C(6) conditions.

Proof. Observe that pieces between distinct translates of Yi j and Yk` in X̃∗ correspond to lines a∞p where
one of i, j equals p, and one of k, ` equals p.

In the first case, at least 6 pieces are needed to form an essential cycle in Yi j.
In the more general case, use the angle grading. �

Remark 20.2. Jon McCammond reported on a similar idea at a talk he gave in Albany around 2000.
He grouped the relations of the same type in an Artin group within a disk diagram to obtain small-
cancellation behavior under “large enough type” conditions. Perhaps the earliest occurrences of this
idea is in the work of Appell and Schupp [AS83].



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 179

Theorem 20.3. Suppose that no exponent satisfies 3 ≤ mi j ≤ 5 then we use the above construction
starting with X denoting the natural cube complex of the underlying right-angled Artin group, and we
should obtain a C(6) cubical generalized presentation.

Remark 20.4 (Not B(6)). There are several natural wallspace structures on Yi j.
The first arises from the induced map to the associated Coxeter group. Namely, two edges are dual

to the same wall if and only if they lie in the same equivalence class generated by: two edges are
equivalent if they are opposite edges in the same 2mi j-gon. However, this wallspace is not Hausdorff,
and in fact, corresponds to an action of the 2-generator Artin group on a cubulated copy of E3.

A second structure arises from the map to Z induced by sending each generator ak 7→ 1. In this case,
the walls don’t even cross each other, and the cubulation gives an action on E1.

In particular, we note that the above cubical presentations are not B(6).

To attempt to achieve the B(6) condition it will be necessary to replace the bouquet of circles cor-
responding to the free group, by a cube complex X (it will probably be better if X is a compact pseu-
dograph or at least has a sufficient family of finite hyperplanes). For instance, we can take a finite
CAT(0) cube complex, like a high-dimensional cube, and attach edges joining opposite vertices, for the
generators. Another attractive option is an r-dimensional handlebody corresponding to an r-cube for
the 0-cell, and an extra r-cube connecting a pair of opposite faces for each generator. There are a host
of different possibilities here. However, I don’t think this can work for the walls corresponding to the
natural Z quotient.

We then form a local-isometry Yi j → X. There will now be extra walls in the wallspace of Yi j which
make it Hausdorff, and have appropriate separation conditions. The C(6) small-cancellation conditions
also persist.

To handle general Artin groups, we will probably have to add one such object for each finite-type
Artin group. Possibly this should start with the underlying right-angled Artin group, and possibly they
should be added one at a time together.

Remark 20.5. Can this theory be applied to every Artin group? Note that cones make pieces from
2-cells related to themselves not so relevant. A key point will be the superconvexity: For right angled
Artin groups, each relator: ababa = babab will be superconvex only after adding infinite a and b
“strips” corresponding to their centralizers. A combinatorial theory will be necessary.
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