THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY

DANIEL T. WISE

ABsTRACT. Let G be a word-hyperbolic group with a quasiconvex hierarchy. We show that G has a finite
index subgroup G’ that is a quasiconvex subgroup of a right-angled Artin group. It follows that every
quasiconvex subgroup of G is a virtual retract, and is hence separable. The results are applied to certain
3-manifold and one-relator groups.
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1. INTRODUCTION

This paper has several parts:

In the first part of the paper we develop a small-cancellation theory over cube complexes. When the
cube complex is 1-dimensional, we obtain the classical small-cancellation theory, as well as the closely
related Gromov graphical small-cancellation theory.

It is hard to say what the main result is in the first part, since it seems the definitions are more
important than the theorems. For this and the second part, the reader might wish to scan the table of
contents to get a feel for what is going on. We give the following sample result to give an idea of
the scope here. In ordinary small-cancellation theory, when Wj,..., W, represent distinct conjugacy
classes, the presentation {(a, b, ... | W;” ..., W) is “small-cancellation” for sufficiently large n;. In
analogy with this we have the following:

C6-Sample. Let X be a nonpositively curved cube complex. Let Y; — X be a compact local isometry
for 1 <'i < rsuch that each m\Y; is malnormal, and mY;, 1Y do not share any nontrivial conjugacy
classes. Then (X | Yi,...,Y,) is a “small-cancellation” cubical presentation for sufficiently large
“girth” finite covers Y, - Y.

Many other general small-cancellation theories have been propounded. For instance two such graded
theories directed especially towards Burnside groups were produced by Olshanskii and McCammond.
Stimulated by Gromov’s ideas of small-cancellation over word-hyperbolic groups, there have been later
important works of Olshanskii, followed by more recent theories “over relatively hyperbolic groups” by
Osin [Os106] and Groves-Manning [GMOS]]. The theory we propose is decidedly more geometric, and
arguably favors explicitness over scope. However, although it may be more limited by presupposing
a nonpositively curved cube complex as a starting point, it has the advantage of not presupposing
(relative) hyperbolicity - yet some form of hyperbolicity must lurk inside for there to be any available
small-cancellation.

In the second part of the paper we impose additional conditions that lead to the existence of a
wallspace structure on the resulting small-cancellation complex. We can illustrate the nature of the
results with the following sample:

B6-Sample. Let G be an infinite word-hyperbolic group acting properly and cocompactly on a CAT(0)
cube complex. Let Hy, ..., Hy be quasiconvex subgroups that are not commensurable with G. And sup-
pose that each H; has separable hyperplane stabilizers. There exist finite index subgroups H{, ..., H;
such that the quotient G/{H', ..., H,’{)} has a codimension-1 subgroup.

In the third part of the paper, we probe further and seek a virtually special cubulation.
We then prove the following:

Theorem A (Special Quotient Theorem). Let G be a word-hyperbolic group that is virtually the fun-
damental group of a compact special cube complex. Let Hy,...,H, be quasiconvex subgroups of G.
Then there are finite index subgroups H; C H; such that: G/{H{, H,, ..., H})) is virtually special.

We then prove the following:

Theorem B (Quasiconvex Hierarchy = Virtually Special). Let G be a word-hyperbolic group with a
quasiconvex hierarchy, in the sense that it can be decomposed into trivial groups by finitely many HNN
extensions and amalgamated free products along quasiconvex subgroups. Then G is virtually special.

There are two important applications of the virtual specialness of groups with a quasiconvex hi-
erarchy: It is applied to hyperbolic 3-manifolds with a geometrically finite incompressible surface to
reveal their virtually special structure. This resolves the subgroup separability problem for fundamental
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groups of such manifolds. It also completes a proof that Haken hyperbolic 3-manifolds are virtually
fibered. It is also applied to resolve Baumslag’s conjecture on the residual finiteness of one-relator
groups with torsion.

The fourth part of the paper deals with groups that are hyperbolic relative to virtually abelian sub-
groups. The results are not yet complete, but are aimed at proving similar structural results for such
groups that also have quasiconvex hierarchies.

The sections marked with & are not essential to the theory leading to the above applications.

2. CAT(0) CUBE COMPLEXES

2.1. Basic definitions. An n-cube is a copy of [—1, 1]", and a O-cube is a single point. We regard the
boundary of an n-cube as consisting of the union of lower dimensional cubes. A cube complex is a cell
complex formed from cubes, such that the attaching map of each cube is combinatorial in the sense that
it sends cubes homeomorphically to cubes by a map modeled on a combinatorial isometry of n-cubes.
The link of a O-cube v is the complex whose 0-simplices correspond to ends of 1-cubes adjacent to v,
and these 0-simplices are joined up by n-simplices for each corner of an (n + 1)-cube adjacent to v.

A flag complex is a simplicial complex with the property that any finite pairwise-adjacent collection
of vertices spans a simplex. A cube complex C is nonpositively curved if link(v) is a flag complex for
each 0-cube v € C°.

2.2. Right-angled Artin groups. Let I" be a simplicial graph. The right-angled Artin group or graph
group G(I') associated to I is presented by:

( v:ve verticesI) | [u,v]: (u,v)€ edgesT) )

For our purposes, the most important example of a nonpositively curved cube complex arises from
a right-angled Artin group. This is the cube complex C(I') containing a torus 7" for each copy of the
complete graph K(n) appearing in I' [CD95, IMV935]. Each added torus 7" is isomorphic to the usual
product (S )" obtained by identifying opposite faces of an n-cube. Note that 7;C(I') = G(T') since the
2-skeleton of C(T') is the standard 2-complex of the presentation above.

2.3. Hyperplanes in CAT(0) cube complexes. Simply-connected nonpositively curved cube com-
plexes are called CAT(0) cube complexes because they admit a CAT(0) metric where each n-cube is
isometric to [—1, 1]" ¢ R"; however we shall rarely use this metric.

The crucial characteristic properties of CAT(0) cube complexes are the separative qualities of their
hyperplanes: A midcube is the codimension-1 subspace of the n-cube [—1, 1]" obtained by restricting
exactly one coordinate to 0. A hyperplane is a connected nonempty subspace of C whose intersection
with each cube is either empty or consists of one of its midcubes. The 1-cells intersected by a hyper-
plane are dual to it. We will discuss immersed hyperplanes within a nonpositively curved cube complex
in Section

Remark 2.1. Hyperplanes have several important properties [Sag95]):

(1) If D is a hyperplane of C then C — D has exactly two components.

(2) Each midcube of a cube of C lies in a unique hyperplane.

(3) Regarding each midcube as a cube, a hyperplane is itself a CAT(0) cube complex.

(4) The union of all cubes that D passes through, is the carrier of D and is a convex subcomplex
of C (see Section [2.4)) that is isomorphic to D X I.
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Ficure 2. Dual curves in a square complex disk diagram
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FiGure 3. A bigon, nongon, monogon, and oscugon.

2.4. Geodesics, local-isometries, and convexity. While elsewhere in this paper, 1-cubes will be re-
garded as copies of [—1, 1], to facilitate discussion of metric, we will regard each 1-cube as having
length 1, and we let I,, denote the interval [0, n] subdivided so that all integers are vertices. A length n
path from x to y in a cube complex X is a combinatorial map I, — X where 0,n — x,y € X°. A path
is a geodesic if there is no shorter length path with the same endpoints. We emphasize that geodesics
are almost never unique when dim(X) > 2, indeed there are n! distinct geodesics connecting vertices
at opposite corners of an n-cube. We define the distance between 0-cubes in a connected nonpositively
curved cube complex to be the length of the geodesic between them. As usual, this provides a genuine
metric on the O-cells of the 1-skeleton. Moreover we are then able to declare the distance d(A, B) be-
tween subcomplexes as the minimal distance d(a, b) where a,b € AV, BY. We also define the diameter
diameter(Y) of a connected complex to be the supremum of the lengths of geodesics in Y.

An immersion is a local injection. A map ¢ : ¥ — X between nonpositively curved cube complex
is a local-isometry if it is an immersion and for each y € Y°, whenever u, v are ends of 1-cubes at y, if
¢(u), ¢(v) form a corner of 2-cube in X at ¢(y), then so do u,v. An embedding that is a local-isometry
is locally-convex. A connected locally-convex subcomplex of a CAT(0) cube complex is called convex,
and indeed, it can be deduced from the viewpoint in Section[2.5]that ¥ C X is convex if and only if, each
n-cube whose (n — 1)-skeleton lies in Y lies in Y, and for any geodesic path P — X whose endpoints lie
in Y0, the path P lies in Y.

2.5. Properties of minimal area cubical disk diagrams. This section was motivated by lectures of
Andrew Casson from Univ. of Texas at Austin in the 80’s (apparently on generalized C(4)-T(4) pre-
sentations related to Heegaard decompositions). I am grateful to Yoav Moriah who shared his notes
with me and to Michah Sageev who encouraged me to take a look at this. EI While the results are
easy to obtain, I had not previously considered the relevance of disk diagrams to cubical complexes of
dimension > 3. The viewpoint here, and in particular Lemma [2.2] is due to Casson. We note that the
properties listed in Remark [2.1] can be deduced from this viewpoint.

Let D be a disk diagram whose 2-cells are squares. The dual curves in D are paths which are
concatenations of midcubes of squares of D. Note that when D — X is a disk diagram in a CAT(0)
cube complex, each dual curve maps to a hyperplane of X.

The 1-cells crossed by a dual curve are dual to it. Note that each midcube lies in a unique maximal
dual curve (or cycle). One simply extends outwards uniquely across dual 1-cells. A bigon is a pair
of dual curves that cross at their first and last containing squares. A monogon is a single dual curve
that crosses itself at its first and last containing squares. An oscugon is a single dual curve that starts
and ends at distinct dual 1-cells that are adjacent but don’t bound the corner of a square. A nongon is
a single dual curve of length > 1 that starts and ends on the same dual 1-cell, so it corresponds to an
immersed cycle of midcubes. We refer the reader to Figure

I learned in August 2011 that much of this material was already explained in Sageev’s thesis.[|Sag95]
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FiGure 4. On the left is a smallest possible bigon. On the right is a monogon which must
contain a smaller bigon.

Lemma 2.2. Let D — X be a disk diagram in a nonpositively curved cube complex. If D contains a
bigon or nongon among its dual curves, or if there is a pair of adjacent 1-cells that are dual to the same
dual curve of length > 1, then there is a new diagram D’ such that:

(1) D" and D have the same boundary path, so 0,D" — X equals 0,D — X,

(2) Area(D’) < Area(D) — 2 and

(3) pairs of edges on 8,D’ that lie on the same dual curve of D" are precisely the same as pairs of
edges on 0,D that lie on the same dual curve of D.

Corollary 2.3. No disk diagram contains a monogon.
If D has minimal area among all diagrams with boundary path 0,D, then D cannot contain a bigon,
a NONgon, or an 0SCUgon.

Proof. The second statement follows immediately from Lemma Consider a minimal area coun-
terexample D to the first statement: So D is the union S U D’ where S is a rectangular strip [—1, 1] X I,
consisting of n > 1 squares, and carrying a dual curve o at {0} X 1,,, and D’ is a disk diagram, and d,D’
is identified with the path {—1} X I,, along one side of this strip. Then a dual curve A that is dual to a
1-cube on d,D" must cross ¢ in a second square. Let E denote the disk diagram bounded by 4 U o
and containing the cubes they pass through. Apply Lemmal[2.2]to replace E by E’, and obtain a smaller
area counterexample. Note that Corollary holds when Area(D) = 0 since then each dual curve is
the midcube of a 1-cube, and no dual curves cross, as there are no squares. ]

Proof of Lemma[2.2] Consider a smallest area monogon, nongon, oscugon, or bigon in D. We will
produce a new diagram D’ with the same boundary path such that either Area(D’) < Area(D) or D’
contains an even smaller such feature.

We first show that a nongon, monogon, or oscugon must contain a lower area bigon. Indeed, in each
case, the dual curve a has length > 1 (since squares locally embed, we see that even for a monogon,
the dual curve must pass through at least one more square besides its self-crossing square). Thus, as
illustrated on the right in Figure ] a second dual curve 3 crosses a and travels through the diagram be-
fore crossing « a second time. The pair @, 5 provides a lower area bigon. (It is actually conceivable that
[ then itself forms a lower area oscugon (even without @), but of course we can repeat this procedure
further to decrease the area further and obtain a minimal area bigon.)

Now we will show by induction on the number of squares inside a bigon that any bigonal disk
diagram can be replaced by a disk diagram with smaller area.

Let @ and S8 be the dual curves of the bigon, and let s; and s, denote their squares of intersection. We
will show that either there is a smaller bigon inside, and hence by induction that bigon can be replaced
by a disk diagram with at least 2 fewer squares. Or we will perform a slight modification to obtain a
disk diagram with the same boundary but containing a smaller bigon, and hence this disk diagram itself
can have its area reduced by 2.

The “base case”, occurs when a smallest bigon arises from two squares meeting along a corner as on
the left in Figure[d Then these two squares map to the same square in X, and hence we can remove this
cancellable pair to decrease the area, by replacing the pair of squares by a pair of edges glued together
at a point.
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Now suppose that a, 8 do not together bound a region containing a lower area bigon. Then cannot
be a monogon, nongon, or oscugon, as above. Moreover, every dual curve passes through both o and
B, since otherwise there would be a smaller bigon.

The plan is to find a (certain type of) minimal triangle in the complement of the dual curves, then we
can perform a “hexagon move” to obtain a new disk diagram with a smaller bigon as in Figure[5} The
first type of minimal triangle has one side on @ and one side on 8 and no dual curves passing through
it. The second type has its base on «, and neither of its two other sides are subsegments of 3.

If the bigon contains no crossing pair of dual curves as on the left in Figure[6] then the first type of
triangle occurs, and so we can perform a hexagon move of the first type. If there is at least one crossing
pair of dual curves then we shall show below that the second type of triangle exists, and so we can
perform a hexagon move of the second type. Hence by induction, the new diagram can have its area
reduced by 2.

The collection of dual curves within our bigon forms a graph, and we make this into a directed graph
by orienting all dual curves upwards from « to 8, and thus orienting each edge of the graph (see the left
of Figure[7). Observe that this directed graph has no directed cycle. Indeed, consider a simple directed
cycle, (and we can even assume that it bounds a complementary region of the graph, for otherwise
there would be a smaller area such directed cycle), and suppose that it travels counterclockwise - as
an analogous argument works in the clockwise case. Among the dual curves contributing edges to
the cycle, let o denote the one having rightmost intersection with @. Let A denote the dual curve
corresponding to the next edge in the cycle. Then A would intersect @ even further to the right which
is impossible (see the middle of Figure[7). Here we use that all dual curves intersect only once which
follows from the minimality assumption on the bigon.

Each vertex of the graph (not on «, ) is the “top” of a triangle whose base is on a. Choose a vertex
v that is minimal (excluding the leaf vertices on @) in the partial ordering induced by the cycle-free
directed graph. Then the corresponding triangle A is our desired triangle of the second type. Indeed,
if any other dual curve crosses either leg of A then there would be an even lower vertex u, which
contradicts the minimality of v (as on the right of Figure 7). O

Remark 2.4 (Shuffling disk diagrams). We shall later use the term shuffle to refer to an adjustment of
a disk diagram obtained through a finite sequence of hexagon moves.
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2.6. Splaying and Rectangles. We now describe several related properties concerning the dual curves
in minimal area cubical disk diagrams. We emphasize that our treatment focuses on subcomplexes
and exclusively considers paths that are combinatorial, as discussed in Section In particular, a
subcomplex Y C X of a CAT(0) cube complex is convex if: for each cube ¢ of X, if an entire corner of
cliesin Y then all of c liesin Y.

Lemma 2.5 (Splayed). Let Y C X be a convex subcomplex of the CAT(0) cube complex. Let P be a
path whose endpoints lie on Y, and let D be a disk diagram between P and Y, so there is a [geodesic]
path Q — Y with the same endpoints as P and D is a diagram for PQ~'. Suppose D has minimal area
among all possible such choices fixing P and Y.

Let a and b be consecutive 1-cells in Q. Then the dual curves in D starting at a and b do not intersect.

The statement of Lemma[2.5]holds with Q allowed to vary either among all such paths, or among all
such geodesics. Indeed, the argument by contradiction given below provides a lower area diagram D
without effecting the length of Q.

Proof. Suppose a, b are parallel in D to 1-cells a’, b’ that meet at the corner of a square ¢’ in D. Since
X is CAT(0), the 1-cells a, b must also meet at a square c. Since Y is convex, we see that c C Y.

We can thus adjust the diagram D to obtain a new diagram D’ formed by attaching c to Q along a, b.
Now Area(D’) = Area(D) + 1. However, D’ contains a bigon, and therefore by Lemma [2.2] its area
can be reduced by two, to obtain a new diagram D" with Area(D’") < Area(D). This would contradict
the minimality of D. See Figure O

Corollary 2.6. Let X,Y,D, Q be as in Lemma[2.5] Then there is no intersection in D between dual
curves of distinct 1-cells of Q.

The dual curves are splayed as on the left in Figure 9] (but not as on the right).

Proof. Consider an innermost pair of 1-cells whose dual curves are either equal or intersect. These
1-cells cannot be adjacent by Lemma[2.5] But any 1-cell on Q between them, would give another dual
curve which either intersects one of these, or ends on another 1-cell of Q lying between them as in the
right in Figure[9] This contradicts our innermost assumption. O

Corollary 2.7. Let Y1, Y, be convex subcomplexes of the CAT(0) cube complex X. Let Py, P, be paths
Jjoining points on Y1 and Y. Let D be a diagram with boundary path P1Q1P>Q> where Q; is a path in
Y;, and suppose D has minimal area among all such diagrams with Q; allowed to vary.
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Let S1 and S, be a pair of dual curves joining edges of Q1 to Q». Then the subdiagram F bounded
by 1,82 and the subtended portions Q}, Q) of Q1, Q2 is a “flat rectangle” in the sense that pairs of
dual curves joining Q', Q) don’t cross.

Moreover, if we assume Py, Py are geodesics, and that D has minimal area among disk diagrams
with boundary path P} Q1P,Q> where P are geodesics with the same endpoints as P;, then the dual
curves from Py to Py have the same property: No two cross each other.

We refer the reader to Figure@} We note that dual curves can start on Q; and end on P;, as illustrated
on the first and second diagrams. The third diagram illustrates the second part of Corollary Once
we also choose the geodesic paths such that the area of the diagram is minimized, then all dual curves
go from left to right, and from top to bottom. We obtain a genuine product rectangle in this case. The
reader can view geodesic paths along the top and bottom, from which there is crossing of dual curves,
and compare this to the paths Py, P, that are pushed inwards somewhat.

Proof. We apply Corollary 2.6|twice: first from the point of view of Y}, and then from the point of view
of Yz.

The proof of the second statement is similar, except now we minimize the area of a diagram with P,
allowed to vary among paths P} in ¥ = X (or even the combinatorial convex hull of the endpoints of
P) but the path Q) P,Q» remains fixed. The same argument applies mutatis mutandis for P;. O

Lemma 2.8 (Pushing beyond crossings). Let D — X be a minimal area disk diagram. Let S be a dual
curve in D that starts and ends on 1-cells s, sy such that the boundary path of D is of the form s Ps;Q.
There exists a new diagram D’ with the same boundary path and Area(D’) = Area(D) such that sy, s>
are still connected by a strip S’ but the dual curves emanating from S’ to P are splayed: No two cross
each other on the P side of S’.

We refer to the left pair of diagrams in Figure|12|indicating the total transformation from D to D’.

Proof. This follows by repeatedly using hexagonal replacement moves. Consider an innermost pair of
a, b of edges along dS whose dual curves cross on the side bounded by P. If they are not adjacent, then
there is an even more innermost pair. Note that the two dual curves cannot equal each other, or there
would be a bigon with S, and thus the area can be reduced by Lemma [2.2]

Let ¢ be the first square where the dual curves cross. Now add a cancellable pair of copies ¢”, ¢’
of ¢ along a, b. This increases the area by 2, and increases the area between S and P by 2. Perform a
hexagonal replacement along S and the contiguous copy ¢’ of ¢ to obtain S’, the area between P and S’
is now one more than the area between P and S was. Finally the copy ¢’ of ¢ has a bigon with c. We are
able to reduce the area by 2. This area reduction is on the P side of S’, and so the resulting diagram D’
has the property that the area between P and S’ has been reduced by one. Performing this repeatedly
yields a new diagram whose wall has splayed strips on the P side, as claimed. See the sequence of
pictures in Figure [I ] for the single transformation. O
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Remark 2.9. We can apply Lemma [2.8] to understand the potential behavior between strips in disk
diagrams. Let D be a diagram that has a pair of disjoint strips. Then we can replace it with a new
diagram with the same boundary and at most as much area, such that the strips are moved inwards
towards each other, but strips emanating from them are now splayed. See the transformation on the
right in Figure[T2]

This is particularly relevant when we consider a diagram between two convex subspaces Y1, Y», and
in particular, a diagram between a convex subspace and the carrier of a hyperplane. We are able to
reach the conclusion of a “flat rectangle” between the rectangular strips.

2.7. Annuli. This section can be postponed until annuli arise in Section [I3] and more importantly
Section [5.15]and its sequels. “Generalized corners of squares” are introduced in Section[3.9]

Lemma 2.10 (Flat Annulus). Let B — X be an annular diagram. Suppose there are no generalized
squares with outerpath on either the inner or outer boundary path of B. Then each dual curve starting
on the inner boundary path ends on the outer boundary path (and vice-versa).

The first annulus in Figure[I3]illustrates a simple but typical example of the type of annulus examined
in Lemma[2.10] This contrasts with the motivating case of a product, illustrated by the second annulus
in Figure[I3] The reader can imagine more elaborate examples.

Proof. An “innermost” pair of initial parts of dual curves that cross each other (and are simple curves up
to that point) yields a generalized square. If two dual curves emanating from either the outer boundary
circle, or the inner boundary circle, cross each other, then between these (inclusive) one can find an
innermost pair of crossing dual curves (see the third annulus in Figure [I3). The same holds for a
simple dual curve which starts and ends on the same bounding circle.

Let d be a dual curve that starts and ends on the outer boundary path (the fourth annulus in Figure [I3]
contains three such scenarios). If d doesn’t cross itself, then we consider the side of d not containing
the inner boundary path, and obtain a generalized square as above. If d crosses itself, then since it is
impossible for a dual curve to cross itself and bound a disk diagram inside, we see that some monogon
in the image of d must bound the inner boundary path (the fifth annulus in Figure [I3]indicates a more
elaborate such scenario). The initial and terminal parts of d then provide a pair of dual curves starting
on the outer boundary path that cross each other. As described at the beginning of the argument, an
innermost such pair would yield a generalized square, which is impossible.
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Figure 13. Square annuli.

We note that we can assume that there are no bigons on the interior of B because reducing by
removing cancellable pairs corresponding to bigons doesn’t effect the boundary pairing of dual curves.
O

Remark 2.11. The other dual curves travel around B. When immersed hyperplanes of X do not cross
themselves, we can avoid situations as in Figure However, while minimal area of the diagram can
help avoid some such self-crossing behavior, there is no way to avoid it in general, and we can only
conclude that the “horizontal” dual curves travel “around” B, possibly multiple times.

2.8. Rectangles and Superconvexity. This subsection requires the definition of superconvexity from
Section[8.1] We will use it later in Section to produce examples.

Lemma 2.12. Suppose Y is cocompact and superconvex and X is 2-dimensional, then there exists n > 0
with the following property: Let F C X be a flat rectangle isomorphic to I, X I,. If {0} X I, lies in Y
then F liesin'Y.

Proof. Consider a combinatorial rectangle F' = I,, X I,, in X. Suppose the base {0} X I,, of F' connects
points that are quite far away, so dx(f(0,0), f(m,0)) > N. Let o be a geodesic with the same endpoints
as the base, so 0| > N. Then o is parallel to the corresponding geodesic o~ at the top of F, and
|o’| > N.

By superconvexity we obtain a geodesic u from the midpoint of o to the midpoint of ¢ that is
contained in Y. The path u is contained in a union of cubes stacked upon each other. Finally, parallelism
and convexity shows that all of F lies in Y. O

Lemma 2.13. Let Y be a convex and superconvex cocompact subcomplex of the CAT(0) cube complex
X. There exists D > 0 such that the following holds: Let I X I, — X be a combinatorial strip. Suppose
the base {0} X I, of I X I, lies in Y, and suppose that the distance between the endpoints of the base
exceeds D, that is, d((0,0),(0,n)) = D. Then I X I, lies in Y.

Proof. By Lemma [8.6] the midpoint m at the top of the rectangle lies in Y. Now, each hyperplane
passing through the rectangle either cuts through the base of the rectangle and hence crosses Y, or
separates the top from the bottom, and hence separates m from a point in Y, and so crosses Y. It follows
by convexity that the rectangle lies in Y. O

3. SMALL-CANCELLATION THEORY OVER CUBE COMPLEXES

The goal of this section is to describe a “small-cancellation theory” for cubical presentations gener-
alizing the usual small-cancellation theory for ordinary presentations.

3.1. Introduction. To orient the reader towards our eventual goals, we begin with parallel rough state-
ments of the main theorem about classical small-cancellation diagrams and corresponding main theo-
rem in cubical small-cancellation diagrams.

An i-shell in a disk diagram D is a 2-cell R with d,R = QS, where the outerpath Q is a subpath of
0,D, and the innerpath S is internal to D except at its endpoints, and where S is the concatenation of
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Ficure 14. On the left in clockwise order we have a: 2-shell, 3-shell, spur, 3-shell, 1-shell,
1-shell, and O-shell. On the right is a ladder.

SEQOEBES

Ficure 15. Two 6-shells, two generalized corners of squares, and a spur in a cubical small-
cancellation diagram on the left. A cubical small-cancellation ladder on the right.

exactly i maximal pieces. See Figure [I4]for a diagram containing i-shells. Any reduced disk diagram
D — X satisfies the C(6) condition provided that X is a C(6) complex.

Following the language in [MWO02], the main theorem of the classical small-cancellation theory in
the C(6) case is summarized by:
Classical small-cancellation diagrams: Let D be a C(6) disk diagram. Then either D is a single 0-cell
or a single 2-cell, or D contains a total of at least 2t worth of the following types of positively curved
cells along its boundary:

n for spurs, O-shells, and 1-shells
2?” for 2-shells
% for 3-shells

Moreover, if there are exactly two such features of positive curvature, then the diagram is a ladder. See
Figure

In our generalization, a disk diagram D is built from cone-cells together with 2-cubes, 1-cubes, and
O-cubes. The cone-cells play the role that 2-cells did in the classical case, but roughly speaking, the
squares are subsumed in a thickened 1-skeleton. The diagram D is “reduced” if it is locally minimal area
in a certain sense (no square bigons, no generalized corners of squares on cone-cells), and it is “small-
cancellation” if internal cone-cells are surrounded by many neighbors - generalizing the classical C(6)
condition that internal 2-cells have at least 6 sides.

The i-shells are replaced by positively curved cone-cells called 8-shells, where 6 denotes the curva-
ture of the #-shell - reversing the piece-focused terminology in [MWO02]. Spurs continue to play the
same role, but there is now another source of positive curvature: “generalized corners of squares”. Our
main result is summarized by:

Cubical small-cancellation diagrams: Either D is a single O-cell or cone-cell, or D contains at least
27 worth of positive curvature along its boundary of the form:

n for spurs
6 for 6-shells
5 for corners of generalized squares

Moreover, if there are exactly two features of positive curvature, then D is a ladder. See Figure[15]
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3.2. Cubical presentations. A cubical presentation (X | {Y;}) has “generators” consisting of a con-
nected nonpositively curved cube complex X, and “relators” consisting of a collection {Y; — X} of
local-isometries of connected nonpositively curved cube complexes. The group of a cubical presenta-
tion is a quotient group 11 X/ Y;) and is isomorphic to the fundamental group of a space X* that we
shall now discuss.

Associated to the cubical presentation (X | {¢; : ¥; — X}) is a coned-off space X* that is formed
from the mapping cylinder (X U {Y; X [0, 11})/{(vi, 1) ~ ¢;(y;)} by identifying each ¥; x {0} to a single
cone-point c;. An application of the Seifert-Van Kampen lemma shows that the group of (X | {Y;}) is
isomorphic to 71 X*. The space X* has a natural cell structure consisting of cubes in X together with
“pyramids” consisting of cones of cubes. We refer to the image C; of each ¥; X [0, 1] as a cone of X*.

An ordinary presentation {ay,...,as | R, ..., R;) whose relators are reduced and cyclically reduced
contains the data for a cubical presentation: Its generators correspond to the nonpositively curved cube
complex consisting of a bouquet of s circles, and its relators correspond to a collection of t immersed
cycles. The group of an ordinary presentation is the quotient of the free group on the generators of the
presentation modulo the normal subgroup generated by the relators, and this group is isomorphic to the
fundamental group of the standard 2-complex of the presentation. This standard 2-complex would be
isomorphic to the coned-off space if we subdivide the i-th 2-cell into |R;| distinct 2-simplices meeting
around the cone-point which is a new 0-cell added at the center of the 2-cell.

Remark 3.1 (Language Abuse). We will use the pyramidal cells of the cones, or rather their 2-
simplices, to initially discuss disk diagrams, but we will rarely use them later in the paper. Instead
we will especially focus on the “data” of the cubical presentations. While we refer to the Y; as “cones”,
they really function as “attaching maps” ¥; — X of the genuine cones C(Y;), and perhaps it would have
been more suitable to term each Y; as a “relator”.

When we refer to X*, we sometimes have in mind only its underlying cube complex, which is the
intermediate cover X — X* — X corresponding to the subgroup of 71X equal to (mY;). However,
sometimes we actually image X equipped with the various lifted cones gY;, where g, i vary. Formally
(52* | g¥; : where g,i vary ) would give the data of another cubical presentation that covers X*. We
emphasize that the underlying cube complex of X plays the role of the 1-skeleton of the universal
cover of a 2-complex, whereas the various gY; play the role of the various 2-cells.

3.3. Pieces. Two 1-cubes u,v are parallel in the CAT(0) cube complex X if they are dual to the
same hyperplane. Let U,V be subcomplexes of the CAT(0) cube complex X. The wall projection
WProjz(U — V) is a subcomplex of V defined as follows: The 1-skeleton of WProjz(U — V) con-
sists of the union of all closed 1-cubes of V that are parallel to 1-cubes of U. A cube of X lies in
WProjz(U — V) if and only if its 1-skeleton lies in WProjz(U — V).

We declare cubes u, v (of the same dimension > 2) to be parallel if there is a combinatorial map
cx1l, — X where ¢ x {0} = u and ¢ X {n} — v. One can show that WProjz(U — V) is the union
of all closed cubes of V that are parallel to cubes of U. The notion is examined more carefully in
[HWal, where it is also defined for subcomplexes of a nonpositively curved cube complex that is not
simply-connected. We refer the reader to Figure[16]

Let (X | {¥;}) be a cubical presentation. Let A = ¥; and B = Y;. An abstract cone-piece of Bin A is
a nontrivial component ¥ of WProj;((E — A), where either i # jori= jbut B # A. So either we are
dealing with two distinct translates of the lift of the universal cover of A, or we are dealing with a base
lift of A and an arbitrary lift of B with i # J- Each abstract cone-piece # comes equipped with a map
P — A, and is “tagged” by data indicating the relative positions A, B. One way to indicate the data is
to choose a representative connecting strip. This is a rectangular strip S = I X I,, for some n > 0 with
initial and terminal edges I X {0, n} mapping to 1-cells in the lifts of A, B to X that are associated with
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Ficure 16. The above example illustrate a length 3 bold interval U whose wall projection
onto a bold complex V is the shaded subcomplex of V. The ambient complex is not simply-
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Ficure 17. Generalized Corners of Squares: The boundary of the diagram on the left has three
illustrated corners of generalized squares. The first is a genuine square with a corner on the
boundary. The second is a remote square which could obviously be pushed to the boundary.
The third is typical as the two rectangles from the square to the boundary bound a nontrivial
square subdiagram. The diagram on the right illustrates corners of generalized squares on
cone-cells and on a rectangle.

the piece. There is leeway in the choice of strip. Assuming the basepoints are chosen appropriately, S
corresponds to a double coset representative 1 Agm; B.

Continuing with the notation above, let A = Y;, but now let D denote the carrier of some hyperplane
H in X such that H is disjoint from the base copy of A. In parallel to the earlier definitions, an abstract
wall-piece of H in A is a nontrivial component # of WProji(ﬁ — A). As above, there is some (possibly

trivial) connecting strip S between Aand D. In parallel to the abstract cone-piece definitions, we note
that we could have let D denote the immersed carrier of some immersed hyperplane in X, and then
the “distinctness” condition between A and B above, becomes a requirement that the lift of D does not
intersect A in a dual 1-cube of the hyperplane.

Remark 3.2. Let us look ahead to see how pieces are related to diagrams (see Figure[21]and Section[3.5]
for the notion of “cone-cell”.)

As suggested by Figure [I8 we will bound sizes of wall-pieces by bounding sizes of contiguous
wall-pieces. Given a wall-piece arising within a diagram as in the second diagram in Figure [I8] we
push corners of generalized squares (these are defined later, they arise from a square with emerging
rectangles emerging from adjacent edges, and terminating on something - see Figure [ST) past the three
bounding rectangles, and we know there aren’t any absorbable into the cone-cell by minimal area. We
then arrive at a rectangular diagram (the third illustration) that is combinatorially a product, and one
side of this rectangle lies on our cone-cell along the wall-piece of interest. Now we see that the wall-
piece is also a wall-piece in a rectangle (in the fourth illustration) that is contiguous with the cone-cell.

This will enable us to produce examples by limiting the types of wall-pieces that must be examined
to those arising from rectangles “based” on A

Moreover, by minimal area, we know that none of the squares in this contiguous rectangle can be
absorbed into the cone-cell. This explains why we can ignore hyperplanes H that cross A. Indeed,
a fundamental property of CAT(0) cube complexes is that a hyperplane cannot “interosculate” with a
convex subcomplex (see Lemma [3.10). Thus, if the hyperplane H of the dual curve of a contiguous
rectangle actually crossed A, then each of the squares in this contiguous rectangle would be contained
in A, and hence there would be squares absorbable into the cone-cell and a violation of the minimality
of area.
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A cone-piece of Bin A is a path P — % in some abstract piece, where B = Y; for some j. Likewise
a wall-piece of H in A is a path P — P in some abstract wall-piece. We will often refer to cone-pieces
in A to mean a P — A without any reference to the various choices of B, S, #, but there is always some
possibly variable choice, and similarly we refer to wall-pieces in A. We will almost always assume that
our pieces are nontrivial in the sense that they have length > 1. We will sometimes use the word piece
to mean either a cone-piece or a wall-piece, and likewise for abstract piece.

3.4. Some small-cancellation conditions to bear in mind. The main hypothesis leading to a useful
theory is an appropriate bound on lengths of pieces in each Y;. There are various formulations: Let |Y;]
denote the infimum of the lengths of essential closed paths in Y;. Let diameter(#) denote the diameter
of an abstract piece . Let @ > 0 be a real number. The absolute C’(a) condition requires that
diameter(®) < alY;| for each abstract piece ¥ in each Y;.

A more general (contextual) C’(a) condition requires that |Ply, < a|R;] whenever R; is an essential
cycle in Y; that contains a piece P as a subpath. (Here we use |P|y, to denote the distance in 7, between
the endpoints of ﬁ; thus the above inequality is implied by diameter(?) < a|R;| when P — Y; factors
through £.) We will employ the absolute condition merely to verify the contextual condition. This
contextual condition differs from the absolute condition both by focusing on pieces (which are paths)
instead of abstract pieces, and by measuring pieces against cycles they occur in, instead of measuring
them against arbitrary cycles.

The combinatorial C(n) condition requires that no essential closed path in ¥; is the concatenation of
fewer than n pieces.

Remark 3.3 (Graded Theory). We will develop a graded small-cancellation theory and associated
metric small-cancellation conditions later in Sections and 3.20]

3.5. Disk diagrams and cancellable pair removal and absorption. Let P — X be a closed path that
is nullhomotopic in X*. Then we can consider various choices i : (D, P) — (X*, X) of disk diagrams
in X* with boundary path P. Note that the 2-cells of D are either squares of X, or are triangles in some
cone C; of X*. Moreover, since P — X avoids cone-points, each 0-cell a; mapping to a cone-point c;
is internal to D, and hence the triangles adjacent to a; (which must map to C;) are grouped in cyclic
collections meeting around a; to form a subspace A; that is a cone on its bounding cycle. We refer to
each a; as a cone-point of D. Note that 0A; — X factors through Y; — X. We refer to A; as a cone-cell
of D.

Remark 3.4. We caution the reader that dA; might not embed, and moreover, A; might not be an actual
(sub)disk diagram. See Figure [[9] However, by performing a very simple reduction, we can assume
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Ficure 20.

Figure 21. Cone-cellsin D — X*

that the boundary path of A; has no internal backtracks (see Figure 20). In the presence of adequate
small-cancellation conditions, and minimal complexity properties of D, this will be the case, but needs
some verification. We will pursue this later in Section 4.1 Without small-cancellation conditions on
X*, this holds under the assumption of minimal square area of D unless a non boundary component of
D — A; contains a cone-cell.

We can choose D to satisfy the following successive minimal complexity requirements, so that the
pair of numbers: (Conepoints(D), Squares(D)) is minimal in the lexicographical order.

(1) |w‘1({c,-})| is minimal among all possible disk diagrams with boundary path P,
(2) the number of squares in D is minimal among all possible choices with a minimal number of
cone-points.

An immediate consequence of the first condition is that each dA; — X is essential (and equivalently,
each A; — Y; is essential) for otherwise we could find a square diagram A] — X with the same
boundary path, and substitute A’ for A; and thus decrease the number of cone-points in our disk diagram.

Remark 3.5 (Generalized cancellable pairs). A “classical” cancellable pair in a disk diagram consists
of a pair of 2-cells meeting along a 1-cell in a “mirror image” fashion. They are removed together with
an open arc where they meet, and this is “zipped up” so only a “surgical scar” is left behind. In our more
general situation, this is broken up more explicitly into two steps: Combining the two cone-cells to a
single cone-cell, and then possibly replacing this cone-cell by a square disk diagram. For a cancellable
pair, this disk diagram has zero area. In general, the new cone-cell might not be replaceable by a square
diagram since its boundary path might be essential in the cone. Moreover, even if it is replaceable,
it will usually require some squares. The boundary path of the new cone-cell arising in the classical
case is a nullhomotopic path in a circle. However in our generalization, even in the case where cones
are circles, we might combine two cone-cells wrapping around the same circle p and ¢ times, so the
boundary of the new cone-cell might be essential as it wraps around (p — g) times.

We have illustrated these maneuvers in Figure 22] While a more general version of this is presented
in Lemma [3.6] this “contiguous combination of cone-cells” is the case that we are usually concerned
with.

Lemma 3.6. Suppose that A; and A" map to the same cone Y;, and suppose there is an embedded path
P — D whose endpoints are on 0A; and 0A], such that P — X is homotopic in X to a path P" — X
that factors through Y;. Then we can perform “surgery along P” to produce a lower complexity disk
diagram with the same boundary path.

Remark 3.7. While Lemma [3.6]still holds if P self-intersects around a square subdiagram as on the
right of Figure 23] it may fail if P self-intersects around a subdiagram containing other cone-cells, as
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FiGure 22. A pair of cone-cells can sometimes be combined and then possibly replaced by a
square diagram.

l

Ficure 23. The path P wraps around a cone-cell in the diagram on the left, so we cannot
combine A and A’. There is no problem on the right, as P wraps around a square diagram.

Ficure 24. Combining Cones

in the diagram on the left. This second type of self-intersection cannot exist in a minimal complexity
disk diagram under the small-cancellation condition we will examine below.

Proof. Let K — X be a square disk diagram for the path homotopy between P and P’. (Note that a
path homotopy in X implies a path homotopy in Y; by mj-injectivity.) Now cut D along P, and insert
two copies of K doubled along P’. Consider the subdiagram B = A; U P; U A]. Observe that we can cut
along 0B, and substitute a cone from a single cone-point associated with ¥;. We have thus reduced the
complexity. O

Remark 3.8 (Not square homotopic). When the path P of Lemma [3.6is only homotopic into ¥ within
X*, then the replacement provides new cone-cells in the new diagram as in Figure|25| We have drawn a
picture of a drum which is a thickened disc that has a square ladder around the outside, and disk diagram
with cones on either membrane. The new diagram is obtained from the old by placing the drum along
the connecting square diagram, and then pushing upwards through the drum. See Figure

Assign a linear ranking to the cones Y1, Y,,... and let X denote (X | Y1, ..., Y,). Suppose that any
(hyperplane) path P — X* that start and end on the same lift of some Y; is actually path homotopic
with a path P’ — Y; C X* where the path homotopy actually occurs in X ,.

Under this hypothesis, we can use a ranked complexity on disk diagram that: assigns a rank of 0 to
each square; counts cone-cells according to the ranks of their cones; and uses the ordering where higher
rank cells have the greatest value. In this case, the replacement we have described actually decreases
complexity.
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Ficure 26. Too large to be real pieces. The left case is similar to the classical small-
cancellation theory. It is a degenerate version of the middle case, which is itself covered by the
rightmost case.

FiGure 27. Big rectangle-piece yields an adjacent hyperplane with big piece, which must then
cross Y;, and hence yields an absorbable square.

We can combine and possibly even remove “cancellable-pairs™ of cone-cells that “meet” along an
impossibly long piece as in Figure Indeed, even when these cone-cells are not contiguous, when
the piece between them is impossibly long, a rectangle joining them has a horizontal path homotopic
into Y;, and actually, the two cone-cells map to the same cone Y; and lift to the same translate of )7,
We are thus able to apply Lemma 3.6 to reduce the number of cone-points which equals the number of
cone-cells. We shall also deal with a cone-cell that has an impossibly long piece with a hyperplane, as
on the right of Figure[26] In this case, some squares of this rectangle can be absorbed into the cone and
S0, again, the complexity of the disk diagram can be reduced. We note that this latter situation does not
arise in the classical small-cancellation theory (since X is 1-dimensional).

While Lemma 3.6|can be used to reduce the complexity of a diagram whenever two cone-cells share
an impossibly big piece, we must use a somewhat different argument to reduce the complexity when
a cone-cell has an impossibly big wall-piece. In this case, we first rearrange the square part of the
diagram so that our original rectangle is pushed pass any corners of generalized squares that lie between
it and the cone-cell (this uses Lemma[2.8)). We then find that the piece of our original rectangle actually
lies in a piece of some other rectangle whose dual curve is dual to a 1-cell adjacent to our cone-cell. It
is thus on such pieces that we place small-cancellation hypotheses. This discussion is described more
formally in the following:

Lemma 3.9 (Contiguous wall-pieces dominate). Let D be a diagram, and let A be a cone-cell in D,
and let S be a rectangular strip of D, let Q = q1q> . . . g be a path on 0A, and suppose each rectangular
strip R; starting at the edge q; of Q ends at a square of S, so that R, ends at the first square, and Ry, ends
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Ficure 28. The subcomplex above interosculates with a hyperplane.

at the last square. Suppose that the squares of R;, R; are distinct for i # j. Let E be the subdiagram
bounded by Ry, Q, Ry, and S, and suppose E is a square diagram.

There exists a new diagram E’ with the same boundary path as E, such that E’ contains a rectangular
strip T whose first square lies on q\, and such that each rectangular strip Q} emerging from q; passes
through T'.

Proof. See Figure We push the strip across any crossing dual curves of E that cross S and the dual
curve of either Q; or Q. This is done in Lemma [2.8] where the path P (there) corresponds to a path
U,QUy where Uy, Uy, are external paths of Ry, Ry.

This gives us a new diagram E’ and a new strip S’. The strip 7’ emerging from the square adjacent
to g1 has the desired property. O

We thus see that any hyperplane is behind a hyperplane touching the cone-cell. Consequently, if
noncrossing hyperplanes have bounded projections, we get a bound on sizes of pieces unless there is a
square absorption.

The following result rules out the behavior in Figure 28] It is proven along the lines of Lemma[2.5}

Lemma 3.10 (No Interosculating Hyperplanes). Let Y C X be a convex subcomplex. Let U be a
hyperplane that osculates with Y in the sense that it has a dual I-cell with exactly one 0-cell in Y. Then
U cannot also be dual to a 1-cell that is contained in Y.

Consequently:

Lemma 3.11. Let A be a cone-cell of D that maps to the cone Y. Suppose that D contains a square S
with an edge e on 0A, such that in a lift to X of S with'e on AA, an adjacent 1- cell’e of(')S is dual to a
hyperplane U that is also dual to a 1-cell that lies in Y. Then S liesinY.

Consequently, the square S can be absorbed into A to reduce the complexity of D.

Remark 3.12 (Alternate domination). Let A, B are convex subcomplexes of X. Let v is a geodesic
between A, B in the sense that it is a minimal length path whose endpoints are on A, B. For each 1-cell
e traversed by 7y, let U, be the hyperplane dual to e, and let N, = N(U,) denote the carrier of U,. Then
U, separates A, B. Moreover, WPrOJX(B - A) is contained in WProjz(N, — A) The second claim

from the first by noticing that each square ladder from B to. A must contain a 1-cell dual to U,.
By choosing e to be a 1-cell of y that has a O-cell on A, we see again that contiguous wall-pieces
bound the noncontiguous rectangle-pieces and wall-pieces.

3.6. Rectified disk diagram to analyze the structure. Consider the disk diagram (D, P) — (X*, X).
An open cone-cell A of D associated to some cone-point a is the union of open cells whose closures
intersect a. Accordingly, A is the union of a together with a sequence of open 1-simplices and 2-
simplices cyclically arranged about a. The external boundary of I, X [-1,1] is I,, X {x1}, and its
initial and terminal 1-cells are {0} X [-1, 1] and {n} X [-1, 1]. A rectangle of D is a combinatorial map

x [-1,1] — D that is injective except perhaps at the external boundary. We note that a rectangle
contains (part of) a dual curve of D at I, x {0}, and that the above injectivity requirement implies
that this dual curve embeds. Unless specifically indicated, we shall always assume that a rectangle is
nondegenerate in the sense that n > 1.
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We shall now assume that D is nontrivial in the sense that it doesn’t consist of a single 0-cell.
Thinking of D as embedded in S 2, we will regard the 2-cell at infinity A, as the cone-cell at infinity.

We now assume there is a linear ordering on the cone-cells of D, and we shall assume that A,
is last, so for instance, we can label the cone-cells Ay,...,A;, Ax. Any choice will be adequate for
our purposes, though distinct choices may lead to somewhat different rectified cell structures for D.
We will also choose a linear ordering on the 1-cells in the attaching map of each cone-cell. Again,
different choices will lead to slightly different results, but for instance, a first 1-cell together with a
counterclockwise ordering is adequate.

Combining these choices and using the lexicographical ordering, we obtain a linear ordering on the
set S of 1-cells in the attaching maps of all the cone-cells. (This is essentially an ordering on a subset
of the 1-cells of D except where both sides of a 1-cell lie on a cone-cell, in which case it will not
play an important role since it will only yield a degenerate rectangle below.) We use these orderings to
determine which rectangles of D are admitted: Beginning with the first 1-cell in our ordering, we apply
the following procedure to each 1-cell e as we proceed through the sequence. Traveling outwards from
e away from its cone-cell, there is a maximal rectangle consisting of a sequence of distinct squares.
This rectangle will either terminate at another 1-cell on the boundary of some cone-cell (possibly the
same cone-cell that contained its initial 1-cell e), or it will terminate on the external boundary of some
rectangle that was previously admitted, or it will terminate on its own external boundary, specifically,
on the boundary of one of its own squares that had appeared earlier in the sequence. Following
our ordering of 1-cells, we proceed in this way until each 1-cell in S lies in a (possibly degenerate)
rectangle. We note that a degenerate rectangle may arise when either our 1-cell appears in two ways
among the attaching maps (so it has a cone-cell on each side) or when it has a cone-cell on one side,
and a square belonging to a previously admitted rectangle on the other side. In this case, we do not add
any rectangle, but we will continue to refer to such a 1-cell as a degenerate rectangle. Each admitted
rectangle has a linear orientation directed from its initial 1-cell to its terminal 1-cell.

We now describe a rectified disk diagram D that we will use to study D. Let I, X (=1, 1) denote
the internal part of the (possibly degenerate) rectangle I, X [-1, 1]. Let E denote the subspace of D
consisting of the union of each open cone-cell and the internal part of each admitted rectangle. Note
that the internal part of a degenerate rectangle is an open 1-cell.

Remark 3.13 (Back to the Future). Under sufficiently strong small-cancellation conditions which we
will later examine, we will be able to see that the components of D — E are disk diagrams. Specif-
ically, we must rule out the possibility that some component is not simply-connected. If there is a
non-simply-connected component then there is an innermost one, in the sense that it doesn’t separate
the boundary of the diagram from some even smaller component. This innermost component would
bound a rectified disk diagram D’ (containing at least one cone-point) with £’ as above, such that
D’ — E’ has simply-connected components. The boundary of D’ has a particularly restrictive nature.
Our assumption of minimal complexity of D (which implies minimal complexity of D’) together with
the small-cancellation conditions we will impose, will imply by Theorem [3.40]that D" does not exist.

The subdiagram D’ has the property that it contains at least one cone-point, and since it is innermost,
D’ — E’ has simply-connected components, and so the construction (that we are in the midst of) can
proceed. However, the boundary of D’ consists entirely of subpaths of external boundaries of rectan-
gles. See Figure [29]for some possibilities. The conclusion of Theorem [3.40] proscribe this, since there
is neither a 6-shell, nor the outerpath of a generalized square.

For each trivial component (meaning a single O-cell) of D — E we have a 0O-cell in our rectified disk
diagram D. For each nontrivial component F of D— E we have a cycle in our rectified disk diagram that
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Ficure 29. Two innermost non-simply-connected fragments on the left a fairly simple possi-
bility for D’ in the middle, and a partially illustrated more complicated possibility on the right.

b @

Ficure 30. Nontrivial singular diagrams of D — E “inflate” to the shard 2-cells of D.
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FiGure 31.

is an embedded copy of ,F. In a certain sense the “0-skeleton” of D is the disjoint union of boundary
paths of components of D — E.

For each rectangle, its initial and terminal 1-cells are open 1-cells of D. These are identical for a
degenerate rectangle.

For each nontrivial component F of D — E we add an open 2-cell F called a shard. The boundary
path of F is a combinatorial path in D, and we first add a corresponding circle consisting of new 0-cells
and 1-cells to D. We then attach an open 2-cell F along this circle. Thus, an open 1-cell e of D (that is
not an initial or terminal 1-cell of an admitted rectangle) will contribute zero, one, or two open 1-cells
to D according to the number of ways it lies along the external boundary of an admitted rectangle.
A 0-cell v of D will contribute d distinct O-cells of D provided that v lies in d ways on the external
boundaries of admitted rectangles. The process of inflating shards is illustrated in Figure

We emphasize that the boundary path of each nontrivial shard is the concatenation of external sub-
paths of admitted rectangles.

We then add the admitted rectangles (in order of their admission) and then the cone-cells.

We note that there is a map D — D that is combinatorial on the 1-skeleton, on the rectangles and on
the cone-cells (after subdivision), but is not combinatorial on the shards (since the image of a shard can
be a singular subdiagram of D).

We refer to Figure 31| for a diagram D, the complement D — E, the “0-skeleton” of D, and then its
“]-skeleton”, and “2-skeleton”.
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Ficure 32. The rectified diagram: cone-cells in orange, rectangles in yellow, shards in blue.
Shards corresponding to components containing no squares are not indicated.
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Fiure 33. Some impossible configurations of admitted rectangles. The first diagram is im-
possible under the assumption that there are no cone-cells inside and this square diagram has
minimal area. The other diagrams are impossible because of the logic of admitted rectangles.
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Ficure 34. More impossible configurations of admitted rectangles and cone-cells. The first
diagram is missing some admitted rectangles. The second diagram is impossible assuming that
the bounded region is a shard and has minimal area.

We close this section by describing some configurations that cannot arise in a rectified diagram
D. Some impossible configurations are illustrated in Figure The leftmost such configurations
excludes many other cases from consideration. The rightmost configurations are impossible because of
the recursive ordered way in which we admitted rectangles. Additional impossible configurations are
illustrated in Figure [34]

Remark 3.14 (Genus 0 shards). Our focus is on a situation where all shards are simply-connected,
and according to Remark [3.13]this is guaranteed in the setting of a minimal complexity diagram under
small-cancellation hypotheses. In general, it seems shards should be treated by adding a genus O surface
- which may of course have multiple boundary components. It is unclear whether further examination
might lead to utility.

3.7. Gauss-Bonnet Theorem. Let E be a combinatorial complex embedded in the sphere. Suppose
an angle consisting of a real number <(c) is assigned to each corner of each 2-cell of E.
The curvature of a O-cell v of E is defined to be

1) K(v) = 21 — Z «(c) - my(link(v)).

ceCorners(v)
We note that when E is locally a surface without boundary at v then link(v) is a circle and so the final
correction term vanishes yielding k(v) = 27t — 3’ cccorners(v) <(¢). Similarly, when E looks like a surface
with boundary at v, we have k(v) = 71 = X’ cccomers(v) <(€). The curvature of a 2-cell f of E with |f] sides
is the sum of the angles of the corners of f minus the expected Euclidean angle sum for a Euclidean
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polygon with the same number of corners:

KH= D <«0-(fl-2x

ceCorners(f)

Alternately, letting defect(c) = defect(<(c)) = m — <(c) we see that

2) K(f) = 27 — Z defect(c).

ceCorners(f)

A simple computation verifies the following well-known fact lying at the heart of small-cancellation
theory (see for instance [MWO02])).

Theorem 3.15 (Combinatorial Gauss-Bonnet). Let E be a finite angled 2-complex embedded in the
sphere then:

mE)= Y kW+ > k()

veVertices(E) fe2-cells(E)

3.8. Assigning the angles. We shall now assign angles to the corners of the 2-cells of D aiming to
obtain nonpositive curvature at internal O-cells, at rectangles, and at shards, and also at the cone-cells
provided that certain small-cancellation conditions are met. There are actually two main angle as-
signments we will discuss here: The first is the split-angling, where the angle assigned to a corner of
a cone-cell will depend upon the neighboring cells at that corner - its personality changes to suit its
surroundings. The second angle assignment is the grade-angling, where cone-cells are treated a bit
more like regular Euclidean polygons. In both cases, small-cancellation conditions we will examine
later will provide nonpositive curvature of cone-cells. However, whereas the shards are automatically
nonpositively curved in the split-angling, we will have to hypothesize this (later) for the grade-angling.

As we have just indicated, in the grade-angling the angle assignments depend upon a grading of the
cone-cells, but the reader should focus especially on the case where each cone-cell has grade 6 except
for the infinite cone-cell A, whose grade is co. The grading is a map from the set of cone-cells to
N U {co}, and in practice, this will be induced by a map from the set of generalized relators {Y;} to N.

The rectangles of D have the usual Euclidean angles - we assign an angle of § to each of their
constituent squares, and so the four corners at the initial and terminal 1-cells have angle 7 and all other
corners have angle .

The reader should think of the co cone-cell A, as having an angle of 7 at each of its corners.

Split-angling assignment to cone-cell corners: We now describe the split-angling. All internal
corners of cone-cells are assigned an angle of 7 with several exceptions that we list and illustrate in
detail below. Though there might appear to be a dizzying array of cases, they are actually simple
degenerations and variations of several very natural choices modeled on familiar Euclidean scenarios,
and we refer the reader to Figure

Consider a pair of adjacent 1-cells on the boundary of a cone-cell. We say the pair of associated
admitted rectangles end in parallel on an admitted rectangle, if the (possibly degenerate) subdiagram
bounded by these rectangles is a shard: In particular, there is no cone-cell inside it. (It is possible that
the terminal 1-cells of the rectangles are not adjacent but they will be in the following case.) The pair of
admitted rectangles end in parallel on a cone-cell if there is a shard bounded by these two rectangles,
and the edges they end on are adjacent to each other. This includes the degenerate case where one or
both rectangles are degenerate. The qualifier implicitly indicates a related situation where one of the
rectangles travels though a square that (at least locally) could have been the continuation of the target
rectangle (see Figure [37).

An angle of 7 is assigned to cone-cell corners except for the following cases:
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Ficure 35. Internal cone-angles for the split-angling are modeled by the four cases above: All
variants of the four cases above are provided in Figures 36} [37} [38] and [39]
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Ficure 36. Parallel rectangles ending on the same cone-cell give m angles at cone-cell corner.
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Ficure 37. Rectangles (implicitly) parallel to the same admitted rectangle have  angle at the

cone-cell corner.

Ficure 38. Three adjacent cone-cells.

(1) m when the associated admitted rectangles end in parallel on the same cone-cell. (See Fig-
ure [36])

(2) m when the associated admitted rectangles (implicitly) end in parallel on the same admitted
rectangle. (See Figure[37])

3) %n when they end on a pair of finite cone-cells that are also adjacent along an admitted (possibly
degenerate) rectangle, such that these three bound a (possibly degenerate) triangular shard. (See
Figure[38])

(€)) %n when they (implicitly) end on a rectangle-cone-cell combination (See Figure )

(5) We emphasize that 7 is assigned in the above two cases when either of the other cone-cells is
infinite. (See Figure 40})

(6) 0 is assigned at a corner when the rectangles terminate at a singular vertex on Co. (See Fig-

ure 1})
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FiGure 39. %n is assigned to the internal angle between edges whose emerging rectangles end

in parallel on a cone-cell/rectangle pair.
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Ficure 40.
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Ficure 41. An angle of 0 is assigned to a corner facing a singular 0-cell.
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FiGurE 42.

We note that the choice of a 0-angle at a singular vertex is not very critical - we could have allowed
5 here without much effect on the theory. In particular Theorem would hold equally well with
a 5 choice here. But the 0-angle permits more general coverage in the hypothesis of Theorem m
Curiously, the bigonal shard in this case takes angles of —x, 7.

Remark 3.16 (The grade-angling variation). In the grade-angling for a grade g cone-cell, we place
internal angles of gg;zﬂ' in place of the angles %71 and ;3171 listed above. Note that this gives an angle of 7
when g = co.

In order to guarantee nonpositive curvature at vertices and at shards, we shall later be forced to make
certain hypotheses on the possible collections of graded cone-cells and square surrounding a shard.

3.9. Nonpositive curvature of shards. In this subsection we will use minimality properties of the
diagram D to conclude that shards have nonpositive curvature. In particular we will assume that there
are no bigons in the square subdiagrams, and we will assume that there are no corners of generalized
squares on cone-cells. By Corollary [2.3|and Lemma [2.5] this holds when D has minimal complexity.

The corners of a shard are of two types: dull corners which lie along a pair of edges on the ex-
ternal part of a single admitted rectangle, and otherwise sharp corners. The dull corners are not very
interesting and we simply assign to them an angle of .
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Ficure 43. Some simple bigonal shards The second diagram can occur with an infinite cone-
cell. The third and fourth diagrams are impossible.
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Ficure 44. Three additional squares/cone-cells at one corner, and one at the other.

The sharp corners of a shard will have an angle of 7 except in a few special cases that we discuss:
Observe that there is no monogonal shard consisting of a nontrivial shard bounded by a single admitted
rectangle, for then (see Figure either the shard contains no squares and then there would be a
backtrack along its boundary, or there would be some square inside the shard and hence a bigon of dual
curves in the nonrectified D, and this would permit a square area reduction by Lemma[2.2]

Consider a bigonal shard having exactly two sharp corners and hence exactly two admitted rectan-
gles with external edges along its boundary. The O-cells at the sharp corners where these rectangles
meet already have at least two 7 corners (from squares in these admitted rectangles, which have an
edge along the sharp corners). If each of these O-cells has at least two additional “admitted squares”
(i.e. from within admitted rectangles) and/or cone-cells, then there is already a total angle sum of at
least 2;r around each and so we can assign an angle of 0 to each sharp corner of our shard.

It is impossible for one of these corners to have no further cone-cell or admitted square alongside it,
for then the two admitted rectangles would be the same (they would continue around that corner), and
we would have a monogonal shard - which was excluded earlier.

Suppose each of these sharp corners has exactly one additional square/cone-cell around it. There
are essentially four possibilities illustrated in Figure 3] and the third and fourth are impossible. In the
first case, we can assign an angle of 0 to each sharp corner, since the corresponding internal corners of
the cone-cells are both m. The second case is the most interesting: For a finite cone, it is impossible
by minimal complexity of D. Indeed, each Y¥; — X is a local-isometry, and so in this case, we could
absorb a square into the cone (without changing the boundary path). In the case where it is an infinite
cone A, we assign angles of +7 at the corner opposite the square, and assign an angle of —7 at the
corner opposite the cone-cell at infinity. The positive curvature at the latter corner will be important
later on, and the situation will be referred to as a corner of a generalized square.

Let us now consider the possibility where one sharp corner has exactly one further cone-cell/square,
and the other sharp corner has three or more. In this case, we put an angle of +7 on the corner with
one additional cone-cell/square, and we put an angle of —7 on the corner with three or more. A non-
exhaustive selection of the possibilities is illustrated in Figure

We now consider the possibility of one additional cone-cell/square at one sharp corner, and two
additional cone-cells/squares at the other. First let us suppose there is a single additional square at one
sharp corner. The various conceivable possibilities are illustrated in Figure 5] but some of these cannot
arise. In the (possible) cases we assign an angle of +7 at the left corner of the bigon and —7 at the right
corner of the bigon. The bottom four cases do not actually exist: The leftmost three do not exist since
an admitted rectangle must have an initial 1-cell on a cone-cell. The rightmost bottom case does not
exist because there is no consistent way of ordering the initial 1-cells of these three rectangles. In the
top four cases, the internal angle of the corner of the cone-cell at our bigon is 7 since this is the case of
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FiGure 45. Square at one sharp corner, two cells at other.
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Ficure 46. Cone-cell at one sharp corner, two additional cells at other.

two rectangles (implicitly) terminating on the same rectangle. We note however that the second case
above (from the left) cannot exist because it has a rectangle without an initial 1-cell on a cone-cell.

We now suppose there is a single additional cone-cell at one sharp corner, and two additional cone-
cells and/or squares at the other. The five possibilities that can arise are illustrated in Figure #6] In the
fourth and fifth cases an angle of O is assigned to each sharp corner, as these two cases correspond to
a mr angle for the corner of the cone-cell since its rectangles (implicitly) terminate on another admitted
rectangle. For the split-angling, we assign %n to each cone-cell corner in the first case and hence use
+7 for the sharp bigon corners, and in the second and third cases we assign %n to each cone-cell corner
and hence use +7 for the sharp bigon corners.

We emphasize that except for the cases discussed above, the corners of a shard receive a 5 angle.
Remark 3.17 (Nonpositive shard for grade-angling). For the grade-angling, we assign an angle of
#n to each grade g; cone-cell corner, and then assign complementary angles to the sharp corners so
that the O-cells have zero-curvature, and hence there is a condition to check on the grades of the cells
around this shard which would imply that its curvature is nonpositive. In the first case the condition is
g%n + g%n + g%ﬂ' > 2r. In the second and third cases, the condition is g%n + g%n + %n > 2r (as a square
has been substituted for a cone-cell).

We now consider a triangular shard which is bounded by three admitted rectangles. As in the
bigonal shard case, if one of its sharp corners has two additional cells, then we can assign an angle
of 0 to that sharp corner, and an angle of 7 to the remaining two corners. (Note that there must be at
least one additional cell at each corner.) So, let us assume that each corner has only one additional cell.
There are four cases according to whether there are zero, one, two, or three cone-cells.

Case zero, where each of these additional cells are squares is easily seen to be impossible: up to
symmetry the locally possible situations are indicated in the first and second diagrams (counting from
the left) in Figure In the first there is no possible consistent way of ordering the initial 1-cells
of the bounding admitted rectangles, and in the second there is a rectangle with no initial 1-cell on a
cone-cell.

The possibilities for the case where there is exactly one cone-cell are illustrated in the third, fourth,
and fifth diagrams (counting from the left) in Figure[47] The fifth diagram is impossible. The third and
fourth diagrams are cases where the rectangles emerging from adjacent edges of a cone-cell (implicitly)
end on the same rectangle. Thus the internal angle of this cone-cell is &, and we can assign an angle
of zero to the sharp corner of the shard at the cone-cell, and angles of 7 to each of the other two sharp
corners.
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FiGure 47. Locally possible configurations of triangular shards with a single additional cell at
each corner.
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FiGure 48. In most cases, when there is an infinite cone around a shard, then the shard (or
one of its boundary vertices) will have negative curvature depending on whether we use the
split-angling or the grade-angling.
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FIGURE 49. Some cases requiring a —7 angle . These figures should only be viewed by readers
who are 18 years or older.

The possibilities for the cases where there are two or three cone-cells are illustrated in the sixth and
seventh diagrams (from the left) in Figure In the sixth case, in the split-angling, we use %ﬂ for the
1nternal cone-cell corners and 7, 7, 5 for the sharp triangular shard corners. In the seventh case, we use
§7r for each internal cone-cell corner, and 5 for each shard corner.

gig 82, angles for the cone-cells, and so use g—n for the

Remark 3.18. In the grade-angling, we use
opposing sharp corner of the triangular shard. Accordingly, the condition on the grades resulting in

nonpositive for the shard is similar to the one given before.

Remark 3.19. There are a variety of shards with infinite cone-cells at the corners such that the natural
angle assignments lead to negative curvature of the shards and/or the vertices. Some of these are
described in Figure 48]

3.10. Tables of Small Shards. Roughly twenty cases arise in the table in Figure [50] These are or-
ganized as they are obtained from the four figures on the left by contracting one or three parts of the
rectangles around the triangle. Note that contracting two of these three sides results in rectangle around
a monogonal shard, and this is not possible in our minimal square area situation.

One of the two ways that a O-cell on the boundary of the cone-cell at infinity can have positive
curvature is when it is the corner of a square. The other way is more interesting as it involves an
opposing bigon with angles +75 (see Figure . In a certain sense, the first case is a degenerate version
of the other case. Under the assumption of local convexity of the cone-cells (except for A,) and the
assumption of minimal square area, neither of these configurations is possible along a cone-cell other
than A
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FiGure 50. Some more cases requiring a 0 or — angle

Ficure 51. Corners of generalized squares: The nontrivial shard on the left requires angles of
+7 in the bigon. Both cases have curvature 7 at the vertex on the boundary of A,.
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FiGure 52.

3.11. Nonpositive curvature of cone-cells via small cancellation. We now discuss a metric small-
cancellation condition on cone-cells in D that implies the nonpositive curvature of each of the cone-
cells. There are similar but more complex combinatorial conditions that are a bit more general. The
conditions are couched in terms of the “wall projections” (within a disk diagram) of cone-cells, rect-
angles and combinations of these onto a given cone-cell in D. We refer to these as cone-pieces and
rectangle-pieces in the boundary path of a cone-cell. Each such piece consists of a subpath of the
boundary path of the cone-cell, that is a concatenation of edges, all of whose rectangles end in parallel
on the same other cone-cell (respectively rectangle). That they end in parallel means that they bound a
shard (possibly together with the rectangle where they end).
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The curvature of a cone-cell with p sides is Zle <; — (p — 2)m or alternatively, it is 2r — (7 — ¢;) =
21 — Y defect(<;).

The internal angle < between 1-cells of a cone-cell is related to the destination of the corresponding
rectangles. If they both (implicitly) end on the same rectangle, or on the same cone-cell, then the
internal angle is 7 so its defect is 0. We obtain positive deficiencies when there is a transition between
the ends of these rectangles in the sense that they don’t end in parallel on the same cone or implicitly
on the same rectangle. Note that in the split-angling, the internal cone-cell angles that are not equal to
mare 27, 3, %. In the grade-angling, they are 2, 1

37, 77 5. 5 g ‘2
Let us first establish a condition that leads to a quick conclusion:

Theorem 3.20. Suppose that each rectangle-piece P,, in the cone-cell C satisfies |P,,| < %IéC | and

each cone-piece P, satisfies |P.| < 11—2|(9C |. Under the split-angling, each internal cone-cell has non-
positive curvature. If the inequality is strict, then each internal cone-cell has negative curvature.

A cone-cell is internal if its boundary path does not pass through a 1-cell in the diagram’s boundary.

Remark 3.21. While the statement of Theorem @] sets the correct tone, in practice we need the
more flexible requirement that Vy P < %II(’)C |ly for each cone-piece or wall-piece P on dC. Here VyP

denotes the distance between the endpoints of the lift PinY,or equivalently, the minimal length in the
path-homotopy class of P — Y, where Y is the cone supporting the cone-cell C, and ||0C||y denotes the
length of the shortest closed path in the homotopy class of dC — Y.

The metric conditions we treat later in Section |3.20|are used under analogous flexible restatements.

Proof. Incorrect %: The idea of the proof is that to pick up some defect for each transition between
distinct pieces. This appears to lead to at least a 7 defect for each transition, and hence nonpositive cur-
vature when all pieces have length < éIBC |. However, a subtle problem with this argument is that there
can be a 0 defect when the transition occurs between a cone-piece and rectangle-piece where rectangles
implicitly end on the same rectangle. We refer the reader to Corollary [3.32](2)), Theorem [3.33] (2), and
Problem [3.34] We remedy this argument below by grouping pieces together in a certain way to reach
the slightly weaker conclusion.

Quick 21—4: According to Scheme it suffices to prove the statement under the assumption that
internal cone-cells do not self-collide. In this case, there cannot be three consecutive transitions each
of which has defect 0. This follows by observing that there cannot be a defect O transition between an
incoming rectangle piece and another rectangle piece - for otherwise there would be a self-collision by
Lemma[3.23]

If we assume that |P| < ﬁl@c |, then there must be at least 24 pieces and hence transitions. Grouping
these into triples, we see there are at least 8 such groups. The observation implies that each group has
at least one nonzero defect, and hence has total defect at least %, which gives a total defect of > 2.

Proof %: The ﬁ argument employed a bound on lengths of cone-pieces and rectangle-pieces that
explicitly arise in the rectified diagram D. To obtain the 1—12 result we use a slightly stronger interpre-
tation of the hypothesis. Namely, there is a %IC | bound on all cone-pieces and rectangle-pieces on C
occurring in D itself. Such a piece would arise in some other rectification.

There is an orientation on each rectangle-piece determined by the orientation of the rectangle. By
Scheme [3.24] it suffices to prove the Lemma under the assumption that internal cone-cells do not self-
collide. Consequently we can assume the angle defect between successive rectangle-pieces is 5, for
otherwise Lemma [3.25] provides a self-collision.
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Ficure 53. An explicit rectangle piece extends to include a cone piece.
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FiGure 54. Diagram D¢ obtained from the self-colliding cone-cell C.

The angle defect between an outgoing rectangle-piece and a cone-piece is > 7. If the angle defect
between an incoming rectangle-piece and a cone-piece is 0, then the cone-piece must actually be con-
tained in the rectangle-piece, otherwise the angle defect is > 7 there as well. The angle defect between
consecutive cone-pieces is > 5.

Accordingly, we associate % to the outgoing vertex of each rectangle-piece. For a cone-piece, either
it contains angle defects of one of 7, 7, g—r on each side and we associate {5 to it from each side (the
most interesting case here is 7 = ¢ + {5), or it has an angle of 0 on one side, in which case it lies in
an extension of the incoming rectangle-piece on that side and we include it as part of that (extended
rectangle-piece). If this happens on each side of the cone-piece, then we include it on just one these
sides. We illustrate this extension in Figure [53]

Thus AC is the concatenation of rectangle-pieces with associated angle defects of Z, and cone-pieces

with associated angle defects of > %.
If each such piece has length < ﬁlC | then there are at least 12 such pieces, and hence a total defect
of > 2. The argument for negative curvature is similar, as there are at least 13 such pieces, and hence

a total defect of > 17637& O

Let now now consider the grade-angling: Observe that if a grade g # oo cone-cell has at least g
transitions, then the defect sum is > 2 and it has nonpositive curvature.

Proposition 3.22. Consider the grade-angling on D. Suppose that for each g1, g», g3 grade cells meet-
ing around a vertex, bigonal shard, or triangular shard, we have gil + giz + gis < 1 (where g3 = 4 for a
square). Then each 0-cell has nonpositive curvature.

Suppose that |W| < éICIfor each rectangle-piece on the cone-cell C and |C’| < éICIfor each cone-
cell piece on the cone-cell C. Then each cone-cell has nonpositive curvature.

We note that the first hypothesis in Proposition [3.22holds when each grade is > 8.
3.12. Internal cone-cells that do not self-collide.

Definition 3.23 (Self-collision). Let C be a cone-cell in a rectified diagram D. We say C self-collides if
there are admitted rectangles having initial or terminal 1-cells on dC such that one ends on the external
boundary of the other. That C does not self-collision generalizes the idea of 2-cells in a disk diagram
having embedded boundary paths.

We refer the reader to Figure[54] were we also include the case of a rectangle starting and ending on
C, and a rectangle of C that collides with itself. All these self-collisions are excluded by the following:

Scheme 3.24. Consider a rectified disk diagram D arising from a diagram D with no bigonal square
subdiagrams, and no corners of generalized squares on its cone-cells. Suppose angles have been as-
signed to the corners of D so that: all rectangle corners have angle 7, nontrivial shards (and internal
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0-cells) have nonpositive curvature, cone-cell angles are nonnegative, and singly-external corners have
angle 7.

Then all internal cone-cells of D have nonpositive curvature if and only if this holds for non-self-
colliding internal cone-cells.

If the internal cone-cells of D that do not self-collide have nonpositive curvature, then no cone-cell
of D self-collides.

Note that the closure of an internal cone-cell could contain O-cells of dD.

Proof. An internal cone-cell C of D that self-collides determines a diagram D¢ obtained from the
immersed subdiagram subtended by C together with the two emerging colliding rectangles. The angle
assignment on D¢ is induced from the assignment on D.

We will prove that there is no such C, by considering an example where D¢ contains a minimal
number of cone-cells. The minimality implies that, with the possible exception of C itself, no cone-
cells of D¢ self-collides. Indeed, if B is a cone-cell in D¢ that is not strongly-embedded then this
provides a smaller diagram Dp, since C is not contained in Dp. In each case the colliding rectangles
of B are unable to encircle C. This is often obvious since C is an external cone-cell of D¢, but an
interesting case to consider here is the 4th diagram in Figure[55]

However, we note that there must be some other cone-cell within D¢, for otherwise there would be a
generalized corner of a square on C within D¢ and hence within D, or in the 5th diagram, there would
be a self-crossing hyperplane in a square subdiagram.

In the 2nd diagram, «(C) < 7 and actually < 7, as the cone-cell B guarantees at least one transition,
and there is exactly one corner of generalized square at the opposite side, giving a 7 curvature.

In the 3rd diagram, «(C) < m likewise, and there is actually also a vertex on the boundary with
K=-3.

In the 4th diagram, «(C) < 2m, and moreover, since there is at least one transition around C, we have
«(C) < 2m. Moreover, there are no other positively curved cells, and actually one boundary vertex with
curvature —7.

In the 5th diagram, «(C) = 7 and there is also a vertex with curvature —7.

In conclusion, even without having verified that there was an internal cone-cell which gives us the
strictness of k(C) in the 2nd, 3rd, and 4th cases, we find that the total amount of identified curvature
is < 2m. As all other cells of the diagram have nonpositive curvature, this yields a contradiction to
Theorem 3,151 i

Lemma 3.25 (Cone-cell ordered rectified diagrams). Let D be a rectified diagram induced from an
ordering on the bounding I-cells of cone-cells of D that arises from an ordering of the cone-cells with
Co last.

If the Ist subdiagram of Figure is contained in D, then it can only arise from the 2nd or 3rd
subdiagrams of Figure or their degenerate versions in the 4th and 5th subdiagrams.

Note that we do not require the cone-cell boundary ordering of Lemma [3.25]to also be consistent
with a cyclic ordering of the 1-cells around each cone-cell.

Proof. This follows from the logic of the rectified diagram construction of Section 3.6 O

Corollary 3.26. If a sequence of consecutively adjacent outgoing rectangles implicitly end on the same
rectangle, then they explicitly end on the same rectangle. See Figure[56]

We use the notation introduced in Definition for the following:

— — e e = A P .
Remark 3.27. WoW and WoW, and WoyW, and WyC, and CoW, cannot arise because of Corol-

lary 526
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3.3.90% I+

Ficure 55. Limiting consecutive wall-pieces around internal cone-cell.

Wed . @

Ficure 56. Using the argument of Lemma 3 29| if the middle diagram existed, then the hyper-
plane would be forced to also emerge from the cone as on the right. However, in applications,
this is impossible by Scheme @, so all the rectangles end explicitly on the same rectangle.

WoW cannot arise since rectangles initiate on a cone-cell, not on another rectangle.

W% Cand C %W/ cannot arise following the proof of Corollary|3.26

3.13. ® More general small-cancellation conditions and involved justification. The goal of this
section is to give a generalization of Theorem [3.20] This generalization, stated in Theorem [3.31] will
not be used in the sequel and serves primarily as an experiment. The statement of the theorem involves
notation which we will not use later.

Definition 3.28 (Destination Notation). Consider the sequence of cone-cells and rectangles around a
cone-cell. We combine together emerging rectangles with similar destination, and use the following
notation CWCCCWWWW for a sequence of cone-cell and rectangle destinations around our cone-
cell. We will abuse the notation in the following way: Each C or W will also denote a path in the
boundary of our cone-cell that is the concatenation of the initial or terminal edges of rectangles that
start or end on the cone-cell C or rectangle W. We can refine this further by using notation C and C
to mean that the rectangles are oriented from our cone-cell upwards, or from the destination cone-cell
towards our cone-cell. We refine this notation further by using C to mean that the rectangles between
are degenerate trivial, and use C to denote the cone-cell at infinity. We also use C W to mean that W

emerges from C, and likewise WC to mean that it emerges from the left. Finally, we put numbers
between terms: CzC and Cz W and Wz W and so forth, to indicate the defect of the angle in our cone-
cell at the correspondmg mternal corner where there is a destination transition. We refer to Figure
for an example of this notation.

Lemma 3.29. Suppose that the rectified diagram D was constructed using an ordering of the bounding
edges of cone-cells that is induced by an ordering of the cone-cells followed by a cyclical order of the
1-cells on their boundary paths.

Let ey, e3 be adjacent 1-cells on the boundary of some cone-cell C, and their rectangles Ry, R3 are
both oriented outwards from C. Suppose that R3 ends on a rectangle R, which implicitly crosses R;.
Then ey is the first 1-cell of 0C and es is the last.

Consequently, in general there can be at most one such configuration for each cone-cell C. However,
we shall reach stronger conclusions below under the assumption of small-cancellation conditions.

We refer the reader to Figure [55] which indicates the hypothesis situation on the left diagram, and
the two (essentially the same) outcomes in the second and third diagrams - and their two subsequent
degenerate cases. The last three diagrams indicate configurations that are consequently impossible.
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FiGure 57. Clockw1se frori the yellow rectangle edge we have:

~ = o~ — =)
C C WnW Cn nCnCzCaCaWzCaWo
1737272 171

Ficure 58. A diagram limiting generalizations of Theoremm

Proof. Let e; denote the initial 1-cell of R,, and observe that ¢; < e; < e3. Consequently, by our
hypothesis on the structure of the ordering of 1-cells on boundaries of cone-cells, we see that e, lies
on dC. Moreover, the cyclical orientation is then determined, and hence since e, e3 are adjacent with
e] < ez and the ordering increasing in the other direction from ez, we see that e is first as illustrated. O

Continuing with the constraints indicated in Remark [3.27, we now provide a table with minimal
defects:

Table 3.30. (1) ~§C
— A A
(2) WzCand C:W
(3) W:W
4) C:C

— —
®)) C%W and W%C
R -
(6) C()W and W()C.
We note that the sums of adjacent subscripted angle defects is < the actual angled defects. To obtain

the nonpositive curvature of the cone-cells, it is therefore sufficient to show that there is a total of at
least 2 after grouping. This is supplied by the following:

Theorem 3.31. Assign the split-angling to D and suppose the following conditions hold for each cone-
cell C. Then each internal finite cone-cell in D has nonpositive curvature:

W < 1
(1) W] < icl.
) I”C’”l < ¢lcl.
3 1C% W < ZIC] and|W C’| < Z|Cl.
“ |W§{C51 Wl < Ycl
4
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Proof. Consider a cone-cell C. We decompose the destination rectangles using the following “grouping
rules” taken in order:

(1) Any CzCzC is decomposed into C%)(%Cg)(%C.

2) C‘OW and W/OC‘ are grouped together. In case of V)VOC OW we make an arbitrary choice to group
only COW.

(3) We group COW%C gW/OC as well as variations of this omitting one or more noncentral terms:

— o - - — e —

CoW%C%W ; W%C%W ; W%C%W()C ; C()W%rc% ; C%C%Woc ; COW%C%{C ; etc. Note that
when a <V_V or V)V term is omitted, there is still such a rectangle which is initiated from the central
C term, and terminates on a rectangle with destination the left or right C term. However, this
connecting rectangle is not visible from our cone-cell.

(4) Each singly grouped W is treated as (%V)V) or (W%r).

(5) If C is not grouped with anything on one side - or doesn’t have a broken % on one side from
(zCz)(zC) - then it obtains a 7 on that side. Each singly grouped C is treated as (zCz).

Observe that the minimal square area of D implies that: |C’, W/OCI lies behind C’EV)V (if we extend the
3 3

rectangle W/) and likewise ICO‘/(_V% C| lies behind V(_V%C , and consequently, bounds on the length of the
wall projection of the latter give bounds on the former.
Similarly, CoWoC’; W(C lies behind WoC’, Wy.
4 3

We reach the conclusion, that the minimal defect provided by a grouped piece P exceeds 271%.

This proves nonpositive curvature for cone-cells that are internal. O

The following indicates consequences of the inequalities of Theorem [3.31] Corollary [3.32](T) gen-
eralizes the classical C ’(%) condition, and Corollary 3.32l@ recovers Theorem 3.20}

Corollary 3.32. If any of the following inequalities hold then internal 2-cells have nonpositive curva-
ture (and negative curvature if the inequalities are strict).

(1) ICI < ¢ and |W| < .
) ICI < & and |W| < .
3) ICl < & and |W| < 3.

The following result slightly strengthens Corollary (I, and the same method of proof recovers
Corollary @).

Theorem 3.33. Assign the split-angling to D and suppose the following conditions hold for each cone-
cell C. Then each internal finite cone-cell in D has nonpositive curvature, and if the inequalities are
strict then each has negative curvature.

(1) Each (contiguous) cone-piece is < % and each wall-piece is < ﬁ.
(2) Each (contiguous) cone-piece is < % and each wall-piece is < %.

Moreover, if dim(X) = 2, then one obtains nonpositive curvature (respectively negative) if either:

3) Each contiguous cone-piece is < + and each wall-piece is < L.
8 14 3 14 12

(4) Each contiguous cone-piece is < % and each wall-piece is < %.
Proof. We will focus on the case where |C| < %, and dim(X) is arbitrary. The case where |C| < % is
very similar and will use a § angle instead of  angle etc. The case where dim(X) = 2 uses that a single
wall-piece dominates the concatenation of pieces we focus on later in the proof. This is illustrated on

the right in Figure [59]
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FiGure 59. The concatenation of three pieces within Cz WoCoW:zC is dominated by the con-
catenation of two wall-pieces. When dim(X) = 2, it is dominated by a single wall-piece.

For each piece around an internal cone-cell, if it is a (contiguous) cone-piece there is an associated
defect of > %” and if it is a wall-piece then there is an associated defect of > % There are several
cases where the defect at the transition between pieces is 0 that must be treated with special care. In
particular, in the main exceptional case we will use that three pieces are dominated by two (crossing)
wall-pieces, and our defect sharing system provides {5 on each side. It is here that we require [W| < 2—14
since a 2—’2’ defect is proportionate to ﬁ + 2—14 of the circumference. It is also here that the bound improves
when dim(X) = 2, as since there is then only one dominating wall-piece it suffices to have |W| < li
here too.

In most of the cases outlined in Table[3.30] we distribute the defect evenly between the consecutive
pieces: e.g. 67316%6 decomposes into 6% )(%6%)(%6, and V—)V%V)Vg w decomposes into V)V%)(%V)V% )(z w.

The exception to this rule involving a defect of O or 7, when we will use an alternate distribution. In
the case of a 0 defect, the critical observation is that the piece is dominated by one or two wall-pieces
respectively. In the case of a 7 defect, we will distribute this as g + {5 towards the cone-piece and
wall-piece respectively.

We use the following groupings:

= o4 & . . . Dx . .
(1 %rWoCo W%r lies behind the following configuration: %(% w Wr"z)% as in Figure
(2) 5CoW and WoC'y lie behind: £)(5 W £)(, and ,)(£ W2 )(z
(3) CzW and Wz C are grouped as: Cz)x W and Wz (zC. O

Problem 3.34. Does nonpositive curvature (negative if <) hold in the following two cases:
1

g.
(2) Each contiguous cone-piece is < % and each wall-piece is < 1—12

(1) Each contiguous cone-piece is < % and each wall-piece is <

The 4, 8, 8 Euclidean tiling, and the tiling obtained by subdividing its square’s edges, suggest that
each statement in Problem is sharp if true. The 4, 6, 6 spherical tiling has |C| < % and |W| < é.

3.14. The ladder theorem.

Definition 3.35 (Ladder). A ladder is a disk diagram D with the property that there is a sequence
of n > 2 closed cone-cells and/or vertices. Ci,C,...,C, that are ordered so that C; separates C;

from Cy when i < j < k. The diagram D is an alternating union of cone-cells (or vertices) and
“pseudorectangles” R; (possibly trivial or degenerate) in the following sense:

(1) 8,D is a concatenation PP} ! where the initial and terminal points of P lie on C; and C,

respectively.

2) Py =aip1app3 ... a, and Py = v101Y202 . . . Vn-

(3) 9,C; = piaivi‘lﬁi‘l for each i where u; and v, are trivial paths.

(4) O,R; = v,-p,-uijrllgi‘l for each i < n.

(5) For each R;, each dual curve starting on v; ends on y;+ and vice-versa.
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Ficure 61. Some ladders.

Ficure 62. Singular doubly-external, doubly-external, singly-external, and nil-external corners.

(6) Moreover, a pair of dual curves in R; cannot cross unless one (or both) start (and hence end) on
Pi> Qi-
There are two degenerate cases for R; that should be noted: Firstly, it is possible that R; is a vertical arc,
and that v; = y;41. Secondly, it is possible that R; is a horizontal arc, in which case p; = g;.
We refer to Figure [60| for help with the notation, and to Figure 6] for pictures of various ladders. A
ladder is nonsingular if it has no cut-vertex, spur, or isolated 1-cell.
We regard a disk diagram consisting of a single 0-cell or cone-cell as a trivial ladder.

We emphasize that a cone-cell is external or internal according to whether or not its boundary
contains a 1-cell in dD.

Theorem 3.36. [Ladder Theorem] Suppose that the rectified diagram D was created using an ordering
of 1-cells induced by an order of cone-cells (with Cy, last), and suppose the angle assignment on D has
the properties listed below. If D has exactly two positively curved cells then D is a ladder.

(1) Each internal cone-cell, shard, and internal vertex has nonpositive curvature.

(2) The rectangles have the usual angles: 3 at the four corners, and i elsewhere.

(3) 0 < « <« foreach < in a cone-cell.

(4) When adjacent rectangles have distinct (even implicit) destinations the internal angle at the
corner of the cone-cell at the corresponding vertex has nonzero defect.

(5) The angle at a corner of a cone-cell at a vertex on 8, equals 0 when it is doubly-external
but at a singular vertex, equals = when it is nonsingular doubly-external, equals 7 when it is
singly-external, and is > O when it is nil-external.

The four types of external corners of a cone-cell are illustrated in Figure [62]

Proof. As there are exactly two positively curved cells, each has curvature exactly n. Indeed using
Equation (), the 0 < < hypothesis implies that the curvature of a boundary 0-cell v is 27 — my(link(v)) —
Y.< < m— Y << nm Applying Equation (2), the hypotheses on external corner angles together with
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Ficure 63. It must be a ladder.
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Ficure 64. Woof Woof.

the < < 7 hypothesis implies that the curvature of an external cone-cell is < mr. Here each nontrivial
boundary arc provides a defect of 7 from the two 7 singly-external corners, and all other angles have
nonpositive defect since < < 7. To justify this count, the 7-defect at the corner at a singular doubly-
external vertex, is shared between the (locally) two external boundary paths ending there.

A case of interest is when the boundary path of a 2-cell consists entirely of two external boundary
paths - in which case both corners are singular doubly-external with angle defect 7.

The only 7 curvature O-cell arises from a spur. The 7-curvature cone-cells arise when the external
cone-cell has a single external boundary path with a defect of 5 on each end and a nontrivial innerpath
whose internal corners have angle &, or when the external boundary path is the entire boundary path
and the innerpath is trivial, in which case there is a defect of & at the singular doubly-external corner
where the boundary path starts and ends.

Since each other cell has nonpositive curvature, Theorem [3.15]implies that each other cell has zero
curvature.

Let us assume the diagram is nonsingular, otherwise an inductive argument would allow us to string
together (possibly trivial) ladders to obtain a new ladder.

Consider a positively curved cell Cy. Either it is a O-cell at the tip of a spur, or it is a cone-cell. Let
us consider the latter case. Let eq, e, denote the 1-cells on either side of AC; just outside of dC; N dD.
Let Ry, R, denote the rectangles at e, e>. (It is possible that e; = e; and hence R; = R;.) Traveling
along Ry N AD (see Figure for various scenarios) we see that dD proceeds along the entire (possibly
degenerate) external path on one side of R; until it ends on a rectangle or cone-cell. Indeed, another
incoming (possibly degenerate and thus including another cone-cell) rectangle would give us a 0-cell
on D with negative curvature. The same reasoning holds for R;.

By hypothesis, a transition in destination would give a positive defect along the interior path of Cj.
Consequently, R and R, both either have rectangle destinations or cone-cell destinations. Moreover,
if they both have cone-cell destinations, then these cone-cells are the same, and likewise if they both
have rectangle destinations, then they end implicitly on the same rectangle. We will now rule out the
possibility that they have rectangle destinations (that are implicitly the same). Indeed, if R; ends on
a rectangle, then its final boundary corner has exactly two squares along it as at the top of the third
diagram in Figure |63 and no cone-cells. Indeed, further corners of squares would provide 7 angles,

and the last cone-cell or square as we go around this boundary vertex would provide another 5 angle.

All other angles are nonnegative, so the total angle sum would be > 37” The simplest possible such

scenario is illustrated at the bottom right of Figure [64]
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Ficure 65. If 0-angles are assigned to nil-external corners, ladders could have cone-cells that
intersect the boundary along trivial arcs.

We emphasize that the only way a shard could have a sharp corner at a boundary vertex, is if the
rectangles on either side terminated at a pair of consecutive edges there. This is impossible in our case,
for one of these boundary edges is an external edge of R;. We therefore do not have to worry about

negative angles coming from sharp corners of shards that occur at this vertex, and so the angle sum is
> 3

We thus find that the rectangle ends immediately on Co, at the square where R meets it. Thus one
end of this rectangle lies on Cs. Now, if both ends of this rectangle lie on C,, then the ordering of
initial 1-cells of rectangles is violated - since 1-cells on Cs, come last. If one end lies on C, and the
other end lies on an external edge of R, then we get a similar contradiction.

We now find that we have reached some cone-cell C,, and that all the rectangles leaving C; are
parallel to each other and end on C;. If k(C2) = & then we are done, as the same reasoning applies in
the reverse direction.

Otherwise k(C2) = 0. Note that dC, N d,(D) has exactly two components, for otherwise using
Equation , our hypothesis that < < 7 yields a total curvature < —. Indeed, our hypothesis of 7 at
singly-external corners and > 0 at degenerately-external corners, implies a total defect of —n for each
component of dC> N 8,(D).

Observe that the 0-cells on D where R; and R, intersect C; have curvature 0, as each has exactly
two 5 angles (one from R; and one from the final cone-cell or square as we travel through the sequence
of corners of cells until we get to the next singly-external corner of a cell). Various possibilities are
illustrated in Figure [64] where the top diagrams are allowable and the bottom diagrams are impossible.
The vertex has curvature 0, and after removing C; and the sequence of (possibly degenerate) rectangles
between R; and R;, we see that C, now intersects the new (’)p(D) in exactly one component, and we
proceed by repeating the above argument on the subdiagram (where two angles of C, might be redefined
if they went from being nil-external to singly-external).

Thus far we have obtained a ladder in the more general sense described in Remark where
cone-cells might intersect d,D in trivial subpaths. This only used that nil-external corners have < > 0.

We now explain the consequence of our strengthened assumption that nil-external corners of cone-
cells have < > 0. Any such corner provides a defect that is strictly > . Consequently, if x(C) = 0 then
under this stricter < > 0 hypothesis, dC> N 8,(D) contains exactly two nontrivial arcs.

Using similar reasoning, we note that in the strict case, the edges e}, e cannot intersect on the outside
of 0C; on a,,(D). Indeed, then dC1 N ap(D) consists of a single point. And if the corner at this point
has <« > Othen x(Cy) =2n—m— < < 7.

Without the < > 0 hypothesis, it is possible to have strings of cone-cells (looking like bigons and
triangles in the middle, and possibly monogons at the end) having 0-angles along the boundary as in

Figure [65] o

Remark 3.37. The hypothesis of < > 0 at nil-external corners of cone-cells forces cone-cells in a
ladder to intersect the boundary in nontrivial subpaths. See Figure

Remark 3.38 (Effect of positive angles at singular doubly-external corners). A version of Theo-
rem [3.36] holds under the hypothesis that a singular doubly-external corner has angle > 0. Indeed,
a sensible reinterpretation of the split-angling could assign a 5 angle here, since the two (degenerate)
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rectangles do not end in parallel on the cone-cell at infinity. Another tempting interpretation of the
split-angling would assign an angle of x, and a version of Theorem would still hold.

When a positive angle is assigned to singular doubly-external corners, we must assume that the
diagram is nonsingular to reach our initial enabling observation that each feature of positive curvature
must have curvature exactly m, as a dumbbell consisting of two cone-cells connected by a (possibly
trivial) arc of edges provides a counterexample to this. It appears that these dumbbells, possibly with
spurs at their ends, are the only nonsingular ladders with exactly two positively curved cells. On the
other hand, there are many singular ladders with alternating sequences of positively curved cone-cells
and negatively curved 0-cells, and this suggests that the 0-angle assignment is more elegant.

Remark 3.39. There are similar results for annular diagrams obtained in Section[5.16] Note that an
annular diagram is treated so that it has two cone-cells at infinity, and these both occur at the end in the
ordering that is used to choose rectangles. The angle assignments are done in the same way.

The main difference is that in order to obtain an annulus that is as thin as a ladder, we must assume
that internal cone-cells have negative curvature, and that (hard to obtain) the external cone-cells cannot
have nonpositive curvature unless they touch both the inner and outer infinite-cones. Otherwise we
obtain a thickness 2 situation that is hard to control.

3.15. Positive curvature along boundary. The possible positively curved cells are:

(1) A single isolated O-cell has curvature 27

(2) A single isolated cone-cell has curvature 2z

(3) The O-cell at the end of a spur has curvature x

(4) The O-cell at the center of the outerpath of a generalized square corner has curvature 7

(5) A shell C is a positively curved external cone-cell. Its boundary path is a concatenation QS
where the outerpath Q is a subpath of the boundary path of the diagram, and the innerpath S
has all open 1-cells in the interior of the diagram. The curvature of C equals the sum of the
defects of the angles along interior(S).

Theorem 3.40 (Positive curvature cells). Suppose D is a rectified disk diagram with an angle assign-
ment satisfying the conditions enumerated in Theorem[3.36] Then one of the following hold:

(1) D consists of a single O-cell or a single closed cone-cell.
(2) D is a ladder:
(3) D has at least three shells and/or spurs andjor generalized corners of squares along dD.

Proof. This follows from Theorem [3.15]since curvatures are < 7 except for the two degenerate cases,
and curvatures of internal cells and shards are nonpositive by hypothesis/construction. The case where
there are only two positively curved cells was treated in Theorem [3.36] i

Definition 3.41 (Small-cancellation complex). Consider a cubical presentation (X | ¥;) with an angle-
assignment method such that in any reduced rectified diagram we have: internal 2-cells, internal
O-cells, and shards have nonpositive curvature. We will refer to (X | Y;) as being a cubical small-
cancellation complex.

3.16. Examples.

(1) Ordinary C ’(%) small-cancellation theory where the cube complex is a graph and the relators
are circles.

(2) Graphical Small-Cancellation theory. This was apparently first noticed in [RS87]] but was re-
discovered subsequently by Gromov [Gro03}, |O1106]].

3) AC ’(%) Cubical presentation.

(4) Large Dehn filling of Dehn complex of prime alternating link. See Subsection ??.
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(5) Small-cancellation theory over right-angled Artin groups with ordinary relators. (This gives a
variety of simple examples that don’t utilize relative hyperbolicity of 71X. But one must be
careful about the cores.)

Specifically, a small-cancellation set of words alternating substantially around the genera-
tors. Pieces correspond to subwords that equal each other (after shuffling).

(6) Many Artin groups (almost all?). See Section Every Artin group associated to a Coxeter
group with no exponent of degree 2. More generally, this appears to work if there is no triangle
of type: (2,2,n) or (2,3,3) or (2,3,4), or (2,3,5).

It appears we can allow degree 2 if we exclude degree 3, but this requires complicated
generalized relators that are centralizers, and perhaps a relative version of the theory.

We start with the right-angled Artin group. Then we add the relators. The small-cancellation con-
ditions aren’t satisfied if we just cone off the cycles. So instead, we cone off by the immersed graph
associated to the normal closure of each relator in its two generator free subgroup. (This is just the
Cayley graph of a 2-generator Artin group.) This gives us an immersed cube complex corresponding
to the 1-skeleton of the universal cover of the standard 2-complex of the 2-generator Artin group.

Pieces correspond to a:lj paths, if they are pieces between two generalized relators of different types.
The pieces correspond are arbitrary if they arrive from two distinct conjugates of the same generalized
relator, where conjugation is by a path centralizing its two generators. In this case, we can cut and
paste (or push around) to combine the two cone-cells in the disk diagram - and thus reduce area. We
can therefore assume there are no such pieces.

Example 3.42. An interesting example arises from the 4-string braid group B4. The kernel of its
homomorphism to the underlying Coxeter group S 4 is called the 4-string pure braid group P4. It is
shown in [DLS91]] that P4 = G X Z where G is the following quotient of a right angled Artin group:

(ai,...,as | [anain]) | (aia; aza; asa; aza;' asas"y.

This appears to satisfy small-cancellation conditions, with a bit of care.
Higher degree examples (e.g. n > 6) work much better.

Example 3.43. Consider the presentation {a,b,c | (ab)?, (bc)?, (ca)?, (aaabbbcec)?) which differs
slightly from a lovely presentation for an index 3 subgroup of PS L(2, Z[%]) discovered by Cameron
Gordon. (His presentation has a*b>c® not raised to a power.)

There is an obvious homomorphism to Zg in which the obvious torsion elements survive, and we
can then collapse pairs of 2-cells corresponding to the relators. The result is a cubical presentation (X |
Y1, Y, Y3, Y4) where X is an orientable genus 3 surface built from squares with 6 meeting around each
0-cell, and each Y; is built from a lift of (a’bh3c?)? by adding six squares at the corners corresponding
to the transitions ab, bc, ca, ab, bc, ca. It appears that all maximal cone-pieces are either of the form
aa, bb, cc or are one of the added squares. Besides the wall-pieces consisting of single 1-cells, there are
wall-pieces of the form chb™!, ba™', and ac™!.

It thus seems that the C(6) condition is satisfied with the split-angling. There is an obvious (an-
tipodal) wallspace structure on each Y;, and it appears that together with it the B(6) conditions (and
probably B(8) conditions) hold as well.

3.17. Examples arising from special cube complexes. The work here was motivated by the obser-
vation made in [WisO3|| that for any finite immersed graph A — T, there is a finite cover A such that
(I' | A) satisfies Gromov’s graphical % small-cancellation theory (see [RS87]).

Theorem 3.44. Let X be a compact nonpositively curved cube complex. Let Hy, ..., Hy be residually
finite subgroups of m1 X, and for each i, let Y; — X be a compact immersed complex with mY; = H;.
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Suppose each Yi ¢ X is superconvex. Suppose that there is an upper bound on the diameters of
intersections between distinct translates of Y;,Y; in X (we allow i = j here).

Then for each a > 0 there are finite covers ?, such that (X | ?1, . ,?k) is C'(@).

Proof. By Lemma[2.13] let D be a uniform upper bound on the diameter of a flat strip that stands on
Y;. (This will also bound lengths of pieces between noncontiguous Y, ?j).

Let E be a uniform upper bound on the diameters of intersections between translates of Y, 7j (of
course we exclude the overlap between identical translates of 71-).

Note that by possibly passing to a finite index supergroup of each H;, we can assume that each
H; = Stab(¥)).

By residual finiteness, for each i, we can choose a finite regular cover ?, — Y; such that || >
é max(D, E). |

Corollary 3.45. Let X be a compact virtually special cube complex. Suppose n1X is word-hyperbolic.
Let Hy,...,Hy be quasiconvex subgroups of m1X that form a malnormal collection. Then for each
@ > O there are finite index subgroups H; C H; and represented by compact local isometries Y; — X

such that (X | Yi,... ,7k> satisfies C'(@).

Proof. By Lemma , there is an H;-cocompact superconvex subcomplex Y; C X for each i. There is
an upper bound on the overlap between translates of Y; and Y by the malnormality assumption.

H; is residually finite for each i since 71 X is virtually spemal

We can thus apply Theorem [3.44 O

Lemma 3.46. [Malnormal Controls Overlap] Let X be a compact nonpositively curved cube complex
(with m1 X word-hyperbolic). For 1 < i < r, let Y; — X be a local-isometry with Y; compact, and
assume the collection {m\Y1,...,m1Y,} is malnormal. Then there is a uniform upper bound D on the
diameters of intersections g?i N thj between distinct w1 X-translates of their universal covers in X.

Lemma [3.46] can be interpreted as saying that there is an upper bound on diameters of contiguous
cone-pieces in (X | Yi,...,Y,). In practice, one applies Lemma [3.46| under the assumption that ;X
is word-hyperbolic for this enables the existence of compact cores Y; for quasiconvex subgroups. A
deeper investigation of Lemma [3.46] in the quasiconvex-malnormal and hyperbolic situation, shows
that there is a uniform upper bound on the sizes of all cone-pieces - not just the contiguous ones.
This relationship between malnormality and pieces is concealed by the noncontiguous cone-pieces
which can sometimes be ignored in the small-cancellation theory since they are hidden behind and thus
controlled by hyperplanes in a superconvex situation.

One way to prove Lemma [3.46|is to consider the nondiagonal components of (LIY;) ®x (L1Y;). Each
of these is contractible by malnormality, and of finite diameter since the finitely many Y; are compact.
We refer the reader to Section[8.21

Proof. If hY; N gFfj has infinite diameter then applying the pigeon-hole principle, there is an infinite
periodic path lying in both 4Y; and gY;. This yields an infinite order element in both 7Y [h and my Yf ,

thus violating malnormality unless i = j and gh™' € m,Y;. O

3.18. Informal discussion of the limits of the theory. The C(6) condition is sufficient when dim(X) =
1 but we cannot expect C(6) to suffice in general. Indeed, consider the snub octahedron: it is a tiling
of the sphere where each vertex is surrounded by a square and two hexagons. In any reasonable sense,
each hexagon is not the concatenation of fewer than 6 pieces. The complement of a square does not
seem to have any 3-shell.
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Ficure 66. There are two grade-1 cones, and one grade-2 cone. All nonabsorbable pieces are
between the grade-2 cone and itself. The example doesn’t satisfy C(p) for very large p, but
suggests a plethora of further examples along similar lines. For a presentation of the form
(b,c | b™, ", W), one can attach copies of ™ and ¢” to a copy of W along its syllables. When
m = 2 and n = 3, one needs |W| quite large before typical words give graded small-cancellation
presentations.

Another example to bear in mind is the snub icosahedron, which has hexagons surrounding pen-
tagons, and is otherwise similar.

The snub-(4, 4) tiling of the plane, consisting of squares surrounding by octagons has nonpositive
curvature, and seems like a reasonable limit here. An obvious grade-angling works fine for it, and
(assuming the squares are already in X) the split-angling appears to work no matter how the admitted
rectangles are oriented.

3.19. Graded small-cancellation. Thus far we have emphasized the version of cubical small-cancellation
theory where cone-pieces between cones are small unless the associated cones in X are equal. We will
now turn to a generalization which insists that cone-pieces are small unless one cone is contained in
the other in X,

This form of cubical small-cancellation theory provides the language for crucial to the (actual) proof
of Theorem [I3.1]  Some simple examples are illustrated in Figures [66] [68 and [69]  Small-
cancellation theory persists in this situation. Pieces that look large in the universal cover project to
pieces that are small in the cone itself. Thus if there aren’t enough pieces around a cone-cell, then
the boundary path is already homotopic using the lower grade cone-cells. In a most general setting,
we can replace a higher grade cone-cell by a diagram with lower grade cone-cells and squares. It is
thus appropriate to use a minimal graded complexity which counts the number of cone-cells of each
grade (followed by the number of squares). A lexicographical ordering is used here so (3, 3,2,6,5) >
(3,3,2,5,17) etc.

Our main tools: Greendlinger’s Lemma (in the weakened form of Theorem |3.40) and the Ladder
Theorem, are about diagrams so they continue to hold in our context, as a reduced diagram will satisfy
the small-cancellation conditions (with some angle assignment rule). The notion of no missing 6-
shells, and maps A* — X*, and a presentation A* induced from X* and a local isometry A — X
proceed unchanged.

Gromov Polyhedra: Haglund’s theory of “Gromov Polyhedra” fits nicely into this category. These
are CAT(0) 2-complexes whose 2-cells are p-gons and whose vertex links are complete graphs K.
Haglund shows how to produce many such examples with a proper cocompact group action. For
instance, Haglund begins with a free product A = B of finite groups, with generators consisting of the
full set of nontrivial elements {A — 1}, {B — 1}. He then adds relators Ry, ..., Ry with the property that
each generator a € {A — 1} or b € {B — 1} appears exactly once, with the extra symmetry condition that
if u and u~! both appear in R; then there is an automorphism of R; sending one occurrence to the other.
If r = |A| = |B| then each link will be isomorphic to K,, and if p is the syllabic length of each relator,
then each 2-cell will have p sides. For instance, Haglund provides the following example where u, u~!
never recur: (a,b | a'’, b'7, ab*a?b’a2b°a®b’, b %a*b?a®h*al0p® ).
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Ficure 67. Haglund’s group acting properly and cocompactly on a (6, 10) Gromov polyhedron.

Ficure 68. The 2-3-4 triangle group: A Coxeter group yields a graded presentation. Its gener-
ators are the usual generators. Its grade i relators are Cayley graphs of the i-generator Coxeter
subgroups. For a relator Y of grade > 3, the induced cubical presentation Y* is already simply-
connected so |Y*| = co.

ISP EICE

Ficure 69. Substituting: Let (B | C) denote a graphical presentation where B is a bouquet of
circles u, v, and C — B is an immersed theta-graph. Let X be a new bouquet of circles x, y, and
let U, V denote immersed circles, and “substitute” copies of U, V for edges labelled by u, vin C
and then fold to obtain a graph Y. Even preserving “orientation”, there are many ways of doing
this, and one could choose basepoints, or just do it randomly. When (B | C) and (X | U, V) are
sufficiently small-cancellation, then so will the cubical presentation (X | U, V,Y) where U, V
have grade 1 and Y has grade 2.

Haglund’s examples naturally lead to cubical presentations that are graded, where X is a wedge on a
bouquet of circles for the generators (optionally wedged along a new edge) and the grade 1 relators are
the Cayley graphs I'(A), I'(B) of A, B, and the grade 2 relators are copies of the circles corresponding
to the R;, but with copies of I'(A), ['(B) attached along each generator. Haglund’s symmetry condition
implies that the maximal pieces only occur between these grade 1 relators, and are merely copies of
I'(A),['(B).

Figureillustrates one of the simplest of Haglund’s examples: {a, b | a®, b%, b*a’ b’ a’b*a*bab*a’).
We used a single generator for each A, B = Zg, but the reader can redraw with a wedge of two bouquets
of 5 circles, grade 1 relators isomorphic to 6-simplices, and a grade 2 relator that looks like a string of
6-simplices glued around a decagon.

3.20. Metric Small-Cancellation and Quasiconvexity. This section can be skipped on a first reading.
It is used prominently in Section Corollary is used very briefly in the proof of Theorem [12.1
and Theorem The material could probably be used to give a simplified treatment of parts of
Section _

For a path § — Y in a cone of X*, we let Vy(S) denote the distance in ¥ between the endpoints of a
lift S. Fora graded cubical presentation (X | ¥;;) and a path § — Y;;, we define Vy, (S) to equal the

distance between the endpoints of a lift of S to (/fi;)* where (Y;;)" is the cubical presentation induced
from X | by Y;; = X, where X7 | =(X | Y; : k <i).
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Definition 3.47 (Metric Small-Cancellation). (X | Y;) satisfies C’(«) if for each piece P between 18i Y,
and gJY either Vy,(P) < a[Y]| and Vy (P) < alY*I or Grade(Y;) < Grade(Y;) and g,Y, - g,Y or
Grade(Y ) < Grade(Y;) and g,Y D g;Y; (In fact, the above inclusions can be replaced by g,Y cg JY
in X * (and vice-versa). See Remark - )

Itis a separate matter to use that Vy,(P) < Y| for each piece in order to conclude small-cancellation.
It seems we need adjacent outside rectangles to also have some bound: for instance a base path of any
such rectangle in X along Y satisfies Vy,(P) < alY; 1.

The most important consequence of appropriate C’(e) (and respectively C%(a)) is that a small-
cancellation complex has short innerpaths which means that for each essential #-shell SO — Y in
a diagram D — X* with Qy(S) < 7, we have Vy(S) < |Q|.

There is a related condition C*(a) requiring only that Vy,(P) < a|Y}|. In this case medium innerpaths
is used to mean that Vy.(S) < |Q].

Lemma 3.48. There exists a such that if (X | Y;) is C'(@) then it has short innerpaths under the
split-angling.

The proof of Theorem should show that C ’(ﬁ) suffices. Instead, we give a simplified proof of
the same statement under the stronger condition of C ’(i).

Proofin C ’(ﬁ) case. In the split-angling, the largest concatenation of pieces without defect contribu-
tions from the transitions between pieces, consists of a (wall-piece)-(cone-piece)-(wall-piece). And the
smallest defect contribution in the split-angling is 7. Any path § — Y; with Qy(S) < 7 is thus the
concatenation of at most 15 pieces. To see that Qy,(S) < 7 implies at most 12 pieces, observe that with
n pieces, the minimal number of positive defect transitions is |_"§—1J, and this is at least 4 when n > 12.

Thus when Vy,(P) < ﬁIYil for each piece P then Qy,(S) < & implies that Vy,(S) < %lYil. O

Theorem 3.49. Suppose the cubical presentation (X | Y;) has an angling system making it into a
small-cancellation complex with short innerpaths.

Let{(A| B j> be another cubical presentation, and suppose the map A* — X* has no missing 0-shells.

Let p,q € A*, (not cone points) and let p, g be their images in X*. Let Y' be an arbitrary geodesic
Jjoining p,q. then there exists a geodesic y homotopic to y' in X (not X ). And there is a path o — A*
between p, q such that the image & of o in X* has the following property: Gy~ is the boundary path
of a ladder L — X*. If the ladder doesn’t consist of a single cone-cell or vertex, then p,q lie in the
interior of the outerpath of the first and last cone-cells andfor spurs of L on each end.

Proof. Let D be a minimal complexity diagram between paths o~ and y, where o~ varies among paths in
A* with endpoints p, g, and where y varies among all geodesics in X path homotopic to y’ (so we aren’t
varying among geodesics in X).

Observe that D has no corners of generalized squares along vy, or along o

Likewise D has no outerpaths of positively curved 6-shells along either. None along o for such a
6-shell would map to A* and thus o could be passed through it. None along y for such a #-shell would
violate that y and hence y’ is a geodesic by the short innerpaths hypothesis.

There are thus only two positively curved cells: A spur or cone-cell at p and a spur or cone-cell at

q. O
Corollary 3.50. Let A* — X* be as in Theoremwith A*, X* compact. Then A* > X*isa quasi-
isometry.

Suppose moreover that Xis o-hyperbolic. And the maximal diameter of a cone Y; is k. Then A* > X*
is (0 + K)-quasiconvex.
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Proof. Consider a minimal complexity ladder as in Theorem [3.49]

For the first statement, we show that the lengths of v and o are proportional since each cone-cell
has at most u edges on o and at least one edge on vy, and the intermediate parts can be assumed to be
rectangles, and thus have the same length. Let ¢ denote an upper bound on the total number of vertices
in a cone. Thus if a subpath ¢’ of ¢ lying in some cone Y; has length exceeding u then we see that it
has a subpath mapping to a closed path of Y;. If this closed path is essential, then it lifts to a closed path
in a cone of A*, and if it is not essential then it bounds a square diagram in A. Either way, we could
reduce the complexity to get a smaller diagram between y and o.

For the second statement, note that cone-pieces have diameter < «. The point is that a rectangle
between successive cones in the ladder has a bounded height because if it is too tall, then an inner part
of it can be replaced by a bounded part. Thus the geodesic y’ lies in the ¢ neighborhood of y which lies
on one side of a ladder L, with a path o — A* on the other side. But then v lies in the « neighborhood
of 0. O

Remark 3.51. The condition in Theorem 3.49|can be replaced by medium innerpaths: V(S) < |Q], but
we must then allow y to vary in X* and not just in X. So we conclude that y exists, and still have a
quasi-isometric embedding conclusion.

Lemma 3.52 (Convexity). Let us add the following hypotheses to the situation described in Theo-
rem Let2a + B = % where a, 3 > 0 (we have in mind a = % and 8 = %).

Suppose that cone-pieces in X* are small in the sense that Vy,(P) < a|Y;| whenever P is a cone-piece
of a translate of 7j in a translate of Y; (and one is not contained in the other).

Suppose that overlaps between cones Y; and A are small in the sense that for any path P in the
intersection of translates Y., A in X, either Vy,(P) < BlYi| or Y; C A.

Then A* — X* is a local isometry, in the sense that A* = X* is a convex subcomplex.

Proof. Let y be a geodesic in X* whose endpoints lie on A*. Consider a minimal complexity diagram
D between 7y and a variable path o in A*.

If D has no cone-cells then D must be trivial in the sense that y = 0.

There is a geodesic path v’ in D with the same endpoints as y such that y’,y together bound a
maximal square subdiagram of D. Let E denote the subdiagram of D bounded by o, y’. Observe that
E cannot have any corners of generalized squares along o or y’. The former is impossible since o is
allowed to vary in A%, s0a generalized square can be pushed through it. The latter is impossible since
we could again push past the square to make E smaller.

There are no outerpaths of positively curved 6-shells along either y’ or o. The latter is excluded
since A* — X* has no missing #-shells by hypothesis. The former is excluded by our hypothesis that
X* has short innerpaths, so if such a 6-shell existed it would contradict our hypothesis that v’ and hence
v is a geodesic. We conclude that there at most two features of positive curvature in E, so E is either a
single cone-cell or O-cell or ladder by Theorem [3.36]

In fact we seek to conclude that ¥/ = o so E is a subdivided interval. And we now apply our
strengthened a, 8 hypothesis to reach this conclusion.

Consider a cone-cell C in E that maps to the cone Y. The path d,C is the concatenation wxyz where
w, y are either trivial (when C is an initial or terminal cone-cell in the ladder) or are cone-pieces, and w
is a path between C and ;f, and z is a subpath of y’. By our hypotheses, |wxy| < a|Y|+6]Y|+alY] < %lYl.
The diagram D and hence E is reduced, so wxyz is essential and hence |[wxyz| > |Y]|. Thus since
[wxy| < %lY | we see that |z| > %lY | which contradicts that y’ is a geodesic. |

Here is a further variation and strengthening of the previous result:
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Ficure 70. We glue a phony Y;-cone-cell with boundary path P along the outerpath of a dia-
gram to reach a contradiction.

Lemma 3.53 (Persistence of Superconvexity). Suppose X* is small-cancellation with internal cone-
cells having negative curvature.

Suppose A} satisfy a strong form of no missing 6-shells excluding those with 6 < .

Then (conjugates of) intersections of conjugates of m A and 7r1Aj. in m X" are represented by com-
ponents of the fiber-product A; ®x A;.

Suppose moreover that X* has short innerpaths, then X:‘ is superconvex.

4. TorsioNn
4.1. Cones Embed.

Theorem 4.1. Suppose the cubical presentation (X | {Y;}) has an angling system so that the conditions
of Theorem are satisfied for each minimal complexity diagram D — X*, and such that Condi-
tion is strengthened so that nil-external corners have < > 7. Then each Y; embeds in X*.

The requirement that nil-external corners have < > 7 will ensure that an outerpath of a positively
curved 6-shell is not a cone-piece. This property is at the heart of the proof. We note that such angles
are exactly 7 for the split-angling system.

Proof. Consider a minimal area disk diagram D whose boundary path P is an essential non-closed
path in Y;, and suppose the complexity of D is minimal among all diagrams whose boundary path is
path-homotopic to P in Y;.

By Theorem D either consists of a single O-cell or single cone-cell, or D contains a spur or
generalized square with outerpath on 8, D, or D contains a positively curved shell.

The first two possibilities lead to an immediate contradiction: If D is a single 0-cell then P = 9,,D is
a trivial path and hence closed in Y;, and if D is a single cone-cell then this cone-cell must actually lie
in Y¥;, and hence again, P is closed in Y;.

Since Y; — X is an immersion, we can pass to a path P* — Y; with backtracks removed (or we could
have assumed P had no backtracks to begin with), so we can assume D has at most one spur - at the
very basepoint of P.

We now consider the main case where D contains a shell or the corner of a generalized square. In
the square case, since ¥; — X is a local isometry, we could push across this generalized square and
obtain a new diagram with smaller area. In the shell case we find that it is either replaceable by a square
diagram or it can be absorbed into Y; (and hence in either case, D is not minimal). Indeed, the outerpath
Q of a #-shell R cannot be a cone-piece, for then, as in Figure we can attach a cone-cell E — Y;
to D along Q there would be a disk diagram with an internal positively curved cone-cell, and likewise,
when D is a single cone-cell, we can surround D by two such cone-cells E1, E».

There is a technicality here: To argue in terms of disk diagrams we need a closed path P* — Y; for
0,E (and likewise P; for E;). When Y; is not CAT(0) then we can always extend any path in ¥; to an
essential closed path. When ¥; is CAT(0) we would have to use an inessential path like PP~! which is
thus replaceable and unsatisfactory, or we could use phony cone-cells - and we refer to Lemma
for more on this approach. O
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4.2. Torsion.

Theorem 4.2. Let (X | {Y;}) be a cubical presentation with the following properties: Then each torsion
element in m X" is conjugate to an element represented by a closed path vy such that y" is a closed path
in some Y.
(1) Each element y of m1X has a locally convex core C = C(y) with the property that any ball of
radius r disconnects C for some r = r(X).
(2) For any essential positively curved 0-shell with outerpath Q and innerpath S, we have |Q| —|S |
exceeds twice the maximum length of a piece.

Remark 4.3. We note that Hypothesis holds when X is compact and X is o-hyperbolic, and that
r = r(dim(X), §(X)) in this case.

We suspect that Theorem[4.2]holds for cubical presentations satisfying more general small-cancellation
conditions. Perhaps one can proceed by proving an asphericity result, and then showing that a torsion
element would fix a cone-point.

Proof. Let us first prove the Theorem when X is 1-dimensional, for then the constant » = 0, and things
are simplified.

Let g be a torsion element in X*. Let v be a shortest combinatorial path in X representing g. Thus "
is nullhomotopic in X* for some n > 2.

Consider a minimal area disk diagram D for y". Note that D cannot be a diagram in X, for then
v would be a torsion element in 11X in which case v is trivial. In particular, we assume that D is
nontrivial.

By Theorem [3.40] either D consists of a single cone-cell, and we have verified our conclusion, or D
contains two or more positively curved shells.

If the outerpath of the shell lies in the concatenation of a cyclic permutation of y with a path «
whose endpoints are at distance (in X) bounded by the length of a maximal piece, then a geodesic for «
concatenated with the innerpath provides a shorter representative for g. So we can assume this doesn’t
happen.

Thus the outerpath is the concatenation of a cyclic permutation of y followed by a long path 5 whose
endpoints in X are at distance exceeding the length of a maximal piece. Now we can attach n copies of
this shell to y" using the Z, action. Successive copies overlap along 8. But 5 cannot be a piece, and so
successive copies of this shell map to the same cone Y;. Consequently, the path y" maps to Y.

The idea for the case where X is d-dimensional is similar. We require that |Q| — |S| — 2r exceeds
twice the longest piece.

Now, either there is a way to shorten our representative for (a cyclic permutation of) y by replacing
some subpath of y by a shorter path that runs along some some initial part of y and then jumps across
the annulus at the beginning and the end and then uses the innerpath S, or we find that there is an
impossibly long piece at the continuation, and then we find that all the cone-cells map to the same cone
as above. O

Corollary 4.4. Let X > Xbea regular cover, such that Y; — X lifts to an embedding in X Suppose
the cubical presentation (X | {Y;}) is small-cancellation. Then mX* is virtually torsion-free.

Proof. Consider the cover of X* induced by X. A torsion element of 1 X* is conjugate to a closed path
v such that " is a closed path in some cone Y;. Suppose n > 2 is minimal with this property, so that
v is not a closed path in Y; (and is thus a nontrivial torsion element of 7r1X ). Since Y; — X lifts to an
embedding Y¥; — X, we see that v does not lift to a closed path in X and so v does not represent an
element of 7 X*. O
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Figure 72. Torsion in cones in higher dimensions

Remark 4.5. Note that Corollary 4.4 holds under various more general hypotheses: For instance when
each m1Y; — m; X is malnormal.

4.3. Relative Hyperbolicity of Quotient.

Theorem 4.6. Suppose the nonpositively curved cube complex X is compact, and that mX is word-
hyperbolic. Let X* be the complex associated to the cubical presentation (X | ;).

Suppose that essential cone-cells in reduced diagrams D — X* have negative curvature. Then m X*
is hyperbolic relative to the images of mY; — m X.

Remark 4.7. When outerpaths of shells are < % asin Condition then one actually obtains a Dehn’s
algorithm, and so the conclusion is fairly immediate using Osin’s criterion [Osi106] of a relative linear
isoperimetric function, and is thus immediate when each Y; is compact and there are finitely many Y;.

Proof. This follows as in [Ger87] by applying Theorem A variant of his proof utilizing an upper
bound on the radius of a zero-curvature ball must be employed. O

5. NEW WALLS AND THE B(6) CONDITION

5.1. Introduction. In this section, we impose further hypotheses on the cones Y; in a cubical presen-
tation X* = (X | ¥;). The main hypotheses is that each Y; is a wallspace whose walls are collections of
hyperplanes, and furthermore, the walls in Y; have certain “convexity” properties - in the sense that any
path in Y; that starts and ends on the same wall, is either homotopic into that wall, or is “long” from
a piece-count viewpoint. The wallspace cones and their properties allow us to define walls in X*, and
these walls are the central focus of the section.

We define a notion of “length” of a path in a cone in Section@]and then describe the B(6) wallspace
structure on cones in Sectlon 3l The construction of walls in X* and quasiconvexity properties of these
walls in X* are examined in Sections ﬂ m and [5.9] Conditions that imply that the set of walls is
sufficiently rich to “fill” X* are examined in Sections m and m Malnormality properties of the
wall stabilizers are treated in Sections[5.14] [5.13][5.16] and[5.17]
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Ficure 73. The total defect Q;(P) of the path P — Y; on the rightis < 5 + 5 + § + 7.

5.2. Total defects of paths in cones. In classical C(6) small-cancellation theory, a quick measure of
the extent to which a path P — JR travels around R is the inifimal number n where P = P; ... P, is
an expression of P as the concatenation of pieces between other relators and our relator R. This can be
thought of concretely in terms of a reduced diagram as on the left of Figure If we assign 23—” angles
at the internal corners of R along P, then we obtain a total defect of (n — 1)5. We shall now generalize
the “piece length of P in R by focusing on the “total defect”.

Consider the cubical presentation (X | ¥;), and suppose we have chosen a fixed method of assigning
angles (for instance, the split-angling, or the grade-angling) on rectified disk diagrams in X*.

Consider a path P — Y;. The defect of P in Y; which we denote by €;(P) is the infimum of the
sum of defects of angles along the path P in a cone-cell C; mapping to Y; within angled rectified
diagrams D that have P as an internal path on the boundary of C;. Of course, we also assume that the
original diagram D has minimal complexity (or as usual, it has no cancellable pairs of cone-cells, and
no removable bigons or squares that are absorbable into cone-cells). See Figure

It may be that P doesn’t occur as an internal path along the boundary of a cone-cell mapping to Y;.
This could be remedied with a trick, by using a cone-cell with boundary path P! P, however P~' P is
null-homotopic so the cone-cell can be removed (so we wouldn’t have minimal complexity) without
affecting the boundary path. A rigorous alternative (leading to the same result), is to add a new 1-cell to
Y; for each pair of vertices in Y;, and to attach a copy of this new 1-cell to X along the images of these
vertices. (We refer the reader to Lemma where a similar approach is used to force 1-cells dual to
the same wall to lie on the boundary path of a (newly added) essential cone-cell.) Doing so yields a
new cubical presentation with the property that each such path P could now arise as the boundary of a
(genuine) cone-cell that couldn’t be compressed onto the boundary path of its containing disc-diagram
and removed. We note that the new cubical presentation deformation retracts onto the original in a
reasonable sense.

It may be that some edge e of P — Y; cannot arise within the interior of a diagram D. Indeed, let
e denote the image of this edge in X, then this happens precisely if e is not the image of some edge of
Y; or some other edge of Y;, and that ¥; — X is a local surjection at e so each square along é lifts to Y;
(thus e does not arise within a wall-piece). In this case the infimum of defects along P as it arises in
such diagrams, is the infimum of the empty set. Thus Q;(P) = +oo.

For 1-cells e, ¢’ in Y;, we define Q;(e, ¢’) to be inf(€Q;(P)) where P — Y; is a path whose first and last
1-cells are e,e’. We define Q;(v,v") similarly for O-cells v,v" in Y;. For hyperplanes E, E’ of Y;, we
define Q;(E, E”) to equal inf(Q;(e, ¢’)) where e, ¢’ vary among 1-cells dual to E, E’.

5.3. Generalization of the B(6) condition. We will now add more elaborate structure to generalize
other aspects of the classical C ’(%)—T(3) and C’(}L)—T(4) metric small-cancellation theories, to higher
dimensions along the lines of the B(6)-7(3) and B(4)-T (4) theories we considered in [Wis04]].

Definition 5.1. [Generalized B(6)]
We say (X | {Y;}) satisfies the generalized B(6) condition provided the following conditions hold:
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Ficure 74. Hyperplane-convexity vs. wall-convexity in cones

(1) [Cubical Rel.Pres.] X is a nonpositively curved cube complex, and each ¥; — X is a local
isometry of cube complexes.

(2) [NPC] X satisfies the nonpositive [negative] curvature condition for rectified diagrams: So
Q;(P) > 2r [respectively Q;(P) > 2x] for each essential closed path P — Y;. And each internal
0-cell and shard in each rectified reduced diagram has nonpositive curvature.

(3) [Wallspace Cones] Each Y; is a wallspace (see Definition where each wall in Y; is the
union of a collection of disjoint embedded hyperplanes, each of which maps to an immersed
hyperplane in X. Each such collection separates Y;. Each hyperplane in Y; lies in a unique
wall.

(4) [Hyperplane Convexity] If P — Y; is a path that starts and ends on vertices on 1-cells dual to a
hyperplane H of Y; and €;(P) < m then P is path-homotopic into its carrier N(H) in ;.

(5) [Wall Convexity] Let S be a path in Y that starts and ends with 1-cells dual to the same wall
of Y. If Qy(S) < m then S is homotopic into that wall (and hence into the carrier of one of its
hyperplanes).

(6) [Equivariance] For each Y the wallspace structure on Y is preserved by Auty(Y).

We note that Condition (@) is not implied by Condition (5 since the latter requires that the path start
and end with dual 1-cells, and not merely start and end at endpoints of dual 1-cells (see Figure[74).

Definition 5.2. We define Autx(Y) to equal the group of automorphisms ¢ : ¥ — Y such that we

Yy ¢ v
have a commutative diagram: Ny | . Note that Autx(Y) equals Stab,, x(Y), and that Autx(Y) =
X

Normalizer Autx(?)(ﬂl Y) / m Y. In practice, this situation is simplified since we choose Y so that 71 Y is

normal in Autx(y).

We emphasize that in the definition of “piece”, we must treat two lifts of Y as identical if they differ
by an element of Stab,, x(Y). This generalizes the way relators that are proper powers are treated in the
classical case.

For instance, sticking a spur on to a relator Y can drastically destroy the small-cancellation proper-
ties, since it can artificially decrease the size of Auty(Y). Indeed, two lifts P — Y that originally differ
by an automorphism of Y will not form a piece, however after adding the spur to Y, the automorphism
will no longer exist.

Remark 5.3. Definition [5.1] E@ is required to make the wall equivalence relation (deﬁned below) on
hyperplanes in X X* agree locally with wall structure on each Y. If some cone ¥ C X* doesn’t have this
property, then the decomposition of the hyperplanes of X* into equivalence classes of walls, would
provide a coarser decomposition of the hyperplanes of Y than the actual wallspace of Y.

It is natural but apparently unnecessary to impose the global requirement that gW N'Y = WnY
for any wall W of X* that crosses Y and any Y in X*. It is conceivable that gW hits Y accidentally
within some hyperplane (so g~'Y plays the role of an inessential cone for W). However Condition @
keeps things OK in the case that g~!Y is an essential cone of W, since the small-cancellation forces two
essential cones meeting along distinct hyperplanes in the same wall of W to be equal to each other.

We impose another related condition later in Hypothesis (3]) of Theorem[5.64]
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Definition 5.4 (Short innerpaths). An essential property of the classical C’(é) theory is generalized by
the following “metric small-cancellation” condition, and we refer the reader to Definition [3.47| where
this notion is treated in depth. The cubical presentation (X | Y;) has short innerpaths if the following
holds for each cone Y;:

If Q;(S) < = then for any local geodesic S’ — Y; that is path-homotopic to S, and for any path
Q — Y, such that the concatenation S Q is an essential closed path, we have |S’| < |Q|.

5.4. Cyclic Quotients and the B(6) condition (to be developed). Cyclic quotients are especially
accessible to the B(6) small-cancellation theory because a wallspace structure on the cones is then
often readily achievable.

(Another case to consider are relators with large abelian automorphism groups. We’ve begun treating
this in Section ??.)

One subdivides the cube complex X, so that the local-isometry ¥ — X (representing a cone associ-
ated to the cyclic subgroup to quotient) has twice the number of separating hyperplanes. Now hyper-
planes (that don’t already separate) can be paired in a manner respecting almost all small-cancellation
conditions provided a girth condition is satisfied.

Note:

1) While the B(6) condition is easily satisfied here, hierarchical conditions might not be attainable
without some sort of evenness assumptions at various levels.

2) An interesting example is a twisted product ¥ = B xS where B is a CAT(0) ball and § is a
subdivided circle (this is just a B-bundle over S.) Presumably B > S is a product when X is special, but
in general, it is possible to have some hyperplanes that wrap multiply around the circle basespace.

For Dehn fillings, it is natural to use the entire infinite cylinder as the relator.

Relative hyperbolicity gives an upper bound on diameters of pieces between planes. This gives an
upper bound on diameters between (distinct) cylinders. A Dehn filling corresponding to an element
that is long enough relative to these pieces and the walls gives us a small-cancellation quotient, and
should be virtually special because of the subdivision and paired splicing.

3) These ideas can be generalized to abelian quotients.

5.5. Embedding properties of the cones and hyperplane carriers. The aim of this subsection is to
show that certain very short circuits of cones and hyperplane carriers do not exist in X*. We are using
the split-angling, though similar statements hold in most cases for the grade-angling.

The following is a restatement of Theorem 4.1]

Lemma 5.5 (Cones embed again). Let ( X | {Yi}) satisfy Condition B.1|[2) and the short innerpath
condition of Definition Then each Y; embeds in X*.

Proof. Consider a path P’ — Y; that lifts to a closed path in X*. Consider a disk diagram D —
X* that has minimal area among all diagrams whose boundary path P is path-homotopic to P’ in Y;.
Specifically, the number of cone-cells in D is minimal, and the number of squares is minimal as well,
for this fixed number of cone-cells.

By Theorem D is either trivial in the sense that it is a single 0-cell or cone-cell, or else D has
two or more generalized square corners, spurs, or shells on its boundary. Moreover, the outerpaths of
these features of positive curvature have disjoint interiors.

If D is trivial then D cannot be a single O-cell, or P — Y; is closed. Since corners and spurs in D could
be absorbed into ¥; making D even smaller, we can assume that D has shells. Now apply Condition
to the outerpath of a shell whose interior is disjoint from the endpoints of P. Its innerpath has angle
sum < 7 and its outerpath must have angle sum < 7 which is impossible. We thus reach the conclusion
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that this shell must have been in Y; itself, and we obtain a smaller complexity diagram - with fewer
cone-cells, and this contradicts our choice of D.
Eventually we reach a contradiction. O

Lemma 5.6. Suppose that (X | Y;) is a small-cancellation complex, and that no essential path in a
cone-cell is the concatenation of three pieces. Then the intersection of two cones in X* is connected.

Definition 5.7 (No acute corners). An angling system has no acute corners if the defect of each cone-
cell angle is < 7.

We note that the split-angling has no acute corners, as does the grade-angling provided that each
grade is > 4.

Remark 5.8. The three piece hypothesis in Lemma [5.6 holds when the small-cancellation complex
(X | Y;) has no acute corners.

Indeed, suppose P;P,Ps is an essential path in the cone Y that is the concatenation of three pieces.
Let A be a 2-cell with d,A = P{P>P3 and form a disk diagram D by surrounding A by three rect-
angles and/or cone-cells according to whether P; are wall-pieces, non-contiguous cone-pieces and/or
contiguous cone-pieces. Since X* is small-cancellation, the angles on the diagram D yield nonposi-
tively curved internal cone-cells. However, as X* has no acute corners, each internal angle of A has
defect > 7, so k(A) > 7. The analogous reasoning holds for fewer than 3 pieces.

Proof of Lemmal5.6] Suppose that Y; N Y; is not connected. Let D be a minimal area disk diagram
between paths 1, y; that start and end on points p, g in distinct components of Y| N Y>. In particular, D
is minimal complexity among all such possibilities where p, g are allowed to vary within two specific
components of Y; N Y, and where the paths y;, > are allowed to vary among paths in Y1, Y, starting
and ending on p, g.

Since our aim is to show that D is a square diagram, and thus lies in both Y; and Y, by local
convexity, we can assume without loss of generality that D is spurless. Likewise, we can assume that D
has no outerpath of a generalized square in either y; or y», for then we could find a smaller square area
diagram. Observe that D has no positively curved 6-shell with an outerpath in 7y; for then it could be
absorbed into Y; or replaced by a square subdiagram thus leading to a lower complexity diagram. Thus
D has at most two locations for an outerpath of a positively curved cell. Consequently D is a ladder or
a single cone-cell or a single vertex by Theorem[3.36]

A single vertex would imply that p = ¢, which is impossible. A single cone-cell is impossible
because if its boundary path is the concatenation of two pieces, then its curvature is < 27 since the
defect at the two transitions is < 7. Thus it can either be replaced by a square diagram, or it is absorbable
into one of the two cones, and so either way, there is a smaller area complexity diagram.

If D is a ladder, then as above, there are no spurs, so there are O-shells at each end. then a 6-shell at
one end is bounded by the concatenation of three pieces. We now use the hypothesis that no essential
path in a cone-cell is the concatenation of three pieces. O

Lemma 5:9 (Intersections of Cones). Let (X | Y;) be as in Lemmal5.6] The intersection between distinct
cones in X* is CAT(0).

Proof. Any path P in the intersection ¥; N Y; of cones has the property that Q;(P) = 0 = Q;(P).
Consequently, any such closed path P must bound a cubical diagram D in ¥; by Condition [5.1](2).
Then by local convexity, D is a diagram in Y; as wellso D C ¥; N Y in X*. Now, ¥; N Y is locally-
convex and hence nonpositively curved since both Y; and Y; are. Thus, ¥; N Y; is CAT(0) since it is
simply-connected and nonpositively curved. ]
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Ficure 75. A self-crossing hyperplane

Definition 5.10 (Embedding Properties of Hyperplanes in Cones). In many cases, the following condi-
tions follow from Condition [5.1](5) because single edges tend to be pieces, but simple examples show
that in general these conditions must be hypothesized to achieve some of our desired conclusions.

(1) [2-sided] Each hyperplane of each Y; is 2-sided, in the sense that its dual 1-cubes can be oriented
so that dual 1-cubes that are opposite sides of a 2-cube are oriented the same way.

(2) [No self-intersection] No hyperplane H in Y; is dual to all 1-cubes on the boundary of a 2-cube
in Y,’.

(3) [No self-osculation] No hyperplane H in Y; is dual to two distinct 1-cubes that share a O-cube.
(By nonpositive curvature, this implies Condition (2)).)

Remark 5.11. Condition[5.10[(3) is a consequence of Definition 5.1 () by letting P denote the trivial
path. We note that the same would hold if we restricted Definition[5. I} ) to paths P starting and ending
on the same side (in the 2-sided case). Accordingly, Condition[5.10}(2) holds as well.

Example 5.12 (A self-crossing hyperplane). In Figure[75we illustrate a 2-dimensional cubical presen-
tation (X | Y1, ..., Yg). X* is C(6) and all cones are embedded and have well-behaved hyperplanes, and
X* = X*, but there is a hyperplane in X* that self-crosses. By subdividing along the outside, one can
arrange that C’(«a) be satisfied for arbitrary a > 0.

Reformulated appropriately, the following is a special case of Theorem[12.16]

Lemma 5.13 (Embedding Hyperplane Carriers). Let (X | Y;) be a small-cancellation with no acute
corners, and suppose Conditions and hold. Let H be an immersed hyperplane in the
nonpositively curved cube complex of X*.

(1) If Condition[5.10\(1) is satisfied then H is 2-sided.

(2) If Condition is satisfied then H does not self-intersect.

(3) If Condition then H does not self-osculate.

In conclusion, if all three conditions are satisfied, then N(H) — X* is an embedding and N(H) =
HXx[-1,1].

Note that we define the carrier of an immersed hyperplane Y — Z to be the union of copies of cubes
of Z whose midcubes are the cubes of Y. These copies of cubes are glued together along subcubes
in N(H) as they are in Z. The result is a (possibly twisted) /-bundle over Y. We note that N(H) is
nonpositively curved, and that N(H) — Z is a local-isometry.

Example 5.14. When the immersed hyperplanes of X are not 2-sided, in general, H might not be 2-
sided so N(H) # HxI. For instance, let X be a moebius strip obtained by identifying opposite sides of a
square with a twist, and let ¥, denote a connected n-fold cover of X. Then (X | ¥,,) is small-cancellation
for sufficiently large n. But the cube complex of X* is still a moebius strip for odd n.

Similar examples can be concocted to illustrate how N(H) — Y can fail to be an embedding.

Proof of Lemmal[5.13] We will concentrate on establishing the conclusion where all three conditions
are satisfied. _

Consider two points p, g € N(H) that map to the same point of X*. Let D — X* be a disk diagram of
minimal complexity among all diagrams whose boundary path P — N(H) starts and ends on p, g. If D
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has a corner of a generalized square, then since N(H) — X is a local-isometry, we see that this square
could be absorbed into N(H) and a lower complexity diagram could be produced.

Suppose that D has a 6-shell C with boundary path QS, with innerpath S and outerpath Q and such
that C maps to the cone Y. First consider the case where Q — N(H) does not pass through any dual
1-cell of H — N(H). Then either Q is a wall-piece in the cone Y or the square ladder of Y containing
Q along its external boundary maps into Y. In the former case, since there are no acute corners, we see
that Q(0S) < QQ) + 5 +QS)+ 5 <0+ % +6+ 5 < 2x, which implies by Condition that
0,C = QS — Y is null-homotopic, so C can be replaced by a square-diagram and we can reduce the
complexity of D. In the latter case, Condition likewise implies that QS — Y is null-homotopic
so C can be replaced by a square-diagram and we can reduce the complexity of D.

We next consider the case where Q passes through a dual 1-cell of H. Then there exists L — N(H)
where L = [, X [ is a square-ladder that is dual to H, and Q — N(H) factors as Q — L — N(H), and
by the local convexity of the cone Y, we have L — X actually factorsas L — Y — X*. Therefore
Condition [5.1](4) again implies that C can be replaced by a square diagram, to reduce the complexity
as above.

We emphasize that in the special case of the above situation where S is trivial and Q is a wall-piece
in Y, and C is replaced by a square diagram, we see that the endpoints p’, ¢’ of Q in N(H) are actually
equal to each other, and moreover, following Lemma[2.2] the 1-cubes dual to H at p’ = ¢’ must be equal
to each other as well. In the case where Q is not a wall-piece (this also includes the situation where Q
passes through a dual 1-cell) we see that Q lies on a square-ladder L dual to H such that L — C. Itis in
this case that we must employ Condition to see that the 1-cubes dual to H at p’, ¢’ are actually
equal in C (as L maps to a cylinder in C) and so these 1-cubes are equal in X* and hence in H itself.

In particular, we are able to remove C, Q from D, P to obtain a lower complexity diagram D’, P’ such
that P’ has the same endpoints as P in N(H).

We now focus on the 2-sidedness of H to see that N(H) = H X [-1, 1]. Consider a minimal com-
plexity diagram D whose boundary path P is a path on N(H) that passes through an odd number of dual
1-cubes of H. The additional presence of Condition [5.10](T), implies that for any hyperplane H; of Y,
any closed path in N(H;) passes through dual 1-cubes of H; an even number of times. Therefore, when
QS is the boundary path of a cone-cell C in Y; that lies in N(H;), we see that Q and S pass through dual
cubes of H the same number of times (where H; is a component of H NY;). In particular, when S is the
trivial path, then the smaller complexity diagram D’, P’ that we obtained above has the property that P
and P’ have the same parity.

We note that in the case where D is a square-diagram, it is clear that P passes through an even
number of dual 1-cubes of H, since the dual curves in D provides a pairing of such dual 1-cubes. O

The following result will play a fundamental role in understanding the walls of X by revealing
cancellable pairs of cone-cells in certain disk diagrams.

Lemma 5.15. Each hyperplane H in X* has connected intersection with each cone Y C X*.
Moreover N(HYNY = M(H NY), where M(K) denotes the carrier in Y of a hyperplane K of Y.

Remark 5.16. When each Y; is a pseudograph (see Definition in the sense that its hyperplanes
are CAT(0), one can reach the following stronger result:

Any path P, — N(H) whose endpoints lie on Y, is path-homotopic through a square diagram in X
to a path P, — Y. This can be used to simplify some of the proofs below.

However there are simple examples showing that such a square-diagram might not exists in general.
For instance, the square ladder at the top of Figure [/6| cannot be pushed towards the cone at the bot-
tom without passing through three essential cone-cells. The reader can think of the light intermediate
diagram as being made of squares.
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FiGure 76.

Ficure 77. The four diagrams on the left illustrate how a hyperplane can be pushed across a
cone-cell whose outerpath is not a real wall-piece. The right two figures illustrate the situation
when the innerpath is trivial.

Proof. Let p,q be points in N(H) N Y and let D — X* be a diagram between paths P, — N(H) and
P, — Y from p to g, and suppose that d has minimal complexity among all such diagrams and paths
joining p, gq.

Observe that D has no corner of a generalized square along P, or Py, for then, by local-convexity,
we could absorb the square to produce a lower complexity diagram. Likewise, observe that D has no
outerpath of a #-shell along P,, for then it could either be absorbed into Y or replaced by a square
diagram by Condition [2] thus decreasing the complexity. Similarly, D cannot have an outerpath of a
6-shell C along P, where C maps to Y;. Indeed, suppose 0,C = OS, where Q is the outerpath and S is
the innerpath. Then Q;(S) < 6 < .

If Q is a wall-piece of H in Y;, then Q(QS) < 6 + m < 27 which contradicts Condition [2] Thus we
can assume that the ladder in N(H) containing Q lies in Y;.

Thus Condition[5.1}(4) implies that S is square homotopic in X to path Q" on N(HNY). Let C’ denote
a square diagram whose boundary path is § Q. Letting P, = P1QP, we observe that P, = P1Q'P; is
still a path in N(H). This uses Hypothesis[3|to see that Q and Q' are external boundary paths of square
ladders whose initial and terminal 1-cubes are identical. Finally, by replacing the path Q with the
path Q’, and replacing the cone-cell C with the square diagram C’, we obtain a new diagram D’ — X*
between Py and P; of lower complexity. We refer the reader to Figure Note, that this procedure
can be followed whenever an innerpath S of a cone-cell C, is homotopic into N(H) (and we shall need
to consider it again below). We also note that this procedure is meaningful even in the case where S is
a trivial path. In that case, Condition 3] allows us to immediately short-cut P, and replace Q by S itself
to remove C and reduce the complexity.

We have shown that the outerpath of a positively curved cell must contain an endpoint p, g of Py, Pj.
Thus D is a ladder by Theorem[3.36] or it is a single cone-cell or 0-cell.

As we aim to show that Py, is actually also a path in Y, so p, g lie in the same component of N(H)NY,
we can assume that there is no spur on D (for otherwise, we can vary our choices of p, g and remove
the spurs.
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FiGure 78. A nonembedded wall in X*.

Let us now consider the first cone-cell C at one side of D (the reasoning will also dispense with the
case that D is a single cone-cell). The boundary path d,,C is the concatenation U,U.U;, where U, is a
cone-piece from Y, and Uj, is a wall-piece from H, and U, is a (possibly trivial) cone-piece from the
next cone, or just a trivial path when D is a single 2-cell.

Since d,,C cannot be the concatenation of fewer than four pieces (which holds as in Remark , we
see that one of these pieces is fraudulent. It cannot be U,, for otherwise their would be an absorbable
pair of cone-cells in the diagram, and we would be in a simpler situation. If it is Uy, then we can absorb
C into Y to obtain a smaller complexity diagram, and otherwise Uy, is not a genuine wall-piece, and so
using that Q(U,U,) < 7 <, we see by Condition @) that U, U, is square homotopic into a path J
in N(H N'Y) and so we can perform the replacement we performed above to decrease the complexity.

This reasoning holds for the first cone-cell in D (so there was no reason to first remove spurs). We
thus reach the conclusion that D has no cone-cells and is thus a (possibly trivial) arc of 1-cells, and
hence P;, = Py is a pathin Y, and p, g lie in the same component of N(H) N'Y. O

5.6. Defining immersed walls in X*. We now work under the hypothesis that Condition holds.
We define an equivalence relation on hyperplanes in X*, which is generated by A ~ B provided that
for some translate of some cone Y; in )?*, we have A N Y; and B N Y; lie in the same wall of Y;.
The walls of X* are defined to be collections of hyperplanes of X corresponding to equivalence
classes. Our main goal will be to show that these walls do indeed “embed” and separate.

Example 5.17. The simply-connected complex in Figure [78| whose five 2-cells are all wallspaces,
indicates that some small-cancellation hypothesis will be necessary to ensure that walls embed.

Definition 5.18. The structure graph I'yy of a wall W is a bipartite graph whose 0-cells F(‘),V are in two
classes I'" and I'® where r;vlv consists of hyperplane vertices corresponding precisely to the hyperplanes
in W, and I}, consists of cone vertices corresponding precisely to the cones that are intersected by
some hyperplane of W. Two vertices of ['y are connected by an edge precisely when the corresponding
spaces have a nonempty intersection H N'Y.

A combination of various results proven below will show that:

Theorem 5.19. (1) T'w is a tree.
@) Ifu+ve Fi‘fV then the corresponding spaces are disjoint.
(3) If u # v € I'y, then the corresponding spaces U,V are disjoint unless u, v are both adjacent to
some h € F}‘ﬁv corresponding to a hyperplane H and U NV contains a 1-cell dual to H.
4) uelf, andh € F}V’V then the corresponding spaces U, H are disjoint unless u, h are adjacent,
and U contains a 1-cell dual to H.

The final three statements in Theorem [5.19] follow from the following:

Theorem 5.20. Let W be a wall.
At most one midcube of a square (and hence of a cube) can lie in a hyperplane of W.
If Hy, H, are hyperplanes in W, and Y is a cone, then Hy N'Y and Hy N'Y lie in the same wall of Y.
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FiGure 79.

Proof. Suppose that there is an alternating sequence Hy, Y1, H{,Y>,H> ..., Y,, H, of hyperplanes and
cones such that H;_;, H; belong to the same wall of ¥; for 1 < i < r but Hy, H, are distinct hyperplanes
that pass through the same (cube and hence) square or cone Z of X*. (We note that we permit back-
tracking here, so it is possible that H; = H;;; for many i. This facilitates the proof, which hinges upon
minimal area instead of minimal length.)

Let P be a closed path that travels along the corresponding hyperplane carriers and cones, and starts
and ends on this cube or cone Z. Let D — X* be a diagram for P, and assume that D, P is minimal
in the sense that D has minimal complexity among all such alternating sequences, and paths P, and
diagrams for P.

Our argument has two stages: In the first stage we show that if D has minimal complexity, then D
can be augmented to form a “collared diagram” E which is obtained by wrapping an annular ladder
A around D such that A contains a self-intersecting path of W. In the second stage we show that
removing and absorbing cancellable pairs preserves this collar structure, and so by passing to a minimal
complexity collared diagram of this type, we see that it cannot exist.

Observe that P is a concatenation of (possibly trivial) paths PLP) PP} ... PYP"P* where each P —
Y; is path in a cone, and each Pl’.’ — N(H,) is a path in the carrier of a hyperplane, and P, — Zis a
path in the square or cone Z that W crosses in two locally inequivalent ways. We note that when Z is a
square dual to Hy, H,, it actually lies in N(Hp) N N(H,). We can therefore assume that P? is trivial in
this case, by possibly absorbing it into Pg (or into P).

We will show that P cannot contain a 1-cell e dual to some hyperplane in W in the sense that Pl}.’ does
not pass through any 1-cell dual to H;, and Ply does not pass through any 1-cell dual to the wall of W
containing the hyperplanes ¥; N H,_; and Y; N H;. However, we do not impose any restrictions on P~.

Indeed, if this were the case, then we would be able to produce a lower complexity counterexample.
For the 1-cell e would be dual in D to a curve w of the wall W. Indeed, there is an immersed ladder L
in D that is the concatenation of squares and cone-cells, such that L jumps across opposite 1-cells of a
square, and L jumps across opposite 1-cells of a cone-cell in the sense that they are dual to the same
wall of the ambient cone.

We note that since each cone-cell and each square contains an even number of 1-cells dual to W,
there is really a dual graph, (as in Figure whose vertices internal to D have even valence, and so
there must be an even number of vertices on the boundary, and hence some dual curve starts and ends
on d,D.

There are several cases to consider, each leading to a lower complexity counterexample. We refer
the reader to Figure

Suppose w crosses itself within D by passing though the same square in two ways, or by passing
through the same cone-cell in two 1-cells that don’t map to 1-cells in the same wall of its ambient cone.
Then a minimal such self-crossing dual curve is contained in a subdiagram of D, and hence provides a
lower complexity counterexample: It bounds a path P’ which bounds a subdiagram D’ of D.
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Otherwise, we can choose w to simply start and end on boundary 1-cells of dD, and we obtain a
lower complexity counterexample in one of the following ways:

If w ends on a 1-cell on P;V that is dual to the wall of ¥; containing H;_y N Y; and H; N Y; then w U P
bounds a lower complexity counterexample on the side of D — w containing P,. Similarly, if w ends
on a 1-cell on Pff that is dual to the hyperplane H; in N(H;), then w U P bounds a lower complexity
counterexample on the side of D — w containing P,. In the above two cases, we have the same self-
intersection, and are merely taking a shortcut through the diagram.

If w ends on a 1-cell on P’;’ that is not dual to the wall of Y; containing H;_; N Y; and H; N Y;, then
w U P bounds a lower complexity counterexample on the side of D — w not containing P,. In this case
the self-intersection is new and is at the cone Y;.

Similarly, if w ends on a 1-cell on Pf.’ that is not dual to the hyperplane H; in N(H;), then wU P bounds
a lower complexity counterexample on the side of D —w containing P,. In this case the self-intersection
is new and is at the square in N(H;) corresponding to the end of w and 1-cubes dual to H;.

The final possibility is that w ends on a 1-cell f of P,. (Note that because of our absorption conven-
tion above, this means that Z is a cone and not a square.) In this case, f is distinct from one of the two
(or more) walls at Z corresponding to Hy N Z and H, N Z. If it is distinct from Hy N Z, then the initial
part of P together with w bound a smaller complexity counterexample. if it is distinct from H, N Z, then
the terminal part of P together with w bounds a smaller complexity counterexample.

We have shown that by minimal complexity of D, the path P cannot pass through a dual 1-cell of W
in the sense above. The next step of the proof is to “augment” D by adding an annular ladder A along
P to obtain a new diagram E = D Up A. We refer the reader to Figure

Construction 5.21 (Collaring).

The annulus A is a concatenation of square-ladders L; — N(H;) and cone-cells C; — Y; and a cone-
cell or square z — Z. Each L; is the unique (possibly degenerate) ladder in N(H;) that contains Pf’ as
a (possibly trivial) external arc. Each C; is chosen so that d,,C; extends the path Pf so that it starts and
ends on the terminal and initial 1-cells of L;_; and L; that are dual to H;_; N'Y; and H; N Y; respectively.

We refer to E as a collared diagram in the sense that it has a single dual curve of a wall passing all
the way around along its external 2-cells, except for one corner 2-cell where there is a transition, as
the two hyperplanes do not belong to the same wall. More generally, we will later consider collared
diagrams with k-corners in the sense that they have exactly k such corners. We note that when the dual
curves braid with each other along the outside, there might be multiple ways of specifying the corners.
The diagram E is a collared diagram with 1-corner. These ideas were treated in a simpler setup earlier
in [OWT1]. See Figure[82]

When Z is a square, we simply let z be a copy of Z, and when Z is a cone we let z be a cone-cell
such that d,,z contains the path egP*e, where e is the initial 1-cell of Ly and e, is the terminal 1-cell of
L, (oriented appropriately).

The cone-cells satisfying the above prescriptions exist (after auxiliary extensions) by Lemma[5.27]
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We now verify that P° — Z cannot pass through any 1-cell dual to W as above. Indeed, we follow the
above argument, to produce a dual curve w leaving Z along some 1-cell of P*. The details are similar.

Reductions Preserve Collar Structure: Having obtained the 1-corner collared diagram E, we reach
the next stage of the argument which is to obtain a reduced 1-corner collared diagram. The idea is to
show that if E is not reduced then, one can obtain a lower complexity 1-collared diagram E’. The
essential thing to verify is that the collar structure is preserved. We refer the reader to Figure [83]

Reductions not involving an external 2-cell have no effect on the collared structure.

Absorption of an internal square into an external cone-cell.

Absorption of an external square into an adjacent external cone-cell.

Absorption of internal cone-cell with external cone-cell

Absorption of adjacent external cone-cells along a path on the boundary.

Absorption of internal squares from a fake wall-piece into an external cone-cell.

Absorption of external squares from a fake wall-piece into an internal cone-cell.

For the most part, absorptions into cone-cells have little effect, since they do not effect the diagram
much. Even the combining of a cancellable pair of cone-cells has little effect: it just adds two small
square subdiagrams, and then redraws the cone-cells boundaries.

Replacement of a cone-cell by a square diagram. In this case, if the cone-cell was external, then we
might have to shave off one side of the square ladder containing the dual curve corresponding to the
wall on the collar. See Figure 84]
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Ficure 85. If there is a cancellable pair of cone-cells as on the first diagram, then there is a
smaller complexity counterexample as shaded in the second or third. The second diagram is the
case where the two walls in the cancellable pair are distinct, and the third where the two walls
are the same. The fourth diagram indicates a fake wall-piece, which is absorbed analogously
in the fifth and sixth diagrams.

FiGure 86.

An interesting case consists of the removal of a cancellable pair of squares where one is external and
the other is not. In this case, one actually passes to substantially different diagram. There are several
cases. If the ladder dual to the 1-cell of the internal square self-intersects (not illustrated) then there is
an obvious lower complexity example. Otherwise, it either closes with itself, or ends on the boundary.
Consideration of the various possibilities leads to a lower complexity diagram (after some gluing).

Absorption between external cells that shortcut the boundary is another interesting case that can lead
to a substantially different diagram. We refer the reader to Figure [85]

Curvature along JE: We refer the reader to Figure There are no spurs. Pushing past a corner
of a generalized square provides lower complexity example.

A cone-cell C of positive curvature has innerpath S homotopic to the carrier of a hyperplane by
Condition (E]) Therefore, letting 0,C = QS we can replace C by a square diagram with boundary
path e;S e2 Q' such that Q’ lies along the boundary of the hyperplane carrier in the cone Y.

We thus conclude that only the corner 2-cells can support positive curvature. If the transition at a
corner is a square, then there is a 0-cell with curvature 7, and if the transition is a cone-cell, then there
is a curvature of < 7 unless the two collars are braided together there. If so, we can crop off some
ladder, until we obtain a more genuine transition and a curvature of < 7.

By Theorem [3.40, we see that there are at least three corners, unless the diagram is a ladder or a
single cone-cell. Our 1-collared diagram cannot be any of these. O

We now prove the first statement listed in Theorem [5.19]
Theorem 5.22. Let W be a wall, then I'y is a tree.

Proof. This is similar to the proof of Theorem [5.20] but also uses its conclusion.
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Let P be the concatenation of an alternating sequence of paths P? P}l‘ ... P" where each Ply — Yjisa
cone path and each Pf.‘ — N(H,) is a path in a hyperplane carrier, and the hyperplane H; intersects Y;_;
and Y; in dual 1-cells, and each H; belongs to W. By adjusting the starting point, we can assume that
the first subpath is a cone path, and that the last subpath is a hyperplane path whose hyperplane H, is
dual to a 1-cell of the initial cone Y.

The path P determines a closed path P — I'yy whose vertices correspond to the subpaths and whose
edges are transitions between these subpaths. Conversely, given a closed path P — 'y, we can choose
a path P as above that projects to P in this sense.

We aim to show that any such path P is null-homotopic in I'yy. We argue by contradiction to see
that no such path exists. Consider a minimal complexity diagram D whose boundary path P induces an
essential path P — T'yy.

Observe that P cannot pass through a 1-cell e that is dual to W in the sense that e either lies in Pf
and is dual to a hyperplane in a wall of H; N Y; or Hiy1 NY;, or e lies in Pf’ and e is dual to H; C N(H;).
Indeed if such a 1-cell existed, then as in the proof of Theorem [5.20] we consider its dual graph in D,
and find that we can choose a dual curve w of a path in W that is carried by a ladder in D, such that w
does not cross itself. Note that while it is possible for the dual graph to have high even valence where
it might bifurcate at cone-cells, Theorem m shows that it cannot cross itself, and in particular, if it
some path in the dual graph comes back to the same cone-cell then it returns along a hyperplane in the
same wall of that cone.

We are therefore able to choose a simple curve in this dual graph that starts on e and ends on a 1-cell
¢’ on P. Moreover, this curve is carried by a ladder within D.

If ¢’ has the same property as e, then (after cyclically permuting) this decomposes the path P as ho-
motopic to the concatenation of two paths P P;, and consequently P is homotopic to the concatenation
PP, and at least one of Py, P, must be essential in I'yy since P is essential. However, the diagrams
Dy, D, for Py, P, are lower complexity than D, so this is impossible. We refer the reader to Figure

If ¢’ does not share the same property as e, so it corresponds to a different wall in Y; or corresponds
to a different hyperplane crossing H; in N(H;), then we obtain a self-crossing wall, which violates
Theorem

Since P does not pass through a 1-cell dual to W as above, we see that the diagram D can be
augmented as in Construction [5.21]to form a collared diagram E no zero corners as in the first diagram
in Figure[82]

As we did earlier, we can then choose a collared diagram E with no corners and of minimal com-
plexity, so that it is reduced and has no 6-shells or corners of generalized squares along its boundary.
However, such a collared diagram cannot exist by Theorem [3.40} m|

We define the carrier of the wall W as follows: First let B denote the disjoint union of the carriers
N(H,) of its constituent hyperplanes together with the cones intersected by these. We then form a
quotient of B by identifying pairs of subspaces N(H) and Y along their intersection N(H) N Y in X*,
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and identifying Y; and Y; along their intersection in X* provided that ¥; and Y ; share a 1-cell dual to
some hyperplane H in W. Note that these intersections were proven to be connected in Lemma [5.6]
and Lemma [5.15] We let N(W) denote the resulting quotient. We note that there is an induced map
NW) - X*.

Theorem 5.23 (Carriers Embed). For each wall W, the map N(W) — X* is an embedding.

Proof. This is again a variant of the proof of Theorem [5.20]

Suppose there is a nonclosed path P — N(W) that maps to a closed path in X*. We choose such a
path whose diagram D has minimal complexity in X*.

We verify as above that P cannot pass through a dual 1-cell of one of the hyperplanes of W, for then
there would either be a self-intersection which is precluded by Theorem [5.20] or we could cleave off
part of D to obtain a new path P’ with the same endpoints in N(H) (by Theorem [5.22)) such that P’ had
a smaller complexity diagram D’.

We then augment D by Construction [5.21] to obtain a collared diagram with one collar and two
corners.

By passing to a minimal complexity such diagram, we can assume it is reduced and has no other
features of positive curvature. The key point to verify here is that the collar structure is preserved when
cancellable pairs are removed or absorbed. When there is a fake wall-piece or cone-piece from a square
ladder or cone-cell in the collar on another side of the diagram (as in Figure [85]) the absorbed wall from
within the collar is the same as the wall in the absorbing cone, for otherwise we would contradict
Theorem Therefore we are merely able to cleave off a closed dual curve in the wall, and this
merely provides a new path P’ with the same endpoints as P, so the structure (and the original distinct
pair of points in the carrier) are preserved. Other cases are treated similarly.

Note that the first diagram in Figure 83| provides a new path P’ — N(H) with the same endpoints,
but with lower complexity diagram. However, the second diagram in Figure [83|cannot occur, since it
would yield a self-crossing which was ruled out in Theorem Some variants of this are indicated
in Figure The first diagram explains how a cancellable pair of squares yields a new path P’ with
a lower complexity diagram, the second and third yield self-crossing contradictions, and the fourth
diagram indicates that, no inner edge of the collar is dual to our wall, or there would have been a new
path P’ with a lower complexity diagram.

We then conclude that it must be a ladder by Theorem [3.36] and so the two corners must be adjacent
cone-cells corresponding to cones that share a 1-cell dual to W. Indeed, they are already adjacent in the
diagram. We emphasize that, as concluded in the Theorem [3.36] since a square corner only provides a
curvature of 7, both of these positively curved cells must be cone-cells, and so the first and third figures
in Figure 88| are excluded.

O
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Remark 5.24 (2-sidedness). Since hyperplanes are 2-sided in their carriers by Lemma [5.13] and
carriers of walls in cones are 2-sided by hypothesis, and each carrier is a tree union of cones and
hyperplane carriers by Theorem[5.22] we see that each wall W is 2-sided in and hence separates N(W).
Since N(W) embeds in X* by Theorem we see that W is locally 2-sided in X* and actually
locally separates X* since N(W) — X* is a local isomorphism along W by construction.
Now the 2-sidedness of the walls in X* follows from their embeddedness, local 2-sidedness in N(W)
which embeds, and the simple-connectivity and hence 1-acyclicity of X

5.7. No Inversions. Even when each wall W of X* is 2-sided, it might be that Stab(W) does not also
stabilize each of the half spaces. We rectify this as follows:

Lemma 5.25 (No inversions). Suppose that (X | Y;) satisfies the B(6) conditions as well as the following
condition. Then for each wall W, its stabilizer Stab(W) acts without inversions in the sense that it
stabilizes each component of N(W) — W.

(1) [No inversions] The hyperplanes in X are 2-sided, and there is a choice of positive and negative
side of each hyperplane, and a choice of positive and negative side of each wall in each Y, and
these two notions are globally consistent, in the sense that the positive side of each hyperplane
H equals the positive side of each wall represented by HN'Y.

Moreover Autx(Y) acts on the wallspace without inverting the sides of any wall.

Proof. O
5.8. Phony Cone Cells.

Definition 5.26. (X | Y;) has the cycle property if for each immersed path P — Y; which starts and
ends on 1-cubes dual to distinct hyperplanes in the same wall of Y}, there exists a path Q with the same
endpoints as P such that QP is essential.

Lemma 5.27. Let (X | Y;) be a cubical presentation. There exists a deformation retraction embedding
(X | Yi) € (X" | Y]) such that (X" | Y]) has the cycle property, and such that all properties listed in
Definition|5. 1| are preserved.

Proof. For each geodesic path P — Y; with 1-cells not dual to the same hyperplane but dual to the
same wall, and not connectable by a different path, we add an arc P” of the same length as P’ where
P = e1P’ey, to both Y; and to X. The new hyperplanes are simply barycenters of new 1-cubes. We
assign them to walls of Y; according to the antipodal relation in the cycle P”’e; P’e;. By concatenating
cycles, and reducing or folding, one sees that being either dual to the same hyperplane or having a
common local geodesic cycle is an equivalence relation. Hence no new classes are added when we add
the arcs. m|

Remark 5.28. We will implicitly assume that the construction of Lemma has been implemented
to support the collaring procedure that is especially used in the proof of Theorem [5.32] The pictures
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supporting the proof rely on the intuitive idea that pairs of 1-cells dual to distinct hyperplanes in the
same wall of a cone actually lie opposite each other on some essential cone-cell.

5.9. Carriers and Quasiconvexity.

Definition 5.29 (Carrier of wall). A wall W crosses a cone C if W N C is nonempty. The carrier of a
wall W of X* is the union of all hyperplane carriers containing its hyperplanes, together with all cones
that it crosses.

The most important cones in a carrier are those cones C crossed essentially by W in the sense
that W N C consists of two or more hyperplanes of C. Many of the properties of walls and carriers are
explainable for the essential carrier which only includes essentially crossed cones, but we have decided
to retain the point of view including all crossed cones instead of the essential ones. The essential carrier
is a bit less “bumpy” then the carrier. In the “classical case” of B(6) complexes, all crossed cones are
essential.

Note that the essential cones correspond to non-leaves in the tree I'yy. The deeply essential cones
correspond to deep vertices in the tree which have the property that some bi-infinite geodesic passes
through them.

It is a consequence of Theorem that the carrier deformation retracts to the wall (if we add
geometric walls in each cone in an appropriate fashion that we shall later explore) and that the carrier
is simply-connected and is separated by the wall.

Definition 5.30 (Cubical ladders and consecutive cones). Two cones in the carrier of W are consecutive
if there is a hyperplane in W that has nonempty intersection with each of them. A cubical ladder in a
cube complex X is a local isometry I" X [0,m] — X where n > 1. If I" X {0} lies in the cone Y; and
I" x {1} lies in the cone Y; then we say it is a cubical ladder joining ¥; and Y.

Definition 5.31 (Thickened and Extended Carrier). The thickened carrier T(W) of W is the union of
the carrier N(W) together with each flat rectangle R = I,, X I,,, whose left and right boundary paths
{0, n} x I, lie on cones Y1, Y, of N(W), and such that for some 0 < k < m the square ladder I,, X [k, k+ 1]
is dual to a hyperplane in W.

The extended carrier E(W) is the cubical local convex thickening of the thickened carrier T(W). It
is obtained by repeatedly adding any cube with an entire corner already present.

We refer to Figure [90|for heuristic illustrations of N(W), T(W), and E(W) when X is 2-dimensional.

We will use the term cladder for the carrier of a wall within a disk diagram. We will later introduce
the term W-ladder for the case when the corresponding dual curve is associated to a specific wall W in
X* (see Definition .

Theorem 5.32 (Thickened Carrier Isometric Embedging). Assume X* satisfies the B(6) condition. The
thickened carrier of a wall isometrically embeds in X*.

Proof. We can assume without loss of generality that y is disjoint from 7 and in particular from N
except at its endpoints. We refer the reader to Figure 02] for a guide to the notation used in the proof.

Step 1: Setting up the diagram: We first show that there exists a disk diagram E which contains
(generalized) ladders Ly C Ly at the top, and our geodesic vy at the bottom. This is something we have
done routinely when vy starts and ends on N.

We begin by extending y to ™ = yyyy, where each v; is a minimal length path in 7 from an endpoint
of ¥ whose outermost 1-cell is dual to W. We emphasize that this path can be chosen so that it travels
through a sequence of 1-cells that are in 7 and are dual to hyperplanes joining (the same) pair of cones
in X*. When the endpoint of vy lies on a cone of N(W) then we choose y; to be a path in this cone to a
dual 1-cell of W.
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Ficure 90. A carrier, a thickened carrier, and an extended carrier
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Ficure 91. It seems harmless to include squares in 7 whose entire 1-skeleton lies in 7.

FiGure 92.

For each of i = 0 and i = 1, there is a rectangle R; containing y; on one side and bounded by a square
ladder mapping to a hyperplane of W on one side and ending on a path in a cone-cell of N(W) on a
third side. When 7; lies on a cone (because the corresponding endpoint of y lies on that cone), then R;
is degenerate, and is simply a copy of ;. Likewise, when v; is a single 1-cell (since y ended on the
carrier of a hyperplane of N) then we just let R; be a copy of y;.

There is then a sequence of cones and square ladders in N(W) that start and end at the initial and
terminal 1-cells of y*. We choose the first and last such ladders to be those already lying in Ry and R;.
Let V; be the external boundary arc of our ladders (and initial and terminal rectangles). For each cone
Y;, we choose a path U; that travels around Y; from one dual 1-cell to another. (We choose the paths
Vi, U; to start and end on the same side of W as y.) We consider the concatenation VoUyV Uj - - V,.
We then consider a disk diagram D between vy and the above path. Adding on the above sequence of
ladders, as well as cone-cells supporting the U; paths, we can augment D to obtain the collared diagram
E.
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Step 2: Estimating the distance: The ladder Ly in E contains the sequence of rectangles, square
ladders, and cone-cells, and along the top of Ly is the ladder Ly mapping to N(W). Let T be the path
on D that “opposes” vy, so that 7 is also a path along the “bottom” of L.

Having shown above that one such diagram exists, we now assume that we have chosen D, E with
the property that its complexity, Comp, is minimized where Comp(D, E) = (#.(D),#.(E), |t|) where
#.(X) denotes the number of cone-cells in X. We emphasize that #.(D) equals the number of cone-cells
in E that are not also in Ly (or equivalently in Ly). Note that we are not assuming that E is reduced
or has minimal complexity in the usual sense. However, the minimality of Comp guarantees that no
cone-cell in E can be replaced by a square diagram, and adjacent cone-cells cannot be combined. We
are also not assuming that 7 is the shortest possible path in some E, D, but rather, that it is shortest
possible among all such paths arising from E, D with minimal numbers of cone-cells.

We claim that for each edge e in 7, the dual curve to e in D is a graph that ends on e in 7, and whose
remaining endpoints all lie on y. Since there are an odd number of such remaining endpoints, we see
that |y| > |7, and since 7 lies in T, our claim is proven.

Step 3: Choosing a minimal counterexample: Suppose that the dual graph ends at another edge
¢’ in 7 for some E, D with Comp minimal as above. Let K be the cladder in D carrying a dual curve
that starts and ends on the edges ¢, ¢’ of 7. Let 7’ be the subpath of 7 whose initial and terminal edges
are e, ¢’. Let k be the path on K with the same endpoints as 7 but doesn’t pass through the dual curve
of K, and in particular doesn’t pass through ¢, ¢’. We extend the cladder K in D carrying a dual curve
that starts and ends on 7, to a cladder K’ that starts and ends on squares and/or cones of Ly C Ly. Let
L’ denote the subladder of Ly that begins and ends at the intersections with K’. See the diagram on the
left of Figure Let B be the subdiagram that is bicollared by K’, L’. See Figure

Among all minimal Comp examples for a given y (or even a geodesic with the same endpoints as )
exhibiting the contradictory feature represented by K, let us choose a contradiction with the additional
property that B has ordinary minimal usual area complexity (#.(B), #,(B)) = (Conecells(A), Squares(A)).

We will now show by contradiction that such a minimal counterexample cannot exist.

Note that in the degenerate case where ¢ = ¢’ illustrated on the right of Figure [94] there is automati-
cally a smaller choice of B corresponding to an innermost backtracking cladder.

Step 4: Minimality of B implies square diagram:
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We now focus on the subdiagram B that is bicollared by K’, L’ - we emphasize that K’,L’ C B.
We shall show that any cone-cell in B actually lies in L’. Note that we cannot immediately apply
Theorem as we don’t know that B is reduced along L’ and has no #-shells along L’.

The minimality of B implies that there are no corners of generalized squares on cone-cells within B,
for they can be absorbed. There is also no corner of generalized square within B whose outerpath lies on
OB except perhaps at the two corners of B where L', K’ meet. Indeed, if a square in B has a generalized
corner on a square ladder in K’, then we can push K’ upwards across this square while decreasing the
area in B. Similarly, if there is a square in B with a generalized corner with outerpath along the top of
L’, then we can push the square upwards through L’ (and hence Ly) until it is outside of E, and reduce
the area of B. Neither of these moves affects Comp, |7]. See Figure[93|for a trickier-than-usual pushing
of a generalized corner of square.

Suppose that B contains a cone-cell C that does not lie in L’. Let us examine what happens to it as
we perform a sequence of reductions to B. Note that we can assume from the outset that L’ is reduced.
It is impossible for any cone-cell C to be combined with another cone-cell by minimality of Comp
and likewise impossible for C to eventually work its way into L’. Suppose after some sequence of
reductions B +— B, a cone-cell C becomes a 6-shell C with outerpath Q along ¥ = «, and innerpath
S. Let Y be the supporting cone, so Qy(S) < 7. And note that § = UfS’f'U’ has a subpath fS’f’
where f, f’ are 1-cells on AC that are dual to the dual curve of K, and also lie on the previous and
next cells of K respectively. It is important to note that f, f must be oriented in the same way with
respect to this hyperplane, otherwise the path S’ would contain another edge dual to this hyperplane,
and following the associated cladder in D, we would be able to construct a backtracking cladder Ky
bounding a subdiagram Bj of B. By Condition , the path £S’f” of C is homotopic in Y to a path
in the carrier of the hyperplane of Y dual to f, f’, and hence S’ is homotopic to a local geodesic J
in this carrier. Let V denote the square diagram given the homotopy from S’ to J. Let J’ denote the
corresponding local geodesic on the other side, so J,J’ together form the side of a ladder M in the
carrier with initial and final 1-cells f, f’. We refer the reader to Figure

The path U’ QUJ’ bounds a cone-cell C’, and we replace C by the union C’ Uy M Uy V. This has
the effect of substituting the square ladder M for C in K, and hence decreases the number of cone-cells
in the resulting bicollared diagram replacing B. This violates our minimality assumption on B.

Consequently, since after reducing, there are no #-shells along k, and likewise, none along the part
of B collared by L’ (since all those cone-cells are essential), we see that there are at most two positively
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curved cells at the corners of B, and so B is a ladder by Theorem In particular, B has no internal
cone-cells either, so all cone-cells of B have been accounted for as arising in L’. We conclude that there
are only squares in B outside of L', and in particular K is a square ladder.

Step 5: Minimality implies that B is very thin: Let A be the part of B between « and 7/, so K C A.
We will show that A = K.

The minimality of B implies that it has no bigon of dual curves inside. Indeed, by Lemma [2.2]
removing such a bigon decreases the area by two. In particular, a bigon with the dual curve of K
itself can likewise be pushed through K, so that the important properties of the resulting diagram are
preserved.

Each dual curve in A that starts on 7/ — {e, ¢’} ends on a 1-cell on «. Indeed, if such a dual curve
ended on another edge of 7/, then its corresponding cladder could be used instead of K, and would
provide a lower complexity counterexample violating the minimality of B. Moreover, each dual curve
in A starting on x must end on 7’ for otherwise there would be a bigon, and this was excluded earlier.
In summary, each dual curve in A travels between 7’ and «, except for the dual curve within K itself.
Hence k| = || - 2.

Suppose that A contains a square s that doesn’t lie in K. Then each dual curve of s has one end
on « and the other end on 7’. Thus some corner of s has a pair of dual curves on . This contradicts
Lemma 2.5

Step 6: Reducing |7’| and hence |7]: If L’ contains only squares then 7’ can be replaced by the
shorter path x and K’ can be pushed through L’ (using several bigon removals). This reduces the length
of 7" and hence violates the minimality of 7.

If L’ contains cone-cells, then we can assume it is already reduced without affecting any of our
minimized quantities. Let R’ denote the part of Ly that is subtended by K, so R’ is the union of L’ and
various additional rectangles in Ly. We then observe that the ladder K’ wraps around L'.

We refer to Figure 97| on the left, as well as the resulting absorptions on the right.

Suppose the first square of K has one edge on a square of Ly and one edge on a cone-cell C of Ly. If
the rectangle of K alongside C cannot be absorbed into C, then the innerpath S of C is the concatenation
of two pieces: a rectangle-piece associated with an initial part of K’ followed by a cone-piece. (If C
is the unique cone-cell, then S is a single rectangle-piece). Letting Y denote the cone supporting C
we have Qy(S) < n. This leads to a contradiction, because Condition @) would then imply that S is
homotopic into the carrier of a hyperplane associated to the wall of Ly N'Y, which would imply that the
cone-cell C could be replaced by a square diagram, violating the minimality of #.(E).

Thus the contiguous rectangle is absorbable into C, and this includes the entire initial rectangle of
K'.
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We can thus assume that K starts and ends on cone-cells. But then the ladder theorem implies
that B becomes a ladder after reducing, and hence each rectangle in K contiguous with a cone-cell of
Lt is absorbed into that cone-cell upon reducing. The path 7’ can thus be replaced by «, yielding a
shorter counterexample. Note that in the degenerate case where Ly consists of a single cone-cell C it is
immediate that all of K absorbs into C since there are corners of generalized squares in K on C (one at
each side). |

Theorem 5.33 (Extended Carrier Convexity). For any geodesic y — X*, if the endpoints of y lie in
T(W) theny c T(W).

I expect one can could prove that E(W) is convex, but there was a gap in the original version of this
proof, and only the weaker statement was covered.

Proof. We now use Condition to prove the convexity of the extended carrier of W.

Let v be a geodesic in X* that starts and ends on the thickened carrier T of W. As provided in the
proof of Theorem let A be a path on T with the same endpoints such that the disk diagram D — X
between them has minimal Comp among all such possibilities for D, A. Note that A can be chosen to
be on a minimal length ladder in 7 containing a ladder in N.

Moreover, let v’ denote a geodesic in D with the same endpoints as y such that " and y together
bound a square subdiagram of D. Thus D is the union of two diagrams D, and D, that meet along y’
(see Figure[98). We will assume that D, has minimal area among all possible choices with y fixed.

Since y’ is a geodesic, Condition [5.4]implies that D, has no shell with outerpath on y’. There is also
no generalized square in D, with outerpath on ', for then we could pass a square across y’ to increase
Area(D,) and decrease Area(D,).

We now consider the diagram £ bounded by y’ on one side, and bounded by and including the ladder
Lt in T(W) consisting of the sequence of cone-cells and flat rectangles between them. We will show
that 9’ lies on Ly by showing that D, is an arc. Since vy and v’ lie in the local (square) convex hull of
each other, we see that y lies in Ly as well, thus proving the theorem.

Without loss of generality, we can prove the statement for a subpath () of y" obtained by ignoring
initial and terminal subpaths of y’ that already lies on Ly. We let E( denote the resulting diagram, and
observe that cropping 7 in this way, would necessitate a corresponding cropping of initial and terminal
rectangles of Ly.

As above, minimality of complexity implies that there are no outerpaths of generalized squares at
the “top” boundary path along Ly. Condition [5.1](5)) implies there is no #-shell C within the cladder
with outerpath at the top of Lz, since then the innerpath S and outerpath Q of C satisfy Q¢ (S) < 7 and
and S is homotopic in the ambient cone to the carrier of a hyperplane and thus a square ladder U of
length at most |S| — 2. So the C with ,C = QS can be replaced by a square diagram with boundary
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path S Q" where Q’ is along one side of the ladder U. This shortens the ladder Ly in N at the top of Ly
since U replaces a cone-cell, and hence violates our earlier minimality assumption.

The lack of positively curved shells claimed above holds with the sole exception of a cone-cell and
or square at either end of Ly C Ly. Note that cropping removed the possibility of a second corner of
a generalized square. Moreover, the second dual curve of a square at the end of Ly must terminate on
v’ (and not on a cone in Ly). Indeed, as explained in the proof of Theorem all cladders emerging
from A terminate on 7y (after passing through y").

As there are only two positively curved cells, Theorem [3.36]implies that Ey is a ladder. O

Corollary 5.34. If X is I-dimensional then carriers are convex.

Proof. In this case the carrier is the same as the thickened carrier which is the same as the extended
carrier, so the result follows from Theorem [5.33] i

Lemma 5.35 (Walls quasiisometrically embed). If pieces in cones (and hence cone-cells) are uniformly
bounded in size, then each wall quasiisometrically embeds in X*.

Proof. The hypothesis implies that the thickened carriers are in a finite neighborhood of the walls. A
bit more thought shows the walls are quasi-isometric to their thickened carriers, which are isometrically
embedded. m|

5.10. @ Bigons.

Definition 5.36. Let Y, H be a cone and a hyperplane intersecting it. The wallray based at Y in the
direction of H consists of the part of W corresponding to the subtree of I'y that starts at the leaf
consisting of the vertex y of Y, and contains the edge (y, #). The wallray is carried by the corresponding
subspace of N(W).

Theorem 5.37 (Intersection of Wallrays). Let Y, Hy, H> be a cone and a pair of hyperplanes in X* with
dual I-cellsin Y. Let hy =Y N Hy, and let hy, = Y N Hy. Suppose that Qy(hy, hy) > 0 so that there are
no I-cells ey, ey in hy, hy that lie in the same cone-piece or wall-piece in Y. And suppose that hy, hy do
not cross in Y, so there is no 2-cube in Y with 1-cells dual to both hy and h,.

Then the wallrays (W1, Y, H)) and (W, Y, H>) do not have crossing hyperplanes besides Hy N Hy,
and they do not both intersect any cone besides Y.

Remark 5.38. The statement needs to be reconciled with the proof, since we now allow some initial
crossing in H; N H,. Crossing at the last square implies crossing inside the last cone. See Figure [99]

The following Corollary is easier to prove than Theorem[5.37]

Corollary 5.39. Let W, W, be walls intersecting a cone Y. Suppose that Qy(Wy N Y,W, NnY) > 0.
Then Wy and Wy do not have hyperplanes that intersect in any cone other than Y, or that intersect in
any square except for those dual to codimension-2 hyperplanes emanating from Y.

Proof of Theorem[5.37) Let Y* denote the union of ¥ and the carriers of codimension-2 hyperplanes
consisting of components of H; N H; that intersect Y in a component of 4, N A;.
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We say p <; Y if p lies on a cone or hyperplane carrier of N(W;) but does not lie on a cone or carrier
of the wallray (W;, Y, H;), or p € Y*. If p £; Y then we write p >; Y*.
Consider paths Py, P, in N(Wp), N(W,) with initial points p;, p> and terminal points g1, ¢ such that

(1) p; < Y* fori=1ori=2orboth,

(2) eachg; >; Y.

(3) pi,qi lie on 1-cubes dual to W; for each i.

(4) p1, p2 lie on a cone or square A containing the above 1-cubes, and g1, ¢» lie on a cone or square
B containing the above 1-cubes.

(5) there are paths P, — A and P, — B connecting py, p» and ¢1, ¢>.

(6) P, istrivial if A is a square, and P}, is trivial if B is a square.

Note that by the conditions above, B cannot equal Y, and cannot be a square on Y* dual to a codimension-
2 hyperplane H; N H; intersecting Y in some /& N hy.

If there were an intersection contradicting the theorem, then there would be paths P; in the carriers
of (W, Y, H;) that start on vertices along 1-cells in A = Y dual to A;, and a connecting path P, joining
their initial points, so that these paths end on vertices along 1-cells dual to Wi, W, on a cone B # Y or
on a square B not dual to a codimension-2 hyperplane emanating from Y, and we could let P, connect
their endpoints when B is not a square, and let their endpoints be identical when B is a square.

We aim to produce a contradiction ruling out a minimal counterexample by applying Theorem [3.36|
to a suitably produced bicollared diagram capturing the above data in a minimal case. Let us first as-
sume that Py, P, P,, Pp, are chosen with the above properties so that their concatenation is a quadrilat-
eral that bounds a minimal complexity disk diagram D — X among all possible such counterexamples
to the statement of the theorem.

Our first aim is to show that the minimal complexity of D implies that PaPlP;1 does not pass through
any dual 1-cell of Wy, and likewise, P! P, P, does not pass through any dual 1-cell of W,.

As the argument is symmetric, let us consider the first scenario. Indeed, suppose P did pass through
such a 1-cell m dual to Wy, then we could produce a lower complexity example, following Figure [103
Consider an embedded ladder L in D carrying a dual curve to this 1-cell m and terminating at another
dual 1-cell m’ on 8,D. If m’ also lies on PaPlPljl, then we can produce a smaller complexity coun-
terexample, by traveling along P, P 1P;1 until we hit m, then traveling along the bottom of L (that is the
side facing P,), and then continuing along the subpath of P,P; after m'.

If m lies on Py then Py is replaced by the initial subpath preceding m, and the initial point of Py is
adjusted. Likewise if m’ lies on P, then P, is replaced by the terminal subpath following m’, and the
terminal point of P is adjusted.

Also note that in the degenerate case where m is an isolated 1-cell of D along a backtrack of PP P,
then m = m’ and the procedure described above simply crops off the part of this arc in D from m
outwards, corresponding to the subpath of d,D between m and m’ inclusive. (So among our minimal
counterexamples, we first choose one with a shortest boundary path.)

A more interesting case arises when the ladder L terminates on a 1-cell on P;, for in this case we
will not only produce a lower complexity diagram, but we will make a more substantial shift of our
choice of initial or terminal positions while retaining our hypotheses. Let v be the endpoint of the path
along the side of L facing P,. There are two cases according to whether v <; Y* orv >; Y.

Let v denote the other endpoint of m’, and observe that v <, Y* if and only if v/ <, Y*. Indeed,
if v lies on Y or on a square s dual to a codimension-2 hyperplane of H; N H> emanating from Y then
so does V' (and vice-versa). This is because wall carriers cannot interosculate with cones or squares by

Theorem[5.23] See Figure[100]
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Consider the second case where v > Y*. The path P, is supported by a ladder in N(W,). Let B’
denote the cone or square on this ladder which contains the 1-cell m’, and note that as above, B’ # Y in
the cone case, and B’ is not a square dual to H; N H, emanating from Y.

Let g, be the first point on P, that lies on B’. Let Q5 be a shortest path in B from ¢ to a 1-cell dual to
W>, and let u be the endpoint of Q5. Let S be the path on the ladder L from m to m’. Let ¢ be the first
point of S that lies on B’, and let Q5 be the terminal subpath of S from g; to v. Let Q) be the subpath
of P, from ¢ to g.

We now define P}, to be the path obtained from P; by substituting Q5 for the part after g>. We define
P, to be the concatenation Q; 10, 0. The path P’ will be the concatenation of the part of P preceding
m, followed by the initial part of S until g, followed by Q.

We note that when B’ is a square instead of a cone, the path Qj is trivial. The construction is similar
if m and/or m’ lie on P, and/or Pp,.

The new quadrilateral P;PlP;?“ P; ! bounds a proper subdiagram D’ of D.

In the second case where v > Y*, we will replace A instead of B. The details are similar. We refer to
Figure|102

We note, that as in the fourth figure, since we have shown in Theorem that there is no self-
crossing of walls, a dual curve (in a dual graph) that passes through the same cone-cell twice, is actually
passing through the same wall of the corresponding cone. The third and fourth diagrams represent a
dichotomy between the possibility that an endpoint of the ladder carrying the dual curve w does or
does not lie on Y*. In the third diagram it does not, so we produce a smaller complexity example
with a different pair of endpoints. In the fourth diagram it does lie on Y, and so we choose a different
initial point but the same endpoint. We emphasize that in this case, since a hyperplane carrier cannot
interosculate with a cone, if one endpoint of the dual 1-cell of the ladder lies in Y, then both do. We
could have thus chosen an even smaller diagram (on the opposite side of this ladder) with the same
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properties. A degenerate version of this situation occurs when the initial 1-cell of P is dual to W; and
is a spur of D.

Having shown that D does not contain dual 1-cells of W; along PaPlP};] or dual 1-cells of W, along
P51P2Pb, we now follow Construction to obtain a bicollared diagram with two corners.

We first attach a square or cone-cell C4 along P, where C, maps to A and has boundary path 4,C
extending the path e; P e, where each e; is a 1-cell dual to W; at the initial point of P;. Similarly, we
attach a square or cone-cell Cp mapping to B along the path fi P, f> where fi, f> are 1-cells dual to W,
at the initial and terminal vertices of P,. We then attach a ladder L; starting with C4 and ending with
Cp along each P; carrying a dual curve w; in W;. (Note that these are only ladders in a general sense
allowing initial and terminal cells to be squares...) In this way we form the diagram FE as in one of the
diagrams in Figure

The next stage of the argument is to remove cancellable pairs in E to obtain a reduced diagram that
is a counterexample with the same structure, in the sense that it is bicollared by ladders associated to
W1, Wa, but that the corner at A maps to a cone or square with a vertex satisfying v <; Y* for some i,
but the corner at B maps to a cone or square with a vertex satisfying v >; Y" andv >, Y*

We refer the reader to Figure[T03|for various possibilities that arise when removing cancellable pairs.
There are several situations where we must pass to a new bicollared (almost sub) diagram that starts
at a cone-cell, and does not end on Y or on a square that is dual to a component of a codimension-2
hyperplane H; N H; that contains a component of 41 N hy.

Note that we are also forced to consider “singular bicollared diagrams” as in Remark [5.40] and

Figure
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The main point here is to consider a cancellable pair from a fake wall-piece or cone-piece which
was part of the collar on the other side of the diagram E. If so, there is a dichotomy between this
cone-cell occurring at Y or not. If it doesn’t then we obtain a smaller complexity diagram by adjusting
the endpoints, and if it does occur on Y then we obtain a smaller complexity diagram by adjusting the
initial point.

There is one possible type of cancellable pair that deserves special mention: This is when A is a
square, and forms a corner of a generalized square whose outerpath lies on some cone-cell C in E.
Note that C is necessarily in both collars. A similar such situation can occur with B a square. We
illustrate the A case on the left in Figure[T06]

In the A case, if C is a cone-cell mapping to Y, the as is illustrated in the second diagram in Fig-
ure 106, we simply crop off the initial part of the diagram, and allow A’ = C to play the role of A.

If C does not map to Y, but A maps to a square that is dual to a codimension-2 hyperplane of Hy N H;
emanating from Y, then we remove the interior and boundary path of A from the diagram, and add a
cone-cell A” mapping to Y, and attach it to the internal path of A along a pair of square ladders mapping
to Hy, H>. The modified result is on the right in Figure[I06] Note that from the viewpoint of “reducing
the diagram” we can regard the square A as having been first absorbed into C, before we add the new
cone-cell that has a length-2 piece with C.

Let p = p; (which equals p; in this case). By hypothesis, for at least one value i € {1,2} we have
p<iY'.

If C maps to Y, then we still have p’ <; Y*, where p’ is at the “inside” of the initial corner A’ = C of
our new collared diagram (the second picture)

If C doesn’tmapto Y, and p € Y* then p’ € Y since we augmented the diagram by adding a cone-cell
A’ mapping to Y together with two rectangles.

If C doesn’t map to Y, and p ¢ Y* then we use the second picture possibility. The crucial point that
must be verified is that C does not contain a 1-cell dual to the wallray (W, Y, H;), or in other words,
that C is outside the carrier of this wallray. Observe that to enter this wallray from a point not on Y and
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arrive at a point within the carrier of this wallray that is not on Y, one must first travel to Y and then
travel around Y to jump across the wall in W; N Y represented by H; N Y, by traveling from a piece on
Y along one hyperplane of W; N Y (not equal to H; N Y) to a piece on Y along H; N'Y.

Note that there is a path from p to C along a single hyperplane, and this certainly cannot jump across
a wall of Y, and so the cone of C cannot lie within N(W1, Y, H;) Similar arguments show that a path
along a rectangle followed by a path around C (starting and ending on the same wall) cannot travel
around Y but I’m not sure if this is necessary.

In the B case, we simply remove B together with the width 2 square ladder from C to B, and allow
B’ = C to play the role of B. Note that C cannot be a cone-cell mapping to Y because then B would be
dual to a codimension-2 hyperplane of H; N H, emanating from Y, so the endpoint g = g; = ¢ of D
lying on B would contradict our hypothesis that ¢ >; Y* for each i.

Let F denote the new bicollared diagram.

First note that F must be a ladder by Theorem [3.36]

Then note that by construction, F' has the property that its initial cone-cell does not lie in N(Wy, Y, Hy)
for at least one of k = 1,2, however its terminal cone-cell lies in N(W,, Y, H;) for each i.

The bicollar of F along W, consists of a (sub)ladder which must have some cone-cell mapping to
Y. Regarding A, B as the leftmost and rightmost cone-cells of the ladder, we consider the rightmost
cone-cell C, mapping to Y, and note that it cannot be the final cone-cell B since B > Y.

Finally, observe that the dual curves of the square ladders carrying the part of W; and W, emanating
rightwards from C, to C,,; must map to H;, H. Indeed, otherwise we would backtrack into a cone-cell
also not in N(Wy, Y, Hy) and there would be a Y cone-cell appearing further to the right.

However, this means that these dual curves lie in a piece between C, and C,,; which contradicts the
hypothesis of the theorem that Qy(H;, H,) > 0. O

Remark 5.40. We note that in the course of the proof it is natural to consider singular collared dia-
grams which have the property that the collars can occupy the same 2-cell as in Figure These
arise when a cone-cell or square in one collar is absorbed into a cone-cell on the other collar because
of a cancellable pair.

Remark 5.41. In general, it is possible for two hyperplanes H;, H, to cross two different cones Yi, Y»
such that Y1, Y5 are not simply joined together by a generalized rectangle, but could have some sequence
of cones between them. This can be avoided by extra hypotheses on the hyperplanes within a cone. We
refer the reader to Figure {108

I believe the following special case of Theorem could have been obtained more directly along
the lines of Lemma|[5.6/and Lemma and might have facilitated the proof of Theorem

Corollary 5.42. Let Y be a cone and let Hy, Hy be hyperplanes in X+, Suppose that Qy(H,NY, HyNY) >
0. Then Hy N H; is the union of codimension-2 hyperplanes emanating from Y.

5.11. ® 1-dimensional linear separation. The wallspace X* satisfies the linear separation property
if #(p,q) > Ld(p,q) — M for some constants L, M > 1. Here #(p,q) denotes the number of walls
separating the O-cells p, g, and d(p, g) is the distance between p, g in the 1-skeleton of X.
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Ficure 108. There is a ladder containing three cone-cells in the complex above such that the
first and last cone-cells are connected by a pair of hyperplanes without a square diagram be-
tween them.
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Definition 5.43. Let X be 1-dimensional. We say p, g € Y° are strongly separated by the wall w of ¥
if no 1-cell e dual to a hyperplane of w lies in the same piece as p or g.

We say the cone Y in X* has the -strong separation property if p, q are strongly separated by some
wall whenever Qy(p,q) > 5.

Lemma 5.44. Let (x1,...,| Ry,...) be an ordinary presentation, satisfying the ordinary B(6) small-
cancellation condition. So more than half a relator cannot be the concatenation of fewer than four
pieces. Use the split-angling (which is the same as the grade-angling here with each 2-cell having
grade 6).

Then each relator has the 7-strong separation property.

Proof. Suppose p, g are points on the boundary of a 2-cell (i.e. a cone) that do not lie in the concatena-
tion of two pieces. Let P and Q be “piece neighborhoods” of p and ¢ in the sense that P contains every
edge that lies in a piece with p, and similarly for Q. By hypothesis, PN Q = (. By possibly exchanging
the notation, assume that |Q| > |P|. Let wi, wy be the walls dual to the edges immediately before and
after Q. If w; and w, are both dual to edges of P then |P| > |Q| which is impossible. If neither w; nor
wy is dual to an edge of P, then P is separated from Q by one or both of wy, w;.

We refer the reader to Figure The diagram on the left indicates the notation, and it is then
obvious that if Q passes through both hyperplanes then its length exceeds |P| + 2. The diagrams on the
left indicate some of the possible combinatorial fashions that one of the walls wy, wy might separate. O

Theorem 5.45. Suppose X is I-dimensional, and (X | Y;) is a cubical presentation with an angle
assignment satisfying the B(6) condition and short innerpaths, and the 5-strong separation property
for each cone.

Then X* satisfies the linear separation property.

Proof. Let y be a geodesic in X*. Let e; be a 1-cell on v. We will show that either the wall W; in
X* that is dual to e, crosses 7y in no other dual 1-cell, or else there is a 1-cell e, within a uniformly
bounded distance of ey, so that the wall W, dual to it has the same property. Either way, this shows that
each edge of y is within a uniform distance of a wall that y crosses at a single 1-cell. This is easily seen
to imply the linear separation property.
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By Corollary the geodesic y lies in T(Wy). Let C; be an initial cone-cell in a ladder in T(W))
that carries y and starts on the dual 1-cell e; and ends on a second dual 1-cell ¢]. Let p,q denote
outermost points in y N Y; where Y] is the cone supporting C;.

We now show that Qy(p, q) > ’—5 Let y’ denote the subBath of y joining p, g. Suppose there is a path
o from p to g with Qy(0) < &. Since 7y is a geodesic in X*, we must have |y’| < |o]. Since Qy(0) < 7
and it is impossible that |o| < |y’| we see that o and y’ are path-homotopic in ¥ by Condition
Consequently, if Qy(0) < 7 then Qy(y") < Qy (o) < 7 by the following observation:

Note that Q(a) > Q(B) whenever Y is 1-dimensional and @« — Y and § — Y are path homotopic,
and S is an immersion. This is suggested by Figure[IT0] Note that the number of internal corners along
a decreases as backtracks are folded outwards. So our claim is clear for the grade-angling. For the
split-angling, one finds that two defects of Z and/or 5 can become a single defect of 5 or 5. Therefore
the total defect does not increase.

However, we refer the reader to the two rightmost diagrams in Figure for an explanation of why
Qy(y’) > 7. Indeed, we can concatenate part of y” with part of the piece between C; and the next
cone-cell in the ladder for Wy, to obtain a path § with Qy(6) < 7« (the part of v’ contributed a defect
of < 7 and at most an extra 7 of defect occurs at the transition between these subpaths because there
are no acute corners). Since J crosses the wall of W, N Y in two distinct hyperplanes, we obtain a
contradiction of Condition [5.1}(3).

By the 7-strong separation hypothesis, there exists a wall W, separating p, q. We refer the reader
to Figure for an explanation of why W, cannot double cross y. All possible situations lead to
either p, g lying in the same piece as one of the hyperplanes of W, N Y, or lead to a path y with
Qy(u) < m that passes through distinct hyperplanes in the same wall of a cone-cell Y thus contradicting

Condition[5.1} (3). i

5.12. @ Linear Separation when X is a pseudograph.

Definition 5.46 (Pseudograph). A nonpositively curved cube complex X is a pseudograph if each
hyperplane of X is a compact CAT(0) space.

Lemma 5.47. Suppose X is a compact pseudograph. Then 71X is free.
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Ficure 112. 1 believe this covers most of the variety of cases.

I don’t know if Lemma[5.47|holds when X is a nonpositively curved cube complex whose immersed
hyperplanes are simply-connected (without a compactness hypotheses). _

The following proof can probably be replaced by a direct elementary proof that X is quasiisometric
to a tree.

Proof. Let H be a hyperplane in X. If each component of X — H is deep, then we see that X and hence
X has more than one end, and hence 71 X is infinite cyclic or splits as a free product. The factors are
quasiconvex subgroups.

Thus each factor is again a pseudograph with the same property. Hence each factor is free (by
induction on rank).

If exactly one component of X — H is not deep, then 1 X leaves invariant the intersection of the deep
halfspaces, and so the theorem is true by induction on the number of cells in X.

If neither component is deep, then 7 X stabilizes H and so 71X is trivial. |

Remark 5.48. The main difficulty in generalizing the proof of Theorem [5.45]is that it is unclear what
plays the role of p, g (e.g. min and max points in C N S), and it is difficult to ensure that geodesic paths
in § N L; overlap with p, g or some substitute.

We say a wall w in Y is contiguous with a hyperplane u if one of the following hold for some
hyperplane v of w:

() v=u

(2) v crosses u.

(3) v and u have dual 1-cells sharing an endpoint (this covers the previous two cases).

(4) v has a dual 1-cell with an endpoint lying on a piece in Y that contains a dual 1-cell of u.

Theorem 5.49. If (X | Y;) satisfies the following properties then X* has linear separation.

(1) X is a compact pseudograph.

(2) X* satisfies the B(6) condition.

(3) All cones are finite.

(4) For distinct hyperplanes wy, w; in the same wall of Y, there does not exist a path € — Y with
Qy(g) < 5 whose first and last edges e, e, are dual to hyperplanes hy, hy, such that h, equals
wi and hy has a dual 1-cell with an endpoint on a dual 1-cell of wy or a piece containing a
dual 1-cell of ws.

(5) For each Y, and each CAT(0) interval J C Y, and hyperplanes h,k C J consisting of compo-
nents of intersections of hyperplanes h, k with J the following holds: If Qy(h, k) > 5 then there
is awall win Y that separates h, k but is not contiguous with h or k.
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Remark 5.50. The hypothesis that all cones are finite can be replaced by a strengthening of Condi-
tion (3). Specifically, we assume that the wall wy of Y separating A, k should have a hyperplane lying
lying within a uniformly bounded distance of w.

Remark 5.51. The statement of the theorem suggests that we should have declared Qy(e, f) to be the
infimum of defects of paths that start and end at 1-cells dual to the same hyperplanes as e and f.

Proof. LetS — X be the local convex hull of the geodesic y — X* from ptoq.

We will show that each edge of S lies within a uniform distance of a hyperplane whose wall in X
intersects S in a single hyperplane. Since there are uniformly many hyperplanes in § within a uniform
distance of any point, we obtain the desired linear separation.

Let e; be an edge of S that is dual to a wall W of X intersecting S in more than one hyperplane.
Let h, be the hyperplane of S dual to e;. By Theorem [5.33] considering the subpath of vy starting and
ending on edges dual to distinct hyperplanes in Wy, we find that this subpath is homotopic to a subpath
A that lies on a ladder L; — T(W)). Accordingly, the ladder L; begins with a square ladder in S that
starts at e; and terminates at a 1-cell fj, and is followed by a cone-cell C mapping to a cone Y, such
that f; maps to Y and is dual to a hyperplane w; of ¥, and wy lies in the same wall as a hyperplane w/
of Y with w’1 # wi. And the cone-cell C either meets S in a 1-cell e; dual to w; or else the cone-cell C
has a piece (with a subsequent cone-cell in Ly), so that the piece contains the 1-cell e} dual to w}, and
an endpoint of the piece contains a point of A which is necessarily in §.

Let J be the component of the preimage of Y in § that intersects A,.

Let h, be a hyperplane in S passing through J that is extreme in the following sense: for any
geodesic o, from a 1-cell dual to i, N J to the point p, all 1-cells of the initial subpath ¢, N J are dual
to hyperplanes crossing h,, (except for the initial 1-cell dual to 4,). We observe that for any geodesic
in § from J to p whose intersection with J consists precisely of its initial 1-cell, the hyperplane dual to
this 1-cell has the property above, and so we can choose £, in this manner. We choose the hyperplane
hy analogously.

Note that we can assume that we chose £, so that either 4, = h, or so that &, is disjoint from &, and
separates p, h.. Indeed, suppose that %, is not a final hyperplane in J to p. Then there is a geodesic «
from a 1-cell of J dual to 4, to the point p, so that the final 1-cell of @ N J is dual to a hyperplane that
doesn’t cross h,. We then let i, be the hyperplane dual to this 1-cell.

Let hp = hpNJ and hq = hyNJ. Our hypothesis that Condition (4) holds implies that Qy(hp, hq) > 7.
Indeed, let x be a path starting and ending at 1-cells dual to hp and hq. Since either h, = wy or wy
separates p, h,, we see that k passes through a I-cell dual to wy. Our choice of A, implies that it is
dual to a 1-cell with an endpoint in J that is either also on a 1-cell dual to w, or also on a piece in Y
containing a 1-cell dual to w,. Thus Condition implies that Qy (k) > g

By the strong-separation hypothesis in Condition (), there exists a wall w, of Y that strongly sepa-
rates hp, h, in the sense that w; is not contiguous with either 4, or h,.

Let W> be the wall of X corresponding to w,. We will show that W, cannot intersect S in a second
hyperplane. Indeed, suppose that W, intersects S in a second hyperplane. Let o be a geodesic from p
to g that passes through a 1-cell e; in J that is dual to wy.

There are two cases to consider according to whether o intersects W, in another hyperplane in §
on its way to p or on its way to g. We consider the former case and note that there is an analogous
argument for the latter case holding for g and o, and h,.

Let 0, denote the subpath of o that starts on wy and ends on a second 1-cell dual to W, (in the
direction of p).

We refer the reader to Figure [[13]for diagrams indicating the notations.
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Figure 114.

By Theorem the path o), is square-homotopic to a path o7, that lies along a ladder L, — T(W).
The path ¢, must pass through a 1-cell > of S that is dual to the hyperplane 4, and this 1-cell f,
actually lies in J € § N'Y. Indeed, by choice of w, we know that Qy(h,,w2) # 0 and h,, w, do not
cross in Y, and so by Theorem even the wallray from Y emanating in the direction of /4, cannot
cross the wall W, outside of Y. The second diagram in Figure illustrates the impossible scenario
that 4, veers into L, in a way that makes it cross W» outside of Y. The third diagram indicates that the
cone-cells might lie substantially inside S’ - more than was illustrated for the wall Wj.

Let 6 denote the subpath of o), that starts on e, and ends on f,. By the property characterizing h,,
all the vertices of ¢ are endpoints of 1-cells dual to 4,. Thus an endpoint of a 1-cell dual to 4, lies on
the same piece as a 1-cell dual to w, which is impossible. O

5.13. ® Codimension-1 subgroup preserved. Show that (under certain hypotheses) each new wall is
cut by an infinite new wall that proceeds infinitely deeply on each side.

This certainly fails if we consider (X | Y) where Y is a very high girth cover of X satisfying all the
properties. The main hypothesis will ensure that new walls are infinitely extendible.

5.14. Elliptic Annuli.

Definition 5.52 (Elliptic Annulus). An element g € 7 X* is elliptic if g?i = ?, for some lift 7, of some
cone Y; of X*. _ _

An annular diagram A — X is elliptic if the lift of its universal cover A — X™ actually lifts to a
cone Y;.

Note that when A is elliptic, both boundary paths P., P_ of A represent elliptic elements (or rather,
conjugacy classes) in 1 X™.

A typical elliptic annulus A — X* contains a single cone-cell that overlaps with itself at an internal
path that is not a piece. As opposed to the typical situation in a disk diagram, it is impossible to
“reduce” A by combining the cone-cell with itself. When a cone Y; of X* contains an interesting square
annulus, then one obtains an elliptic annulus which is disguised by being built out of squares - though
it could be replaced by a single self-overlapping cone-cell as above. There are two special cases worth
mentioning: Any elliptic element yields an elliptic annulus that is isomorphic to a subdivided circle. If
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Figure 115. Elliptic Annuli.

Y; contains a hyperplane that is stabilized (without inversion) by some element g € Aut(Y;), then this
data yields an interesting elliptic annulus that looks like a closed square annuladder. More generally,
in the B(6) case, we regard an elliptic annuladder carrying the dual curve of some wall as a length O
annuladder. See Figure[TT3]

Lemma 5.53 (Elliptic subannuli merge). Suppose X* is a small-cancellation complex, and internal
cone-cells have negative curvature, and Y is superconvex for each cone Y, and contiguous cone-pieces
are finite (or more generally, have trivial stabilizers in 1 X).

If an annular diagram A contains two or more essential elliptic annular subdiagrams. Then they are
associated to the same cone Y.

An annulus is essential if its boundary paths are essential in X*.

Proof. Reduce as much as possible, and consider the annular subdiagram bounded by two nontrivial el-
liptic annuli. We can assume there is no essential elliptic annular subdiagram between them (otherwise
consider consecutive pairs).

Let B denote the annular subdiagram between (but not including) them, and consider a generalized
corner of a square or a nonnegatively curved 6-shell along dB. The former would absorb into one of
the two elliptic annuli, and likewise, the latter must be absorbable or replaceable since the defect sum
around it would be exactly 2. (In both cases, the interesting situation is where the corner or outerpath
is at the transition in the elliptic annulus.)

Thus B is not just a flat annulus as in Lemma [2.10]but an actual product. If B contains squares, then
the superconvexity of cones absorbs the square ladders along the outside. If B contains no squares, then
B would be an infinite contiguous cone-piece between the two distinct cones associated to the elliptic
annuli on either side of 0B, thus these cones are the identical, and the elliptic annuli merge. Note that
the assumption that the elliptic annuli are nontrivial implies that B represents a nontrivial conjugacy
class in X* and hence in X, so B is infinite. ]

We now briefly focus on elliptic W-annuladders which are defined in Definition[5.67} The following
is similar to Lemma [5.33

Lemma 5.54. Suppose X* is small-cancellation and B(6) and superconvex cones. Suppose A — X*
is a reduced annular diagram, containing an essential elliptic annulus and an essential W-annullader.
Then they are the same.

Sketch. Let B denote the diagram between the W-annuladder and the elliptic annulus such that B in-
cludes the former but not the latter. Then B has nonpositive curvature on the W-annuladder side, and
negative curvature on the elliptic annulus side.

One first concludes that B equals the W-annuladder, and one then concludes that the W-annuladder
absorbs into the elliptic annulus. O
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5.15. Annular Diagrams and the B(8) condition.

Definition 5.55. [Generalized B(8) condition] The following conditions will restrict the structure of
certain annuli:

(1) [Strict metric small-cancellation] For each closed path S Q in a cone Y, if Qy(S') < m then either
IS| < |Q| or S Q is nullhomotopic in Y.

(2) [Negative curvature relative to walls] Let S be a path in ¥ whose first and last 1-cell are dual to
hyperplanes in the same wall. If Qy(S) < 7 then these 1-cells are dual to the same hyperplane,
and S is homotopic into this hyperplane in Y.

(3) [Negative Curvature] For each closed cycle P — Y, if Qy(P) < 2n then P — Y is nullhomo-
topic.

Remark 5.56 (Comparison with Definition 5.1).
Condition [5.55(3)) strengthens Condition [5.1] (2).
Condition [5.55](T)) strengthens Condition

Condition [5.55/ () strengthens Condition [5.1](5).

Definition 5.57. A W-ladder in a diagram is a ladder containing a dual curve mapping to a wall W of

X, it provides a generalization of a square ladder containing a dual curve. Since a cone-cell can offer

multiple continuations of a W-ladder, we will often choose continuations that yield a simple dual curve,

and more specifically, a simple W-ladder is an embedding on its interior. On the other hand, we will

sometimes consider an entire dual graph instead of a dual curve, and then obtain a branched W-ladder.
We will often use the term cladder when suppressing the associated wall W.

Lemma 5.58 (W-ladders cannot self-cross). Let A — X* be an annular diagram whose outside bound-
ary A is collared by a wall W, in the sense that A lies on N(W).

Let L — A be a W-ladder that is dual to a 1-cell of A dual to W. Then L cannot self-cross, in the
sense that it passes through the same square in non-parallel 1-cells, or the same cone-cell in I-cells
that map to distinct walls in the corresponding cone.

Moreover, L cannot end on another I-cell of the outside boundary of A unless it too is dual to W.

Proof. This is true for a disk diagram because of Theorem

Let A — A be the universal cover of A, and observe that A is collared by the universal cover of the
collar of A. If L self-crosses in A then a pair of distinct lifts of L in A cross each other. Connecting them
along the collar of A, this gives a self-crossing W-ladder within a disk diagram, which is impossible by
Theorem

Similarly, if L enters A on a 1-cell on the outside boundary that is dual to W but exits at a 1-cell on
the outside boundary that is not dual to W within the collar, then the lift of Lin A does the same thing,
which is impossible. We refer the reader to Figure[116] |

Theorem 5.59 (® Conjugate into wall). Suppose that (X | {Y;}) satisfies the conditions of Definition[5.1]
and additionally, the strengthened conditions of Definition and in particular Definition[5.53](1).
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Figure 117.

Lety — X* be an immersed essential circle that has minimal length within its homotopy class in X*.
Suppose 7y is homotopic to a closed path A that lies in the carrier of a wall of X*. SoAC N = N(W), or
equivalently, 1 — X factors as A — N — X*, where N = (y)\N.

Let A be an annular diagram between y and A, and suppose that A is reduced and of minimal
complexity subject to A — N varying within its homotopy class in N, and subject to A having one side
equal to the fixed copyy C X of the universal cover of y, and the other side lying on a fixed copy of
N C X*.

Then A is a square diagram in X, and vy lies on one side of a flat subannulus, whose other side 7y’
lies in the local convex hull of A in A.

We refer the reader to Figure for two possible scenarios. In the second case, y is homotopic to a
path in a square annulus in N. In the first case y is homotopic to a more general annulus in N containing
cone-cells.

Remark 5.60. We note that y lies in T(W) if 7y intersects N(W) in a point. Indeed this follows by
combining the above result with Theorem However, in general it is possible that 7y is disjoint
from 7(W) and even E(W). Indeed, the simplest example is the subdivided cylinder [0, n] X S I We
let y denote {0} X S I and we let W denote the universal cover of {n — %} x S1. Then 7% does not lie in
N(W) = T(W) = E(W) which equals [n — 1,n] X S .

The proof shows that this is essentially the only possible failure, in the sense that if A does not lie
along a square annulus of N then ¥ is forced to intersect N(W).

Proof. Let A be an annular diagram as in the hypothesis of the theorem. So the inside boundary path
of A is y which is of minimal length (among closed paths in X) in its homotopy class in X*, and the
outside boundary path of A is a path 4 — N(W), and A is reduced in the sense that it doesn’t have
removable square bigons, or absorbable squares or replaceable cone-cells or combinable cone-cells,
and furthermore there does not exist a local complexity reduction achieved by pushing A across some
square or cone-cell that maps to N(W). We note that all such reductions preserve the “class” of A in the
sense that the lift of A at ¥ has the property that the outside boundary path lifts to the same fixed copy
of N(W) no matter what local reduction is performed above.

If v’ has a common point with A then the result follows from Theorem which states that a
geodesic starting and ending on the carrier is square homotopic into the carrier.

As suggested by the first and second diagrams in Figure our choice of A implies that A cannot
pass through any dual 1-cell of W. For then, following a simple W-ladder emanating from this dual
curve, we are able to find a lower complexity annulus of the same class, using a different choice of A but
the same y. Note that this W-ladder cannot self-cross within A, as each of the various self-intersection
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possibilities are ruled out by Theorem as established in Lemma We note that pushing A
inwards to absorb a single cell of A that maps to N reduces the complexity without effecting the class.
However, the more global explanation we offer that follows an entire W-ladder within A also covers the
case of an isolated 1-cell on A which is traversed twice by A.

We shall now choose annular subdiagrams A, and A, with the following properties: A, will be a
square annular diagram within A between y and another path y’ of the same length, and A, will be the
remaining annular diagram, so that A equals the union of A, and A, along y’. Moreover, we choose
A, Ay such that the (#(cone-cells), #(squares)) complexity Area(A,) is minimal among all possible
decomposition choices with y fixed but other features varying as above.

There is a W-ladder consisting of a sequence of cones and squares in N which support the path A.
We choose this sequence so that it is minimal in the sense that it uses as few cones as possible, and
then as few squares as possible. Choosing a basepoint the path A is expressible as a concatenation
of subpaths that either travel along connecting square ladders or paths in cones that start and end on
O-cells dual to distinct hyperplanes in the same wall (of the intersection of W and a cone). In the latter
case, it is possible for the path to start and/or end on a piece containing a dual 1-cell, but the starting
and ending dual 1-cells are dual to distinct hyperplanes in the same wall. This can be remedied by first
adding some arcs or “backtracks” to A.

We now augment A by attaching along A an “annular” W-ladder L corresponding to the above con-
catenation of paths. As illustrated in the fourth diagram of Figure[TT8] let B = A, U, L. We refer the
reader to Construction 5.211

We now form the rectified annular diagram B from B as in Section and then examine the possible
positively curved cells in B. There is no outerpath of a generalized square in B along y’, for then we
could push the square across ¥’ to reduce the area of A, (at the expense of increasing Area(A,). We
refer to Figure for illustrations of this and the next few excluded possibilities. In each case, the
possibility is illustrated in a diagram above, and the “reducing action” is illustrated directly below it.

For 6 < m, there is no 6-shell with outerpath Q along y’, for otherwise, denoting its boundary by QS
with Q outer and S inner, we would have Q(S) < 7 and hence by Condition [5.55](T), either |S| < |Q|
so v’ and hence y — X™ is not of minimal length in its homotopy class, or the 6-shell bounded by QS
can be replaced by a square diagram, thus reducing the complexity.

There is no outerpath of a generalized square along the part of the boundary of B in dL — A. Indeed,
any such outerpath would necessarily lie along one of the connecting square ladders of L, but then A4
can be pushed across this generalized square to reduce Area(A,) while remaining on N.

Generalizing our earlier reduction when vy intersects A at some point, we observe that: if some cone-
cell C of L intersects y’, then we can cut B along C leaving copies Cy, C, of C at each end, to form a
diagram D whose boundary path is a concatenation y’c;fc, where € is a path along L — A, and ¢y, ¢;
are paths on C. This is illustrated in the final pair of diagrams in Figure [IT9] The arguments above
show that D has no positively curved cells except for Cy, C;, and hence Theorem@] shows that D is a
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ladder. This completes the proof in this case, as it follows that ¥’ = A lies on T = (y)\T(W), and hence
v lies in the local convex hull of A within A.

Now assume that no cone-cell C of L intersects ¥/, so in particular, each cone-cell in B is either
internal, or is a #-shell consisting of a cone-cell not in L that has outerpath along the inside of B on v/,
or is a 6-shell consisting of a cone-cell in L whose outerpath lies on the opposite side of L from A.

By Condition [5.55](3), each internal cone-cell has negative curvature. Since we have already ex-
cluded 6-shells with 6 < & having outerpath along 7’ above, we see that any such #-shell along y’
would have negative curvature. For each cone-cell in L, its innerpath S passes through 1-cells dual to
distinct hyperplanes in the same wall. Thus, by Condition [5.55/(2), if Q(S) < =, then the 1-cells are
dual to the same hyperplane, and S is homotopic into this hyperplane by a square diagram. We could
therefore have used a connecting square ladder in place of this cone-cell, in this case. This is impossi-
ble as it violates the minimality of our choice of L. We conclude that €(S) > 7 for each innerpath of
cone-cell in L, and so any such cone-cell yields negative curvature.

In summary, there are no outerpaths of generalized squares, each #-shell has § > 7 and is hence
negatively curved, and each internal cone-cell is negatively curved. Since y(B) = 0, we see from
Theorem [3.15] that there are no cone-cells in B.

We conclude that either L contains a cone-cell, in which case v’ is forced to lie on (or rather factor
through) N as above (since each such cone-cell must intersect y’), and A = A, is a square diagram with
v lying in the local convex hull of A. Or, L is a width-1 square annulus consisting of the product of a
I-cube and a subdivided circle. In this case, by Lemma[2.10] B is then a “flat annulus” in the sense of
Lemma[2.10] Thus A is a square annulus. i

5.16. Doubly Collared Annular Diagrams.

Theorem 5.61 (Doubly Collared Annulus). Ler (X | {Y;}) satisfy the B(6) conditions of Definitions

as well as the no inversion condition given in Lemma Let A — X* be an annular diagram with

boundary paths a1, @, that are essential in X*. Suppose that the lift of its universal cover A > X* has

the property that the induced lifts of a; — X* lie on carriers of walls N = N(Wy) and N, = N(W>).
There exists a new annular diagram B such that B is reduced in the sense that it has no:

(1) cancellable square bigons,

(2) absorbable squares along cone-cells,

(3) absorbable (cancellable) pairs of cone-cells,

(4) outerpaths of generalized corners of squares on its boundary,
(5) cone-cells that are replaceable by square diagrams,
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(6) cone-cells on its boundary that are replaceable by square ladders (with no adjustment of inter-
nal boundary path).

B contains a pair of annuladders Ly, L, mapping to Ny, N, where L; is a Wi-annuladder. Each
L; — B is an embedding and B deformation retracts to L;. For each i, the path B; is one of the
boundary paths of L;. Then B has one of the following two structures:

(1) Either B is thick in which case Ly, Ly have disjoint interiors and lie along the boundary of B in
the sense that B1, 8> are the boundary paths of B.

(2) Or B is thin and B is itself an annuladder. =~ We emphasize that in this case 1,82 might not
equal the boundary paths of B.

Finally, B lies in the same class as A in the sense that the lifts of A and B have: &;, B lie in the same
translate of N; for each i, and «;, B; represent the same conjugacy class in each Stab(N;) (and hence in
T X" as well).

We refer the reader to Figure for illustrations of the thick and thin cases of an annular diagram
B together with the annuladders L, L, inside it.

Proof of Theorem[5.61] Preliminary Note: The thick case arises when the translates of W; and W,
under consideration do not cross the same cone or square. Then the diagram B can be chosen to be the
union of a minimal (#(Cone-cells), #(Squares)) complexity annular diagram A’ — X* in the same class
as A, together with minimal complexity annuladders L; — N; each having a common boundary path
with A”.

The thin case arises when W and W, cross, or are equal to each other. Note that there is a degenerate
case where L; = L, that arises in this situation.

A minimal annular diagram in the class: Let E be an annular diagram in the same class as A
with boundary paths ¢; that represent elements conjugate to «; in Stab(N;). Suppose moreover, that the
complexity (#(Cone-cells), #(Squares)) of E is minimal among all possible such diagrams.

Properties conferred by minimality: The minimality ensures that E is reduced in the usual sense,
of having no bigons, cancellable pairs of cone-cells, absorbable squares, generalized corners of squares
on cone-cells, or replaceable cone-cells. However, the minimality ensures there are other properties
related to “compressions into the boundary”.

If E has a square or cone-cell with a 1-cell along &; and this square or cone-cell maps to N; under
the map E — X*, then we could push g; through this square or cone-cell and obtain a lower complexity
diagram in the same class. Thus no such configuration exists.

If E has a cutpoint, then this cutpoint subtends a subpath of either €1 or &, which bounds a disk
diagram that is a subdiagram of E. Chopping off this disk diagram, and replacing this subpath by
a point reduces the complexity but does not effect the class. We can therefore assume that no such
configuration exists.
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Accordingly, if e; is a 1-cell on g; whose lift is dual to a 1-cell of W; then e; must be an isolated 1-cell
of E and the other boundary path &; must also pass through e; (which cannot be a cut-cell as above).

Finally, if &; contains the outerpath cd of a corner of a generalized square of E, and this length-2
path lies along the external boundary of a length-2 square W;-annuladder (more concretely, there is a
1-cell e; dual to W; that forms a square with corners ce; and el.‘ld in Y*) then this generalized square
can be pushed out of the diagram, to decrease the complexity while maintaining the class.

The thick case: In case W and W, don’t cross the same square or cone and aren’t equal, then &;
cannot pass through a 1-cell ¢; lifting to a dual 1-cell of W;. Indeed, as above, such a 1-cell is forced
to be an isolated 1-cell of A that also lies on &; (here i # j). A cone or square dual to W; in N; that
contains e; on its boundary is crossed by both W; and W;.

We shall now assume that no such 1-cells ey, e, are traversed by &1, &;.

Minimal W;-annuladders: For each i, (following a procedure similar to Construction [5.21)) we let
L; — N; be a W;-annuladder having &; as one of its boundary paths, and moreover, assume that L; is
chosen to have minimal (#(Cone-cells), #(Squares)) complexity among all such choices with &; fixed.

Forming B in the thick case: We now form the thick annuladder B = L; U,, E U, L, by gluing
Ly,L, along g1,&x t0 E.

We are assuming here that the lifts L, and L, do not “cross” the same cone or the same square
(possibly even along the same dual 1-cell).

We now verify that B is reduced and has the desired properties. Since E is reduced, we need only
consider the interaction between cells in L;, Ly, and the interaction between cells in E with Ly, L. A
cancellable pair of cells between L;, L, would lift to the same cell (i.e. square or cone) in X and hence
Y*, and would imply that either Wy, W, cross in some square or both cross some cone or are equal.
A cancellable pair of cells between L;, L; would violate minimality if they are already adjacent in L;.
Minimality would also be violated if we could replace a cone-cell by a square diagram without effecting
g;. A cancellable pair of cells between L;, L; that are not already adjacent would mean that these cells
are adjacent in E, and hence g; passes through a cutpoint which would violate the minimality of E as
above. A cancellable pair between a cell in L; and a cell in E would imply that there is a cell of N;
within E along the boundary of g;, contradicting the minimality of E, as above. Finally, a corner of
a generalized square along B would have to come from a square within E, since for any square in L;,
one of the dual curves of this square lies entirely in L; and doesn’t meet dB. But, such a corner of a
generalized square within E was ruled out by the minimality of E above.

Forming B in the thin case: The case where L1, L, cross the same cone or square is very closely
related to, and could probably be treated by applying Theorem but we will give an independent
treatment here.

Bouncing 1-cells: The bouncing 1-cells of W; are those 1-cells b’ , bé, bg ... in g; that are dual to W;
in the W;-annuladder L;, and actually lie in its interior (note that it is possible for such dual 1-cells to
occur on the boundary of L; along cone-cells). The proof hinges upon reducing the number of bouncing
1-cells, so that the 2-complex B = L U,, E Ug, L, is in fact an annular diagram since &; is a boundary
path of L;. We can nevertheless form the complex B above when there are bouncing 1-cells, and a
typical such situation is illustrated in Figure [I21]

The eventful 1-cells of E are those 1-cells with the property that they are isolated, and either in &
and dual to W) or in &; and dual to W>, or are the location of a cancellable or absorbable pair of 2-cells
between L;, L;, if we were to form B. We emphasize that a 1-cell may be eventful for more than one
reason. As explained above, and as is clear from the cancellable pair possibility, each eventful 1-cell is
an isolated 1-cell of E that is traversed by &; on one side and &; on the other side. There is thus a cyclic
ordering of eventful 1-cells in E.
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Figure 121. The nonplanar 2-complex B = L; U, E U,, L, will be adjusted to produce a thin
annular diagram.

Ficure 122. Slide bouncing events to the cone-cells and then rechoose cone-cells: We slide
the events in the diagram on the left to obtain the diagram on the right. Note that the shaded
parts of E are forced to have no squares. The cone-cells in the adjusted diagram are a bit larger
and absorb more squares from the other ladder than they did before. We then rechoose the
cone-cells to absorb squares where bouncing events occur, and thus obtain a planar B.

Outline of construction of thin annular diagram: As the construction of the thin annulus has
complex supporting details, we outline the plan before proceeding. See Figure[122]

®1 Configurations that violate minimality of L;, L,: We will show below that our minimality
conditions on E, L1, L, restricts the nature of the sequence of eventful 1-cells as follows:

(1) There does not exist a cancellable pair of squares at a non-bouncing eventful 1-cell unless
W, = W,.

(2) There does not exist a cancellable pair of squares at a bouncing eventful 1-cell.

(3) If a, b, c are consecutive bouncing eventful 1-cells and b is dual to W; and b lies on a square in
L; then either a or ¢ has a cone-cell on the L; side, and the event is absorption of a square of L;
into this L; cone-cell.

@2 Sliding events to cone-cells: Each bouncing eventful 1-cell of L; that lies on a square is either
preceded or succeeded (or both) by a cone-event. We now use this to “slide” the bouncing eventful
1-cells so that they all occur on a cone-cell instead of a square. This involves rechoosing E, Ly, L.

@3 Rechoosing cone-cells: After absorbing squares and cone-cells at the absorption-events, we
obtain a complex B’ that has all its events on cone-cells, and in particular, has all its bouncing events
on cone-cells. The parts of B’ between consecutive cone-cells are collections of rectangles forming a
contiguous or non-contiguous cone-piece. We remedy the nonplanarity of B by rechoosing the cone-
cells to build a new complex B that is the desired (planar) thin annular diagram.

©4 “Zipping” when W; = W,: A simple argument shows that L;, L, can be “zipped together”
and that E is a subdivided circle when there is an absorption of squares or cone-cells that implies that
Wi =W,.

We now describe the argument. An important first step is to restrict the types of events.

There is no cancellable pair of squares (unless W; = W,): The minimality of E, and our hypoth-
esis that we are considering consecutive bouncing 1-cells will imply there cannot be a cancellable pair
of squares in B between L1, L,. Indeed, let s be such a square in L; intersecting L; in a bouncing 1-cell,
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Ficure 123. The left diagram shows that a cancellable pair of squares between L, L, cannot
occur except at a bounce as illustrated in the middle. In this case, the orientations shows that
the square-bounce is consecutive with a cone-event as on the right.

BHBIROEESS

Ficure 124. Replacing the ladder L along C with a shorter square ladder L’.

and suppose that the 2-cell in L; across from this 1-cell is s* with s and s" canceling across it. As in
Figure[123] we could either absorb a cell within E into L; as illustrated on the left (thus contradicting
minimality of E) or s is incident with L; at another 1-cell as illustrated on the right. In this case, we
see that L; has an earlier bouncing 1-cell, and moreover (keeping track of the illustrated orientations)
using 2-sidedness of W, in N; there must have been an even earlier one besides this. Note that the cell
prior to s” in L; must be a cone-cell for this to occur.

With a bit more analysis, we now show that this bouncing square-square cancellable pair preceded
by the cone-cell C is impossible as it violates our minimality assumptions. As in the third diagram in
Figure @], the wall W; enters L; at the top of the C. Consider the ladder L in L; between its square s;
that cancels with a square s; in L; and the first cell in L; that either W; enters or is a square that absorbs
into C or a cone-cell that combines with C. See the fourth diagram in Figure [123]

In the case where W; enters L; or a square absorbs into C (and both of these are essentially can-
cellable pair situations), then we note that L is entirely formed from squares, since a cone-cell could be
compressed out of L; thus reducing its complexity. Consequently, we find that s; can be absorbed into
C.

The other case to consider is where there is no cancellable pair, and W; simply enters L;.

Firstly consider the case where it enters at a square. Now, L is again a square ladder, since as above,
otherwise a cone-cell can be compressed out of L;. As the bottom external boundary path of L forms
a single wall-piece with C, and this piece starts and ends on 1-cells dual to the same wall, applying
Conditions and [5.1](5), we find that the path in C compresses onto the W, wall in C. We are
thus able to adjust L; by replacing L with a ladder L’ having two fewer squares. See the first three
diagrams in Figure

Secondly consider the case where it enters at a cone-cell. Now we apply Conditions[5.1](5) and find
that there is a corner of a generalized square in L; on C, and we use this to decrease the length of L; as
in the last four diagrams in Figure This is very similar to the arguments used in the 2nd and 3rd
cases of Figure (128

Consecutive events: We now show that for (maximal) consecutive events at 1-cells a, b, after ab-
sorbing cells one obtains a diagram that is either: a ladder having exactly two cone-cells at the two
events; or there is a cone-cell at one of these events and a bouncing square at the other and the reduced
subtended diagram looks like a generalized corner of square on a cone-cell; or there are two bouncing
squares and the subtended diagram looks like a bigonal square diagram; or a single cone-cell - arising
from a ladder that bounces twice on a cone-cell and absorbs into it - see Figure We will later
restrict these options further using our minimality assumptions.
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Ficure 126. Each subdiagram of B starting and ending at an event (after absorptions) is either
a single cone-cell, a ladder with exactly two cone-cells, a corner of generalized square on a
cone-cell, or a bigonal square diagram.

¥
A T
Ficure 127. It is possible for L; to bounce twice in a row on a cone-cell C, but the minimality

of E implies that there are no squares between, and the minimality of L; implies that this part
of L; absorbs into C.

The key point is that the subdiagram subtended by consecutive events is already nearly reduced,
and has very little possibility for positive curvature. The parts within each of Ly, L, E are reduced, and
the parts between L; and E are reduced, so the only possible reduction is between L1, L, - at the two
ends of the subdiagram. When two cone-cells are combined there is no further reduction, (except that
such an absorption between cone-cells could provide a new cone-cell that is replaceable by a square
diagram - but we can make this replacement at the end of the entire process) and when a cone-cell in
L; absorbs a square in Lj, it is a priori possible for some sequence of further absorptions of a sequence
of squares of L; to absorb into this “prolonged” cone-cell. A subsequent absorption of a cell in E with
this cone-cell remains impossible, since it could have been absorbed to begin with, thus decreasing the
complexity of E. We note that the degenerate case where everything (a square ladder) on one side is
absorbed into the cone-cell is one of our possible conclusions.

The only global features that could prevent the diagram from being reduced are: a generalized corner
of a square - necessarily from a square at one corner to a cone-cell at the other; or a bigonal square
diagram - between squares at the two corners.

Having obtained a reduced diagram, the collars from L;, L, ensure that there are only two possible
places sources of positive curvature, and so Theorem [3.36|ensures that we obtain a ladder between two
cone-cells.

Restricting further: Bouncing 1-cells on the same side or an alternating triple: A consecutive
pair of square events contradicts the minimality if they both bounce from L; to L;. We refer the reader
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Ficure 128. If a square bounce is consecutive with a cone absorption event, then we slide it
over to bounce on the cone. The 2nd and 3rd cases lead to a decrease in the L;, L, complexity
and thus do not arise.

‘L!L‘F‘mm " ‘  ‘ ; VR, AR
+ SOHMORGRER «ﬁ_u_t_u_u_y

Ficure 129. Two consecutive square events on the same side, or three alternating square events
allow the reduction of the L, L, complexity.

Ficure 130. One or two (alternate) square bounces cannot be all, for otherwise a carrier would
be 1-sided.

Ficure 131. On the left, the innerpath o of the middle cone-cell, is the concatenation of two
pieces so Q(0) < m, and hence the cone-cell can be replaced by a square ladder. A similar
argument holds for the second diagram. The pair of diagrams on the right, illustrate that a
cone-cell cannot be prolonged by absorbing squares from the other ladder.

to the top of Figure @l Moreover, if there is a bounce from L; to L;, followed by L; to L;, followed by
L; to L; again, one also yields a reduction as on the bottom of Figure@l As illustrated in Figure @I,
we use that W; is 2-sided in N; to see that a single square bounce or two alternate square bounces are
not everything.

Sliding bouncing 1-cells to cones: For each i, we are able to slide the bouncing 1-cells of L; so they
occur on a cone-cell of L;. We refer the reader to Figure[128] We note that by assuming first that we are
in a situation with a minimal total length of L;, L;, we can assume that the bottom sequence can never



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 94

Ficure 132. We rechoose the cone-cells so that square ladders end on disjoint arcs. There can
be many ways of doing this, as illustrated on the top two.

~L—

Ficure 133. If W; = W, are identified because of a cancellable pair, then we consider the next
event to prove that L;, L, do not diverge. Not that the 4th and 5th diagrams are impossible.

occur, since it reduces one of the lengths, since ultimately a square can be absorbed into a cone. The
top sequence is typical. The middle sequence can be assumed not to occur as we did for the bottom
sequence. Note that the last two diagrams in the middle sequence are interchangeable (but differ on &;),
indicating that bouncing 1-cells can be passed across a rectangle in L; that is absorbable into a cone-cell
in L je

Choosing new cone-cells: Having performed the above moves, we can now assume that each event
is either an absorbable pair of cone-cells between L;, L;, or a square (or sequence of squares) in L; that
is absorbable into L; (or vice-versa).

Moreover, the diagram between successive events is a (grid) rectangle.

We now show how to choose a cone-cell for each such event, such that the rectangular diagram on
its left and right can be attached to it in a way that allows us to create an annular diagram. We refer the
reader to Figure[I32]

When Wi, W, fold into each other: We now consider the case where there is a cancellable pair
of squares between L;, L, along a 1-cell that is not dual to either Wi, W,. A similar situation arises
when there is a cancellable pair of squares or cone-cells along a 1-cell dual to both Wy, W,. These
situations are very special as they immediately imply that W; = W5, and have global consequences as
we construct the annulus.

Consider the subdiagram starting at such a cancellable pair and ending at the next event. See Fig-
ure A priori, we do not know that (as illustrated) the W;-ladders from this cancellable pair to the
next event consist entirely of squares, however we shall conclude that this is the case. We note that
the final case, indicating that W;, W; cross in a square is impossible by Theorem The second to
last case will also be impossible since we will show that the two 1-cells on the terminal cone-cell are
adjacent, and they are also adjacent or in the same piece on the other side. It follows that the cone-cell
compresses which violates our minimal choice of L;, L;.

There is some initial sequence of cancellable pairs of cells, and we consider the first two that do
not cancel. For instance, in Figure [I33] there might be three such consecutive cells. We consider the
diagram obtained by chopping off the sequence of cancellable pairs, and identifying the boundary along
the last pair of dual 1-cells of W;, W}, as in Figure @ If the next event is a similar cancellable pair of
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Ficure 134. The parts where L, L, diverge would yield impossible collared diagrams after
identifying 1-cells or absorbing on each end.

squares, then we perform the same operation on that side. If it is a cone event, then we simply absorb
into one cone, and let it be the final cell of our diagram.

The resulting diagram is reduced but has no positive curvature. It is thus impossible by Theo-
rem|3.15] or in fact Theorem [3.40

We reach the conclusion that the two hyperplanes in the cone-cell of the next event, are not only in
the same wall, but in the same hyperplane, as in fact, the dual 1-cells are adjacent and fold into each
other. See Remark [5.111

This conclusion passes from cone-cell to cone-cell as we go around the diagram. Indeed, at each
stage, successive pairs of dual 1-cells are dual to the same wall in the cone (from the previous stage), but
lie in the same piece (from the next stage) and thus lie in the same hyperplane. We can thus apply the
argument above to choose appropriate cone-cells. Moreover, if desired, we can simplify each cone-cell
so that the W;-ladders occupy the same position all the way around, and the result is a single annuladder
that is both a W;-annuladder and a W;-annuladder. O

Corollary 5.62. Suppose B(8)-Conditions [5.55(2) and are added to the hypotheses of Theo-

rem Then either B is thin, or B has no cone-cells and is thus a square annular diagram B — X.

Proof. Suppose B is a thick ladder containing W-annuladders L; and L, on its inside and outside, such
that L;, L, have disjoint interiors. Condition @@) implies that any internal cone-cell is negatively
curved and Condition [5.55](2) implies that any cone-cell with a single boundary arc is a negatively
curved 6-shell (since it lies on L; or L;). These would be impossible by Theorem @ and so these
cone-cells are replaceable. Thus in the thick case, B must be a square diagram. O

Remark 5.63 (Elliptical degeneracy). There is an elliptical annuladder case to consider in the proof
(or at least the conclusion) of Theorem[@ This arises when the L; or L, complexity is either (1,0)
or (0, m) and moreover the initial and terminal dual 1-cells of the annuladder do not form a piece where
they are joined up in the (1, 0) case (and something similar in the (0, m) case). In this case, one or two
of Ly, L, is an elliptical annuladder. Then L, L, are forced to merge within the annuladder B into a
single elliptical annuladder following Lemma[5.53]

When only one is elliptical, say L,, then we need a bit more work - and we must assume that
internal cone-cells have negative curvature. We let By = L; U, E be the subannulus of B that meets
L, along &,. Observe that B; has nonpositive curvature along L;. Any generalized corner of square
along &, could be absorbed into the elliptical annulus L;, and likewise any 8-shell with 6§ < 0 would
be replaceable by a square diagram or absorbable into L, since otherwise it would yield an internal
cone-cell. Since there is no positive curvature along L, and no nonnegatively curved cone-cell along
& nor any corner of generalized square on &;, we see that E is a product square annulus. If we assume
cones are superconvex, then if L, is nontrivial, then £ would absorb into L;, so we can assume E is
a subdivided circle. If L; has no cone-cells, then it too would likewise be absorbed into L,. So let us
assume it has at least one cone-cell C. In the split-angle case Condition [5.1}(3) suffices to show that C
is replaceable or absorbable into L,. In general, Condition[5.53](2)) is sufficient.

The above shows that the thick case is ruled out when one of L;, L, is elliptic. The thin case is
already dealt with in Lemma[5.53]

This is dealt with in Lemma[3.54] as well.
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Ficure 135. To verify Condition . Each wall in cones of (X | ¥;) maps to a single equiva-
lence class of hyperplanes in X, but a single equivalence class has connected intersection with
each piece in each cone.

Ficure 136.

5.17. Malnormality of wall stabilizers.

Theorem 5.64. Let (X | Y;) be a cubical presentation satisfying the conditions below. Then Stab(W) is
almost malnormal in w1 X* for each wall W.

(1) B(6) and B(8) conditions of Definitions[5.1|and and the no inversion condition of Lemmal[5.25]

2) {mHy,...,n1Hy} is a malnormal collection of subgroups of m{X when {H1, ..., Hy} argdistinct
immersed hyperplanes of X that are images of hyperplanes in the same wall W of X*. (See
Definition[I2.2])

3) F0~r egch Y € {Y;} and hyperplanes hlf hy C Y, and lifts ?{1,7{2 contained in a lift Y of Y to X*:
if hy, hy lie in hyperplanes Hy, Hy of X* that belong to the same wall of W, then hy, hy cannot
lie in the same cone-piece of Y.

Remark 5.65. Condition (3)) is difficult to check in practice, but is instead verified through the follow-
ing scenario which represents a stronger condition. The hyperplanes of X are partitioned into equiv-
alence classes. For each i, the hyperplanes of each wall of Y; map to hyperplanes in X that are in the
same equivalence class. The union of all hyperplanes of X in an equivalence class have connected
intersection with (or more generally, preimage in) each piece of each Y;. This is illustrated heuristically
in Figure[I35]

For instance, we will later use this to verify Condition (3) in a situation where all hyperplanes of X
embed, each wall of ¥ maps to the same hyperplane in X, and the injectivity radius of hyperplanes of
X exceeds the diameter of the largest cone-piece or wall-piece in any Y.

Remark 5.66. Condition (3)) is equivalent to the following: For any cone Y in X*, if W, W, are walls
in X* intersecting Y in hyperplanes hy, hy: If W = gW, for some g € 71X, then Ay, h; cannot lie in the
same cone-piece of Y.

Condition (3)) implies that the dual curves illustrated in the first diagram of Figure [I36] actually lie
within the same hyperplane in each of the cones (receiving the cone-cells). If this is not the case for
a pair of dual curves in the second diagram of Figure[I36] then that pair of dual curves does not have
lifts contained in the same wall of X*.

Definition 5.67 (Annuladder). We use the term annuladder for an annulus with the structure of a
ladder as in Definition [3.35] but we now include the possibility of a square ladder. We use the term
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Ficure 137. If gW NY and W N Y diverge (by not passing through the same piece) then
NW)NN(EgW) =Y.

W-annuladder to mean that its universal cover maps to N(W) and there is a W dual curve within it that
generates 7.

Proof of Theorem[5.64] Let N = N(W) be the carrier of the wall. Let B be the diagram provided by
Theorem [5.61] By Corollary B is either thin or it has no cone-cells and is a square diagram.

In the latter case, B represents a homotopy in X between closed curves in distinct immersed hyper-
planes H;, H, of X where H;, H, are components of their preimages in X* that lie in the same wall W.
Condition (2) on malnormality implies that H; = H, and that B can be homotoped into the carrier of
H, (relative to B1,5,). In particular, B is homotopic into N = Stab(W)\N relative to 31,8, and we find
that 31, 8, are conjugate in Stab(W) and hence the same holds for a1, a;. Note that the above argument
deals with the case that B contains no cone-cell (whether it is thick or thin).

We now examine the case where B is thin. The case where B contains no cone-cell is dealt with
above. Now B contains a pair of annular W-ladders L, L, passing through each cone-cell of B and
traveling around B so that each generates 71B. We now use Condition [5.64/(3) to see that the dual
curves of L1, L, lie in the same hyperplane in each cone (at entrance and exit). We refer the reader to
Figure This gives us a homotopy between 31 and 3, within N.

Alternate argument in the hyperbolic case (our intended application): When H is a quasiconvex
subgroup of a word-hyperbolic group, almost malnormality of H is equivalent to: H8 N H contains an
infinite order element if and only if g € H. Thus, in our case of greatest interest, when X* has compact
cones, and X* is o-hyperbolic and N is quasi-isometrically embedded, it suffices to verify the above
condition. When the cones of X* are finite, an infinite order element cannot be represented by an
elliptic annulus. There are then pieces between consecutive cone-cells in B, and it is this which allows
us to see that B — X* factors as B — N — X*. (Or alternately, that B lifts to N )

When one or both of the annuladders L, L, in B are elliptical annuli, then Lemma[5.54]and Lemma[5.53]
imply that L; = B = L, is a single elliptical annulus. (Moreover, we can assume that it is built from a
cone-cell and not a square ladder, as the latter case was dispensed with above.) Now, however, there is
no cone-piece between consecutive cones - and so we are no longer able to deduce from Condition (3)
that W; = W,. _ .

Instead we argue as follows: The elliptic annulus B has B lifting to a cone Y in X* where Y C
(N N gN). The subgroup H N gHg™! equals Stab(N) N Stab(gN), which is a subgroup of Stab(N N gN),
and this is a useful statement since N N gN # 0.

There are then two cases: Either NNgN = N, in which case g € Stab(/N) = Stab(W) so g € Stab(W).
Or NN gN =Y, in which case Stab(N) N Stab(gN) < Stab(Y). The former case arises when 1-cells
dual to (Y N W) lie in the same piece as 1-cells dual to (¥ N ghW). The latter arises when they are in
different pieces, for then N N gN = Y by Corollary We use here that (Y N gW) doesn’t cross or
osculate with (Y N W) in Y, and we use that a piece of Y does not contain 1-cells e, f such that e is dual
to (YN W) and fis dual to (Y N gW) unless (Y N W) = (Y N gW). m|

Lemma 5.68. If W is 2-sided in N and its hyperplanes map to a collection of embedded disjoint
hyperplanes in X then Stab(N) = Stab(W).
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Ficure 138. Since the annulus B is thin, Condition implies that the two annuladders travel
through the same immersed wall W — X*, and hence B — X* factors through the immersed
carrier N — X* consisting of cones and carriers of hyperplanes.

[+ (D+0 G

Ficure 139.

Proof. It is obvious that Stab(W) c Stab(N). To see that Stab(N) c Stab(W) we suppose that gN = N
and need to show that gW = W. If there are no cones in N then we use that W is a single embedded
hyperplane of N to see that 71X automorphisms of W are in one-to-one correspondence with 71X
automorphisms of N. If there is a cone Y in N, then we can translate by an element 2 € Stab(W), so
that hgY = Y. It then suffices to verify that hg € Stab(W). But hg(W N Y) and W N Y are translates of
the same wall in Y that lie in the same piece, and are thus the same wall by Condition (3), so hgW = W.

O

Remark 5.69 (Concrete Version). Consider a (possibly degenerate) rectangular square diagram be-
tween two cone-cells corresponding to a piece between the corresponding cones. Suppose the hyper-
planes dual to a side S of the rectangle lying along the cone Y are all distinct, except for the first and
last 1-cells that are dual to the same hyperplane H. Thus, the intermediate path joining these 1-cells is
a local geodesic (and hence a geodesic in the CAT(0) piece).

Then S lies along N(h) where h = H N'Y. We refer the reader to Figure[139]

More generally, we should be able to slice off parts of the rectangle whenever there are duplicated
hyperplanes in S, until we reach the situation above. Alternately, we might be able to choose our
cone-cells so that S has the desired properties a priori.

6. SpeciaL CuBeE COMPLEXES

In [HWOS|] we defined “special cube complexes” and examined some of their properties. In Sec-
tion [6.2| we review the definition of special cube complexes in terms of illegal hyperplane pathologies,
and we state the characterization in terms of local isometries to the cube complex of a right-angled Artin
group. In Section[6.4] we review the definition of canonical completion and retraction. The hyperplane
pathology definition of special cube complex arose from our desire to define canonical completion and
retraction above dimension one. Subsequently, we realized that this was equivalent to a local isome-
try to the cube complex of a right-angled Artin group. Many other aspects of special cube complexes
are explored in [HWOS], [HWa] and [HW10] including various conditions which imply that a cube
complex is virtually special. The material in Section [6.5]is new.
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Figure 140. Immersed Hyperplane Pathologies

6.1. Hyperplanes. A midcube of the n-cube [—1, 1]" is the subspace obtained by restricting exactly
one of the coordinates to 0. A hyperplane Y in the CAT(0) cube complex C, is a connected subspace
whose intersection with each cube is either a midcube or is empty. The 1-cubes intersected by Y are
dual to Y. For a CAT(0) cube complex, there exists a hyperplane dual to each 1-cube, and more-
over, hyperplanes are themselves CAT(0) cube complexes with respect to the cell structure induced by
intersection, and are convex subspaces in the CAT(0) metric [[Sag935].

We now define an immersed hyperplane in an arbitrary cube complex C. Let M denote the disjoint
union of the collection of midcubes of cubes of C. Let D denote the quotient space of M induced
by identifying faces of midcubes under the inclusion map. The connected components of D are the
immersed hyperplanes of C.

6.2. Hyperplane Definition of Special Cube Complex. We shall define a special cube complex as a
cube complex which does not have certain pathologies related to its immersed hyperplanes.

An immersed hyperplane D crosses itself if it contains two different midcubes from the same cube
of C.

An immersed hyperplane D is 2-sided if the map D — C extends to a map D X I — C which is a
combinatorial map of cube complexes.

A 1-cube of C is dual to D if its midcube is a O-cube of D. When D is 2-sided, it is possible to
consistently orient its dual 1-cubes so that any two dual 1-cubes lying (opposite each other) in the same
2-cube are oriented in the same direction.

An immersed 2-sided hyperplane D self-osculates if for one of the two choices of induced orienta-
tions on its dual 1-cells, some O-cube v of C is the initial 0-cube of two distinct dual 1-cells of D.

A pair of distinct immersed hyperplanes D, E cross if they contain midcubes lying in the same cube
of C. We say D, E osculate, if they have dual 1-cubes which contain a common 0-cube, but do not
lie in a common 2-cube. Finally, a pair of distinct immersed hyperplanes D, E inter-osculate if they
both cross and osculate, meaning that they have dual 1-cubes which share a 0-cube but do not lie in a
common 2-cube.

A cube complex is special if all the following hold:

(1) No immersed hyperplane crosses itself

(2) Each immersed hyperplane is 2-sided

(3) No immersed hyperplane self-osculates

(4) No two immersed hyperplanes inter-osculate

Example 6.1. Any graph is a 1-dimensional cube complex that is special.
Any CAT(0) cube complex is special.
The cube complex associated to a right-angled Artin group is special.

6.3. Right-angled Artin group characterization. A special cube complex is automatically nonposi-
tively curved. In fact, we give the following characterization of special cube complexes in [HWOS]:

Proposition 6.2. A cube complex is special if and only if it admits a combinatorial local isometry to
the cube complex of a right angled Artin group.
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A quick explanation of Proposition [6.2|is that for a local isometry B — C, the prohibited hyperplane
pathologies on C induce the same prohibited pathologies in B. On the other hand, if C is special, then
we define a graph I whose vertices are the immersed hyperplanes of C, and whose edges correspond
to intersecting hyperplanes. Then there is a natural map C — C(I') which is a local isometry.

6.4. Canonical completion and retraction. We refer to [HWO0S8, [HWal| for more details about the
following fundamental property of special cube complexes:

Proposition 6.3 (Canonical completion and retraction). Let f : Y — X be a local isometry from a
compact nonpositively curved cube complex to a special cube complex. There exists a finite degree
covering space G(Y — X) — X called the canonical completion of f : ¥ — X such that f : Y —» X
lifts to an embedding f: Y - C(Y - X) — X, and there is a retraction map C(Y — X) — Y called
the canonical retraction.

It follows that 71 Y is separable in ;X since virtual retracts of residually finite groups are separable.
As explained in [HWOS]|, when X is virtually special compact and word-hyperbolic, any quasiconvex
subgroup H C m X is separable. Indeed, H can be represented by a compact based local isometry
Y — X by Proposition Thus H is a virtual retract. The analogous separability results hold in the
sparse case as discussed in Theorem[16.23]

6.5. Extensions of quasiconvex codimension-1 subgroups.

Definition 6.4 (K-partitions and K-walls in G). Let G be a finitely generated group with Cayley graph
I'(G, S) and let K be a subgroup of G. A coarse K-partition of G is a collection of subsets {G1,...,G,}
withG = G U--- UGy, thatis K-stable so for each k € K the translate kG; coarsely equals some G; in
the sense that the symmetric difference kG;AG; lies in KC for some compact C. We shall assume that
each pair G; # G is K-coarsely r-separated in the sense that for each r > 0 we have N,.(G;) N N.(G)
lies in KC where C is some compact subset of y(G,S). With these last properties in mind, we will
regard two partitions as K-equivalent if their differences lie in KC for some C. We shall also assume
that there is some r > 0 so that each G; is coarsely r-connected in the sense that G; lies in a single
component of N,.(G;) inI['(G, S).

While our arguments work in general, we have in mind the case of a K-wall which is a K-partition
consisting of two subsets, and especially the situation where K is a codimension-1 subgroup, and each
of these sets is K-deep in the sense that it doesn’t lie in N.(K) for any r. For instance one set might be
a K-deep component of I'(G, S ) — N,(K), and the other set equals its complement.

Parts of {G1, ..., G,,} that are not already K-deep, could be absorbed into other parts without affect-
ing the intention of the situation, so one normally assumes that each part is K-deep.

We note that if G’ is a finite index subgroup of G, then we obtain a K-partition {G", ..., G,,} of G’ by
setting G; = G; N G for each i, and if each part of G is K-deep, then so is each part of G’. Conversely,
if {G},...,G,,} is a K-partition of G’ with K-deep parts, then (up to K-equivalence) it is associated to
a unique K-partition of G. Indeed, we let G; = N,(G}) N G where r is chosen so that G C N,(G"). Note
that each G; is K-deep since G/ is K-deep, and note that K-stability holds since if kG is coarsely the
same as G;. then kG; is coarsely the same as kG ;.

Definition 6.5 (Extension of K-partitions). Let H be a subgroup of G, and let K be a subgroup of
H, and let Hy, ..., H,, be a coarse K-partition of H. We say that Hy,..., H,, extends to a coarse K’-
partition {G1,...,Gy;,} of G if K’ is a subgroup of G with K’ " H = K, and {H N Gy,...,H N Gy} is
K-equivalent to {Hy, ..., Hy).

We say that the subgroup H C G has the extension property for K-partitions if each K-partition of
H extends to a K’-partition of G.
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The goal of this section is to prove the following:

Theorem 6.6 (Quasiconvex Extension Property). Let G be the fundamental group of a compact special
cube complex X. Let H be a subgroup represented by a compact based local isometry Y — X. Let K be
a subgroup represented by a compact based local isometry Z — Y. Then any K-partition of H extends
to a K’'-partition of G such that K’ is represented by a compact local isometry Z' — X.

Remark 6.7. It is conceivable that Theorem [6.6 holds under the weaker assumption that H is a virtual
retract of G, but some work would be needed to produce and ensure that K’ is quasiconvex.

We will prove Theorem [6.6|focusing on the case where the K-partition of H has no shallow parts.

Proof. Let {Hi,...,Hy,} be a K-partition of H. LetZ be a lift of the basepoint z of Z to Y. Choose 7 s0
that distinct H;z do not intersect the same component of Y - N, (Z) (The intuition here is that each H,z
lies in the connected subspace Uy . snuz20)S UN, (Z) where S varies over the components of Y-N, (Z)
We would insist that a shallow H/z lie within Nr(Z).)

By Propositionm 3l N.(Z) lies in a K-cocompact convex subcomplex ZicY and let Z, = K\Z;.

Pass to a finite based cover ¥ — Y such that Z; — Y lifts to an embeddmg in Y. For instance, we
could let Y = CZy > 7). Let H= mY and assign the K-partition {Hl, ..., H,} where H HnN H;
for each i.

Consider the canonical completion C(? — X) and the canonical retraction C(? - X) - Y. Itin-
duces an equivariant retraction map X — Y that fixes Y.

Let Z{ denote the base-component of the preimage of Z; in C(Y - X),and let K’ = m1Z; . Note that
Z! is locally convex by Lemma-

Observe that K’ N H = K by Remark- 0] (with Y playing the role of Y).

Let ZJr denote the base component of the preimage of Z{ in X. We consider the subsets Xj, . ..., X,y of
X- Zf that retract to the distinct coarsely connected subsets of Y-Z corresponding to {H 12y ens I/-I\mE}.

Let J C G be the subset with Jz C Zf Partition J into J; U - - - U J,,, such that H; N J C J; (there are
many ways to do this, but they are all coarsely the same). Now define G; so that it contains J; and all
elements g; with g;z C X;.

This yields a K’-partition of G that extends the K-partition of H. We have thus reached our goal of
extending our original K-partition of H, as the K partition of H extends to a unique K partition of H.

The construction extends deep sets of the K-partition to deep sets of the K’-partition. This is because
the combinatorial retraction map is distance non-increasing, but fixes the subcomplex Y. Therefore, if
some part G; lies in Ny(K”) for some s, then its image H; lies in Ny(K) and is thus not deep. |

The wall case of the following corollary is an important ingredient in the hypotheses of Proposi-

tion

Corollary 6.8. Let G be a word-hyperbolic group with a finite index subgroup G that is the fundamental
group of a compact special cube complex. Let H be a quasiconvex subgroup of G and let K be a
quasiconvex subgroup of H that also lies in G. Then any K-partition of H extends to a K’-partition of
G such that K’ is quasiconvex.

Proof. Let H = GNH, and note that the K-partition H;LI- - -LIH,, of H induces a K-partition H;LI- - -LIH,,
of H where H; = H N H,.

Theorem [6.6] provides a K’-partition G; U --- U G,, of G extending the K-partition of H. Finite
neighborhoods G; = N(G;) provide a K’-partition of G itself that extends the K-partition of H. O
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Lemma 6.9 (Locally Convex Canonical Preimage). Let X be special. Let Y — X be a local isometry
with Y compact. Let Z C Y be a locally convex subspace.

Consider the canonical completion and its canonical retraction map ¢ : C(Y - X) — Y. Let
Z* = ¢ Y(Z). Then Z* is a locally convex subspace of C(Y — X).

Before proceeding with the proof, we note that, after subdividing some of the cubes in C(¥Y — X)
that are not in Y, the map ¢ is a cubical map - it maps cubes to cubes (of possibly lower dimension)
by maps modeled on I"*" — " that collapse dimensions. This subdivision is denoted Cg(Y, X) and
discussed in [HWal].

Proof. Suppose two 1-cubes e, e; are adjacent along a 0-cube v with e1,e2,v € Z*. Suppose e, ez
form the corner of a 2-cube ¢ at v in C(Y — X). If ¢(e}), ¢(ez) form the corner of a 2-cube at ¢(v)
then it must be ¢(c¢), and moreover ¢(c) lies in Z by local convexity of Z in Y, and so ¢ is in Z*. The
alternative is that one of ¢(e;) or ¢(ey) collapses to ¢(v), or perhaps that both collapse to ¢(v). In the
former case ¢(c) must collapse to ¢(ez) or ¢(eg), and in the latter case ¢(c) collapses to ¢(v). But either
way, we again see that ¢(c) C Z so cisin Z*. O

Remark 6.10. Choose a basepoint in Z ¢ Z* ¢ C(Y — X), then: m;Z* N mY = m1 Z.
Indeed (mZ* NmY)>om(Z*NY)=mZ.
And (mZ* nmY) = ¢(mZ" NmY) C ¢p(mZt) = m Z.

The following result presumes familiarity with sparse cube complexes as treated in Definition |16.4

Theorem 6.11. Let X be a sparse special nonpositively curved cube complex. The quasiconvex exten-
sion property holds for quasi-isometrically embedded subgroups of w1 X whose intersections with par-
abolic subgroups have a compact core. In particular, it holds when the subgroup is quasi-isometrically
embedded and has either trivial or finite index intersection with each parabolic subgroup.

Proof. By Proposition there is a compact geometric representative ¥ — X. Now the proof follows
as before. ]

Remark 6.12. When G is locally-quasiconvex and virtually sparse special, every K-wall in H extends
to a quasiconvex K’-wall in G. The difficulties in the proof of Theorem are merely in ensuring the
quasiconvexity of the subgroup K’ induced by retracting.

Remark 6.13 (No new parabolic slopes). Let P be a parabolic subgroup of 71X, and observe that the
hyperplanes of X determine a wall structure on P.

Let K’ be a new wall of 711 X arising from a K-wall in a quasiconvex subgroup H C 7 X as produced
by Theorem

Then K’ does not contribute essentially new walls on P in the following sense: Let F be the cubical
convex hull of some orbit PX. Then, each new wall in X either cuts F parallel to some hyperplane of
55, or F lies in one (or both) halfspaces associated to the new wall.

Algebraically, we have PN (K’)$ is either finite or is equal to P, or is commensurable to PN Stab(D)
where D is some hyperplane in X.

The reason for this is as follows: By the construction given in Theorem [6.6] the wall is represented
by a compact local isometry Z — X, and hence by a convex combinatorial subcomplex Z cX. 1t
must therefore intersect F in a wall that is a convex combinatorial subcomplex, and is thus limited by
the original combinatorially available possibilities.

Masters gave a pretty argument showing that every finitely generated free subgroup of a 3-dimensional
closed right-angled hyperbolic Coxeter group lies in a quasifuchsian surface subgroup [MasO8]. We
can use the material developed here to give a variation on his result:
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Theorem 6.14. Let X be a compact special cube complex with w1 X word-hyperbolic. Let H be a
quasiconvex subgroup of m1 X that is not of finite index. Then H lies in a codimension-1 quasiconvex
subgroup of m X.

Proof. By Proposition[8.2] let Y — X be a compact local-isometry with 7Y = H. Since H is qua-
siconvex and has infinite index in 71X we can choose an element a such that (H,a) = H «Z. (We
could likewise choose a, b to obtain H = F, and produce an amalgamated product over H below.) Let
K = (H,a). Let Z — X be a compact core for K so 711Z = K, and note that we can assume that Y C Z
(indeed, we can rechoose the core for H in K at this stage). Now extend the codimension-1 (splitting)
subgroup H C K to a codimension-1 (splitting) subgroup H’ C G’ of a finite index subgroup G’ of G
and hence to a codimension-1 subgroup of G itself. Note that A’ is just 7r; of the based preimage of Y
under the canonical retraction of C(Z — X) — Z. O

Problem 6.15. Does Masters’ theorem hold for quasiconvex free subgroups of higher dimensional
right-angled Coxeter groups?

Is every quasiconvex free subgroup of a word-hyperbolic compact special group contained in a
surface subgroup?

Can one recover his theorem for special hyperbolic 3-manifold groups using our method?

Problem 6.16. Let G be virtually sparse special. Does G have the extension property with respect to
any quasiconvex H-wall in an arbitrary quasiconvex K subgroup of G? In particular, does this hold
when K is a parabolic subgroup?

6.6. The Malnormal Combination Theorem. In [HWal| we prove the following:

Proposition 6.17. Let Q be a compact nonpositively curved cube complex with an embedded 2-sided
hyperplane H. Suppose that w1 Q is word-hyperbolic. Suppose that 1iH C 71 Q is malnormal. Let
Ny(H) denote the open cubical neighborhood of H. Suppose that each component of Q — N,(H) is
virtually special. Then Q is virtually special.
Here is a more general formulation that permits torsion: Let G act properly and cocompact on a

CAT(0) cube complex é Suppose there is a 2-sided hyperplane H such that:

(1) Stab(H) is almost malnormal in G,

2) gH NH= 0 for each g € G — Stab(H).

(3) Stab(H) preserves each component of N, (H)

(4) For each component X X of Q GN, (H) the group Stab(X) has a finite index torsion-free sub-

group J such that J \X is special.

We note that Condition (3]) holds in a finite index subgroup so long as Condition (2) holds.

7. CUBULATIONS

7.1. Wallspaces.

Definition 7.1. Haglund and Paulin introduced the notion of a wallspace to abstract a property that
arises in many natural scenarios, and especially for Coxeter groups [HP98||. A wallspace is a set X

together with a collection of walls each of which is a partition X = N UN into halfspaces, and such
that moreover, #(p, g) < oo for each p, g € X where #(p, g) equals the number of walls separating p, g.

The fundamental example of a wallspace is the 0-skeleton of a CAT(0) cube complex, together with
a system of walls associated to the hyperplanes.
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(e G

Ficure 141. The dual cube complex on the left is a tree, the one on the right is 2-dimensional.
The n-cubes correspond to certain n-fold collections of pairwise crossing walls.

7.2. Sageev’s construction.

Definition 7.2. Let G be a finitely generated group with Cayley graph I'. A subgroup H C G is
codimension-1 if it has a finite neighborhood N,.(H) such that I' — N,(H) contains at least two H-orbits
of components that are deep in the sense that they do not lie in any N (H).

For instance any Z" subgroup of Z"*! is codimension-1, and any infinite cyclic subgroup of a closed
surface subgroup is as well. We note that an edge group of a nontrivial splitting is codimension-1. We
also note that if the coset diagram H\I" has more than one topological end, then H is codimension-1.
There is a closely related notion: H is divisive if I' — N,(H) has two or more deep components. Every
codimension-1 subgroup is divisive, however there are divisive subgroups that are not codimension-1
The difficulty is that the action of H on I' might permute the deep components of I' — N,(H). When
I' — N,(H) has finitely many deep components, there is a finite index subgroup H* C H whose action
stabilizes each of these components, and one obtains a multi-ended coset diagram H’\I', which is
equivalent to H’ being codimension-1 in G.

Given a finite collection of codimension-1 subgroups Hy, ..., H; of G, Michah Sageev introduced a
simple but powerful construction that yields an action of G on a CAT(0) cube complex C that is dual
to a system of walls associated to these subgroups [Sag935]].

For each i, let N; = N,,(H;) be a neighborhood of H; that separates I" into at least two deep compo-

— =
nents. The wall associated to N; is a fixed partition {N;, N;} consisting of one of these deep components
— - —

N; together with its complement N; = I' — N;, and more generally, the translated wall associated to g/V;

is the partition {gﬁ i» gﬁ,-}. The two parts of the wall are halfspaces.

We presume a certain degree of familiarity with the details of Sageev’s construction here, but hope
that any interested reader will mostly be able to follow the arguments. We shall not describe the
structure of the dual cube complex C here but will describe its 1-skeleton. A O-cube of C is a choice of
one halfspace from each wall such that each element of G lies in all but finitely many of these chosen
halfspaces. A wall is thought of as facing the points in its chosen halfspace. Two 0-cubes are joined by
a l-cube precisely when their choices differ on exactly one wall. See Figure [I41] for two particularly
simple dual cube complexes.

The walls in I" are in one-to-one correspondence with the hyperplanes of the CAT(0) cube complex
C given by Sageev’s construction, and the stabilizer of each such hyperplane equals the codimension-1
subgroup that stabilizes the associated translated wall: The stabilizer of the hyperplane corresponding
to a translated wall associated to gN; is commensurable with gH;g ™.

Sageev’s construction naturally decomposes into two separate ideas. The first is that a collection
of codimension-1 subgroups yields a wallspace. The second is that a wallspace yields a dual cube
complex (see [CNO5, NicO4] for more details on the latter).

7.3. Finiteness properties of the dual cube complex. Cocompactness properties of the action of G
on the CAT(0) cube complex dual to a wallspace associated to a collection of codimension-1 subgroups
was analyzed in [Sag97]] where Sageev proved that:
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Ficure 142. Heuristic picture of a cosparse cubulation.

Proposition 7.3. Let G be a word-hyperbolic group, and Hy, ..., Hy be a collection of quasiconvex
codimension-1 subgroups. Then the action of G on the dual cube complex is cocompact.

We refer to [HWDb] for a more elaborate discussion of the finiteness properties of the action obtained
from Sageev’s construction, as well as for background and an account of the literature.

In parallel to Proposition is a properness criterion which we state as follows (see for instance
[HWDb]). We use the notation #(p, g) for the number of walls separating p, g.

Proposition 7.4. If#(1,g) — oo as dr(1,g) — co then G acts properly on C.
The main theorem in [HWb] generalizes Proposition[7.3to a relatively hyperbolic context as follows:

Proposition 7.5. Let G be a f.g. group that is hyperbolic relative to a collection of parabolic subgroups
Py,...,Ps. Let Hy,..., Hy be a collection of quasi-isometrically embedded codimension-1 subgroups
of G. Let C denote the CAT(0) cube complex dual to the G-translates of W1, ..., Wy. For each i, let C;
denote the CAT(0) cube complex dual to the walls in P; corresponding to the nontrivial walls obtained
from intersections with translates of the W;, and note that C; embeds in C as a convex subcomplex.
Then:

(1) there exists a compact subcomplex K such that C = GK U;_, GCj, and
(2) giCing;C; C GK unless i = jand gj_.lgi € Stab(C)).

Remark 7.6. We may further assume that GK is connected. Indeed, since G is finitely generated, and
C is connected, one can add a collection of paths §; to K such that each §; starts at the basepoint in K
and ends at the translate of this basepoint by the i-th generator of G.

We are most interested in the following corollary which is the source of cosparse CAT(0) cube
complexes (see Definition[16.4). The first explicit appearance of such cosparse CAT(0) cube complexes
was in the CAT(0) cube complexes associated to B(6) small-cancellation groups [Wis04]] (they were
called “cofinite” there). However the notion is certainly a general phenomenon associated to relative
hyperbolicity.

Corollary 7.7. Let G be hyperbolic relative to virtually free-abelian subgroups. Let W; be a finite
collection of quasi-isometrically embedded codimension-1 subgroups (or rather walls in I'(G)). Then
G acts cosparsely on the CAT(0) cube complex associated to this system of walls.

7.4. Cubulating Amalgams. We now summarize the results from [HWc]. As the main statement is
rather technical, we first give an imprecise simplification that disregards certain facilitating conditions.

Quasi-Theorem. Ler G split as A *¢ B or Axci—¢. And suppose that G is hyperbolic relative to
virtually abelian subgroups, and that C is malnormal and quasiconvex in G. If A, B act properly and
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cocompactly on CAT(0) cube complexes then G acts properly on a CAT(0) cube complex dual to a
system of walls associated to quasi-isometrically embedded subgroups.

A subgroup H C G of a relatively hyperbolic group is aparabolic if it has finite intersection with
each (noncyclic) parabolic subgroup of G.
A slightly simplified version of the main result from [HWc] is:

Proposition 7.8. If G has all the following properties then G acts properly on a CAT(0) cube complex,
and the stabilizers of the hyperplanes are quasi-isometrically embedded.

(1) G is hyperbolic relative to f.g. virtually abelian subgroups.

(2) G splits as an amalgamated product G = A ¢ B.

(3) A and B are fundamental groups of compact (or more generally, sparse) nonpositively curved
cube complexes (or more generally, they act properly on CAT(0) cube complexes with corre-
sponding quotient).

(4) The two embeddings C..,C_ of C are relatively quasiconvex in their vertex groups.

(5) the embeddings C_ C A and C, C B are almost malnormal.

(6) the embeddings C_ C A and C,. C B are aparabolic.

(7) C has separable quasiconvex subgroups.

(8) There are quasiconvex subgroups H1, ..., H, of C and H;-walls in C such that C acts properly
on the resulting cube complex.

(9) Each H;-wall of C, extends to an Hf‘-wall of A and an Hf—wall of B, where HIA, HZB are quasi-
convex subgroups of A, B.

Alternately, we can assume the following slightly more flexible possibility:

yand (6f) C. is almost malnormal in B and C, is aparabolic in B.

yand () There is a system of walls for A so that A acts properly and cosparsely on the resulting cube
complex such that there are induced Hi-walls for C, and each such H;-wall extends to an H lB -
wall in B.

In the HNN case we have the following adjusted statements:

@ G splits as Axc.
@ C is quasi-isometrically embedded in G.

@) {C.,C_} are an almost malnormal pair of subgroups of A.

([E]) {C,C_} are aparabolic in A.

@) There are quasiconvex subgroups Hy, . .., H, and H;-walls of C, so that C acts properly on the
resulting cube complex.

@) Each H;-wall of C, and each H;-wall of C_ extends to an HlA—wall.

A more general version requires that only C. be malnormal and aparabolic at the expense of assum-
ing there is a cubulation of A with only unpaired excess walls at C... Specifically, the walls induced by
C_ C A are precisely the walls of C, and the walls induced by C C A are the walls of C together with
some additional excess. We will illustrate this in a specific case in the proof of Theorem (and not
use it elsewhere).

8. LOCAL-CONVEXITY AND CORES

Definition 8.1. A combinatorial map ¢ : ¥ — X between nonpositively curved cube complexes is a
local-isometry provided that for each pair of 1-cubes ey, e of Y with initial vertex y, mapping to a pair
¢(e1), P(er) of 1-cubes with initial vertex ¢(y), if ¢(e;), #(ez) bound a corner of a square at ¢(y) then
e1, e; bound the corner of a square at y.
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If the inclusion map ¢ : ¥ < X of a subspace is also a local-isometry then we say that Y is a
locally-convex subcomplex.

It is not hard to verify that a local-isometry ¢ : ¥ — X lifts to an isometric embedding Y > X
between universal covers, and is hence 7-injective.

We proved in [SW] (see also [Hag08]]) that:

Proposition 8.2. Let X be a compact nonpositively curved cube complex with 71X word-hyperbolic.
Let H C mX be a quasiconvex subgroup, and let C C X be a compact subspace. Then there exists
an H-cocompact subspace YcX containing C. We refer to Yasa locally convex core containing C.
Likewise, when C is a compact subspace of H \X, we term H\Y ¢ H\X a locally convex core containing
C.

The analogous result holds for G acting cosparsely on a sparse CAT(0) cube complex X with G
hyperbolic relative to abelian subgroups: If H is a quasi-isometrically embedded subgroup then there
exists Y C X such that Y is H -cosparse.

Moreover, if H intersects each free-abelian subgroup of G in either a finite index or trivial subgroup,
then we can choose Y to be H-cocompact.

One can also prove the following (see [HWOS]| for a strong form of this).

Proposition 8.3. Let Y C X be a convex subcomplex of a CAT(0) cube complex. For each a > 0 there
exists b > 0 and a convex subcomplex Y* such that N, (Y) cYtc Nb(Y ) Moreover, assuming X has a
proper group action, we can assume Y* is stabilized by the stabilizer of Y.

8.1. Superconvexity.

Definition 8.4. Let X be a metric space. A subset Y C X is superconvex if for any bi-infinite geodesic
v,if y € N.(Y) for some r > 0, theny C Y. Amap Y — X is superconvex if the map ¥ — X is an
embedding onto a superconvex subspace.

Lemma 8.5. Let H be a quasiconvex subgroup of a word-hyperbolic group G. And suppose that G acts
properly and cocompactly on a CAT(0) cube complex X. For each compact subcomplex D C X there
exists a superconvex H-cocompact subcomplex K C X such that D C K.

Proof. Tt follows from §-hyperbolicity that any infinite geodesic lying in N,(Hx) actually lies in Nos(HX).
Now apply Proposition to obtain a convex cocompact core Y containing N,(Hx). (We remind the
reader that we use the combinatorial metric.)

To see that Y is superconvex, observe that any geodesic in a finite neighborhood of Y, is actually
contained in a 26 neighborhood of Hx, and hence in Y. O

Lemma 8.6. IfY C X is superconvex and cocompact, then there is a non-negative function f : R - R
such that for any length f(r) geodesic segment o that lies in N.(Y), the midpoint of o lies in Y.

Consequently, for any geodesic segment o lying in N.(Y), if 0’ is obtained by removing the initial
and terminal subsegments of length @ then o’ C Y.

8.2. Fiber Products.

Definition 8.7 (fiber product). Given a pair of combinatorial maps A — X and B — X between cube
complexes, we define their fiber product A ®x B to be a cube complex, whose i-cubes are pairs of
i-cubes in A, B that map to the same i-cube in X. There is a commutative diagram:

A®xB — B

) )
A - X
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Note that A ®x B is the complex in A X B that is the preimage of the diagonal D C X X X under the
map A X B — X x X. Recall that D has a natural structure as a cube complex since for any cube Q, the
diagonal of Q? is isomorphic to Q by either of the projections.

Our description of A ®x B as a subspace of a cartesian product endows the fiber product with the
property of being a universal receiver in the following sense: Consider a commutative diagram as
below. Then there is an induced map C — A ®x B such that all the obvious compositions commute.

C - B
l l
A - X

When the target space X is understood, we will simply write A®B. When A, B, and X have basepoints
and the maps are basepoint preserving, then A ® B has a basepoint, and it is often natural to consider
only the base component.

When A — X and B — X are covering maps, then so is A ® B — X. Moreover, let (a,b) € A X B
reflect choices of the preimage of the basepoint x € X, then the component of A ® B containing (a, b) is
the covering space of X corresoponding to 71(A,a) N ny(B, b).

We will now generalize this:

Lemma 8.8. Suppose that X is a nonpositively curved cube complex, and that A — X and B — X are
connected and locally convex, and that A is super-convex. Then the [noncontractible] components of
A ® B correspond precisely to the [nontrivial] intersections of conjugates of m1(A,a) and n1(B, D) in
mX.

Proof. Let X4 and Xp denote the based covers of X corresponding to m{(A, a) and m{(B, b), and note
that there are locally convex embeddings A € X4 and B C Xp.

Suppose that for some a,8 € X the conjugates m{A® N 1B = mX3 N mXﬁ have nontrivial
intersection. o

Remark 8.9. When A — X and B — X are superconvex, then bi-infinite local geodesic pieces between
A and B are precisely the same as bi-infinite local geodesics in A ® B.

Lemma 8.10. If A and B are superconvex then so is each component of A ® B.

When A is connected and superconvex, then miA is malnormal if and only if A® A consists of a diag-
onal component (that is an isomorphic copy of A) together with various contractible components. More
generally, when each component A; of A is superconvex, the malnormality of the collection of conju-
gacy class representatives m1A; C m1 X corresponds to contractibility of all nondiagonal components of
AQ®A.

Remark 8.11 (Small-cancellation and Superconvexity). When (X | Y;) satisfies a small-cancellation
condition asserting that wall-pieces have bounded length, then Y > X is superconvex.

Indeed, consider a geodesic y in X. Suppose that y lies in N.(Y) for some r > 0, but that v ¢ Y.

We can find an arbitrarily large subpath 7’ that is disjoint from Y. We will show that v’ is parallel to
an impossibly long piece of Y.

Let D be a minimal area diagram between y’ and Y in the sense that the boundary path of D equals
1Y 024 where o; are paths from y’ to the endpoints of a path A in 7, and these three remaining paths
can vary among all such paths and D with these properties.

We can ignore arcs of bounded length consisting of spurs at the corners of D (just redefine vy, 4 etc.)

Note that dual curves emanating from a pair of edges on one of the four sides cannot cross each
other. This is because y’ is a geodesic in X, because Y is convex, so we could reduce area by pushing
A inwards, and o; can likewise be pushed inwards to reduce the area.
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Ficure 143.

FiGURE 144. The preimages in ¥ — Y of hyperplanes in Y are walls in ¥. We have indicated

some walls with corresponding labelled edges. The most interesting case is on the right, where
#tw # Hi(=Z2).

Consequently, D is a flat rectangle. In particular, each dual curve travels between o, 0, or between
v’, A. Indeed, a minimal (inward) counterexample going across a corner, would yield a generalized
outerpath of a square on one side or the other, by considering dual curves that it bounds. See Figure[143]

By the pigeon-hole principle, since Y is compact, there are arbitrarily long subpaths of 4 whose
endpoints project to the same point of Y. Let A’ be such a subpath, and note that it projects to a closed
essential path in Y.

Using the fact that D is not a line segment, observe that A" has a hyperplane piece with a hyperplane
represented by a dual curve from o to 0. This contradicts Condition

9. SPLICING WALLS
9.1. A finite cover that is wallspace.

Construction 9.1 (Splicing). Let Y be a connected nonpositively curved cube complex whose hyper-
planes are 2-sided and embedded. Let A(Y) denote the set of hyperplanes of Y. Letg : A(Y) — S bea
map with the property that for each s € S, no two hyperplanes in g~!(s) cross each other.

Consider the homomorphism #, : 1Y — Zg induced by #,(e) = vya,) Where A, is the hyperplane
dual to the 1-cube ¢ and where Zg has basis {vy : s € S}

Let ¥ denote the cover of Y corresponding to the kernel of #,. Let s € S lie in the image of g. Let
W, denote the collection of hyperplanes of ¥ that map to hyperplanes of ¥ which map to s.

Remark 9.2. We have in mind the following situation: ¥ < X is an embedded locally convex sub-

complex of a nonpositively curved cube complex X whose hyperplanes are embedded and 2-sided.
The set S equals the collection A(X) of hyperplanes of X. The map ¢ : A(Y) — A(X) sends a

hyperplane of Y to the hyperplane of X containing it. The map #, : mX — Z’z\(X) sends each path
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o to the Z,-vector whose vp coordinate is the number of times (modulo 2) that o passes through the
hyperplane A. The map #, : m|Y — Z’z\ @) is induced by composition with the natural map ;Y — m X.

Lemma 9.3. For each s € g(A(Y)), the collection of hyperplanes Wy separates Y.

The motivation is to produce a collection of walls in ¥ each of which corresponds to some Wi.

Proof. Consider a closed edge path ¢ in ¥. We must show that & cannot pass through hyperplanes
of W, an odd number of times. If this were the case, then the image o of & in Y would pass through
hyperplanes of ¢! (s) an odd number of times. But then o would not be in the kernel of 7;Y — ZS for

#,(0) would take the value 1 on the vy coordinate. O

We will also employ the following simple method of inducing a wallspace on a cover.

Construction 9.4 (Cover induced wallspace). , Let Y be a nonpositively curved cube complex that is
a wallspace. Let Y’ — Y be a covering space. There is an induced wallspace structure on Y’ where
each wall of Y is the preimage of a wall of ¥, and each halfspace of that wall in Y’ is the preimage of
a halfspace in Y.

9.2. Preservation of small-cancellation and obtaining wall convexity.

Lemma 9.5 (Obtaining w-wall separation). Let (X | Y1, ..., Yi) be a cubical presentation. Suppose that
X has finitely many immersed hyperplanes D, and that for each D and r > 0, there are finitely many
distinct translates g5 with dX(B g5) < r. Suppose that w1 D is separable in m X for each hyperplane D,
and suppose that there is a uniform upper be bound on the diameters of wall- -pieces and cone-pieces. Then
for each 0 there is a ﬁmte regular cover X > X whose induced covers Y, 1., Yy have the following
property: Consider (X | gY 1<i<kge Aut(X)) For any path § — Y that starts and ends on
1-cells of a hyperplane D of X but is not homotopic into D, we have Qy,(S)>6.

The condition on the hyperplanes is naturally formulated in terms of double cosets with short repre-
sentatives and it obviously holds when X is compact.

Proof. By the upper bound on diameters of pieces, for each hyperplane D and each Y;, there are finitely
many nontrivial cosets Dg; represented by elements S with Qy,(S) < 6 for some Y;. By separability
of m; D, we can choose a cover XD separating 71 D from each of these cosets, so that there is no path
S — Y; that lifts to a path S in X that starts and ends on D, and has Qy.(S) < 6, unless S is homotopic
into D.

Let X be a regular cover factoring through each Xp. Then X has the desired property. ]

Lemma 9.6 (Obtaining and preserving wall convexity). Let Y be obtained as in Construction|9. 1| from
Y - X

Suppose that for each path P — Y whose endpoints are on I-cells dual to the same hyperplane of
X, either Q;(P) > & or P is homotopic in X (and hence in Y by local convexity) into the carrier of this
hyperplane. Then the same holds for paths P — Y.

Similarly, suppose Qy(P) > 0 whenever P — Y whose first and last edges are dual to hyperplanes
in the same wall of Y. Then the same holds for paths P — Y whose first and last edges are dual to the
same wall of Y.

Proof. In each case, a path P — ¥ with the above start-end property, projects to a path P — Y with the
same property. The defect Qy(P) = Qy(P). O
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Lemma 9.7. Let {Y; — X} be local isometries of cube complexes. Let ?, — Y; be regular covers
with the following symmetry property: Each automorphism ¢ of Y; — X lifts to an automorphism aof
?,- - X.

For each condition listed in Deﬁnition if (X | Y;) satisfies this condition then so does (X | ?,-).

Proof. For Condition [5.1](3)), we utilize Construction [9.4] to produce the wallspace structure on each
?i, and so if walls of Y; agree with walls of X then so do walls of ?L

The other conditions are almost immediate. The main point is that Y; has fewer essential curves than
Y;, their lengths are the same, and for a path P, we have Qy,(P) = Q?[_(P). |

9.3. ® Obtaining the separation properties for pseudographs.

Lemma 9.8. Suppose that Y has a complete disjoint system of CAT(0) hyperplanes.

Assume something about girth. and maybe something about pieces and hyperplanes in a wall.

Conclude that ?(W has the correct separation properties:

If A, N are distinct hyperplanes in the same wall, then they are at least 4 pieces away from each
other.

For pairs of hyperplanes Kl, Xz, that project to hyperplanes A1, A, that are far from each other
(more than two pieces away), they are separated by a wall [;\\3] such that A3 is far from both A1, Aj.

Let us prove Lemma 9.8 for the case where Y is a graph and the pieces are trees.

Graph Case. We assume that the “pieces” are collections of finite trees {7';}.

If o is a path that starts and ends on the same hyperplane A of Y (note that A is an edge in this case),
then either #w(0) = 0, or #w(0) has a nonzero coordinate on some hyperplane Ay dual to an edge f
outside any tree neighborhood T of A. In the former case o lifts to a path o in Yoy which starts and
ends on the same hyperplane.

In the latter case, o connects distinct hyperplanes A, A, but there is a wall [K r] that separates AN
since o passes through [Kf] an odd number of times. Furthermore, [Xf] is disjoint from the tree
neighborhoods T, T’ of Ae, AL

A similar statement holds for a pair of 1-cells e, d, that lie far apart. Any path o between them
must have an odd value on some edge f in the complement of the disjoint neighborhoods of e, d.
Consequently, any path o projecting to o~ cuts through (A r] an odd number of times. O

General Case. Suppose Y is a special cube complex, and some subset V; of the hyperplanes of Y form
a disjoint complete set of hyperplanes. Then there is a finite cover of Y which is splicable and satisfies
the B(6) separation conditions.

After passing to a finite cover Y there is a combinatorial map Y — T such that T is the graph dual to
the complete disjoint set of hyperplanes. The map is just the map that forgets about (the orientations of)
the other hyperplanes. It is definable in the universal cover, and the map is equivariant, so it is definable
in the quotient space as well.

The remaining hyperplanes map to finitely generated subgroups of m;I", so without loss of generality
we may assume that they map to free factors, and that moreover, they homotopically map to subgraphs
of I'. Indeed, this would be the case after passing to a finite cover. (“Homotopically” is practically
replaced by the idea that they map mj-isomorphically to, and their images are contained in a slight
m-injective uniform thickening of various subgraphs.)

The separation properties between hyperplanes dual to our edges is identical to the proof in the
special case - if they are far enough apart then there is a separating hyperplane - chosen from the
disjoint complete family.
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FiGure 145.

Applying separability results, we should be able to arrange a cover of I such that there is very
large girth relative to I', subgraph. This means, any path that starts and ends on a I', subgraph is
either homotopic into it, or travels quite far away. Thus any path that is nonzero in the wall-count
homomophism would have an odd value on some edge far from I’,.

Similarly, when I';, and I, are sufficiently far away the same holds. O

Remark 9.9. It is important to keep track of a few issues related to torsion.

Firstly there is a trick to get rid of the first layer of torsion- just choose the large girth covers of the
objects we are quotienting, so that they are induced by a particular cover of the special cube complex.
That allows us to get rid of that torsion!

Now, the Z;W torsion can either be left as is in the case of searching for an actual virtual special
quotient. (It leaves walls invariant, so it won’t effect the malnormal hierarchy business).

When we are only interested in a special quotient after applying the forgetful functor to the cube
complex, we might be able to use the Zg” cover induced on each particular quotiented subcomplex.
This would group walls together according to their grouping in the larger complex. We would therefore
need to assume that walls in the subcomplex that map to the same wall in the main complex are VERY
far apart. This plays the role of B(6) small-cancellation, I reckon, so that our walls are quasiconvex -
and perhaps gives malnormality.

We only need geometric separation.

We need hyperplane separation to get linear separators!

The following example has 71 X free, yet there is no complete set of cuts in any finite cover X - X.

Example 9.10. Let X be the square complex obtained by identifying two squares along their vertices.
Then #y # H;(—;Z,) for any finite cover X. See the rightmost diagram in Figure

10. Curring X*

Construction 10.1 (Inflating a single cone with respect to wall). Let Y be a nonpositively curved cube
complex. Let w be a wall consisting of the union of a separating collection of disjoint 2-sided embedded
hyperplanes that do not self-osculate.

Let N°(w) be the open cubical neighborhood of w, and note that N°(w) = wx (-1, 1) by assumption.
There is a natural map w X [—1,1] — Y. Let Y~! and Y*! denote the parts of ¥ — N°(w) on opposite
sides of the wall w so that Y*! contains the image of w X {£1}.

We define C,,(Y) to be the union of the ordinary cones C(Y +*yand C(Y™1) glued together with
C(w)x[—1, 1] by identifying C(w) X {—1} with its image in C( Y~!)and identifying C(w) X {+1} with its
image in C(Y*!). We identify C(w) with C(w)x {0} ¢ C(w)x (-1, 1). We refer the reader to Figure
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Ficure 146. C,,((X | Y1, Y»,Y3,Y4)) has Y; nw with 0,2, 1,0 components respectively.

There is a natural combinatorial map C,,(Y) — C(Y) induced by quotienting the cone-edge to the
cone-point.

Construction 10.2 (Inflated coned space with respect to wall). We now consider (X | Y;), and suppose
that each Y; is a wallspace. Let w be a base-wall of X* consisting of a collection of disjoint hyperplanes
with the property that w; = w N Y; is a wall in the wallspace structure of Y; for each i. Generalizing
the situation where ¥; — X is an embedding, we use the notation w N ¥; for the preimage of w under
the map ¥; — X. We shall inflate the coned off space X* which equals the union X U | J; C(Y;) as
follows: Let C,,(Y;) denote the inflated cone space of Y; with respect to w;. When w; = 0 we simply
let C,,,(Y;) = C(Y;). The base of C,,(Y;) is Y; as usual. Now define C,,({X | ¥;)) to be X U |J; C,,(Y})
where for each i we attach C,,,(¥;) to X along its base using the map ¥; — X.

Note that the map C,,((X | ¥;)) — X that sends each cone-edge to a cone-point and each inflated
cone space to a cone space is a homotopy equivalence.

Observe that the base-wall w has a natural geometric extension w’ in C,,((X | Y;)) consisting of
the union of hyperplanes in w, together with the cone C(w;) on each w; in Y;, which lies in C(w;) X
{0} € C(w;) X (=1,1)). In particular, w’ has an open cubical neighborhood N°(w’) in C,,({X | Y;}))
consisting of the union of open cubical neighborhoods of hyperplanes in w together with the open
cubical neighborhoods C(w;) x (-1, 1) of C(w;) in each C,,,(¥;) with w; # 0.

We will examine the image of 71w’ below by interpreting it, or rather N(w’) = w’ X I as a certain
m-injective subcomplex (it is a subcomplex provided certain non self-osculation assumptions hold),
and use this to understand the splitting of 71 X*.

The splitting of 71 X* is represented geometrically by cutting C,,({X | ¥;)) along w’. In particular,
C,,(X | Y;)) — w’ deformation retracts to C,,({X | Y¥;)) — N°(w’) which equals the space obtained from
X by coning off the various Y;rl and Yl._l. More precisely C,,((X | ¥;)) = N°(W') = C(X = N°(W) | ¥; :
w; =0, Yl.“, Yl.‘1 :w; # 0)). It is often the case that Y;rl or Yi‘1 is not connected, but is treated as one
unit and receives a single cone-point in C,,({(X | Y;)). See Figure

By adding additional splittings (over trivial groups) we can pass to a space which is the coned off
space of the complex (which may have two components) consisting of (X—N°(w) | Yl.il ). The wallspace
structures on Y;*!' and ¥;! are induced by the original wallspace ¥; but we note that a wall in ¥;*! might
have more hyperplanes than in Y;.

Lemma 10.3 (Persistence after cutting). Small-cancellation conditions on (X | Y;) are preserved after
cutting along a wall, and then cutting along cone-points.

In particular, the B(6) and B(8) conditions persist.

The malnormality of a collection of hyperplanes in a base-wall persists.

The injectivity radius of hyperplanes exceeding half the diameters of cone-pieces persists.



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 114

Condition[5.64}(3) ensuring that distinct hyperplanes in the same base-wall cannot be dual to 1-cells
in the same cone-piece persists.

Proof. Each component of ¥;—N°(w) is a nonpositively curved cube complex. And continues to embed
in X — N°(w) as a locally convex subspace.

If Y; was a wallspace, then the walls of a component Z; of Y;—N°(w) are defined to be the intersection
of Z; with walls of Y;.

Lemma implies the persistence of B(6) and B(8).

Lemma [I0.6] verifies that the malnormality of a collection of hyperplanes persists.

We verify in Lemma [10.10] the persistence of Condition[5.64(3). i

Definition 10.4. [Geometric malnormal collection] We say that two annular diagrams f; : A} — X and
f> : Ay — X are equivalent if they have the same boundary cycles P, P’ (in an orientation preserving
manner) so that the diagram below commutes, and moreover, such that there are lifts f Z, — X that
restrict to the same lifts of P, P’.

PUP

s LN
A] d X (—A2

A map Z — X of cell complexes is malnormal if there is no essential annular diagram (A, 0A) —
(X, Z) in the sense that any such map is equivalent to a map (A’,0A") — (Z, Z).

The above notation is meaningful when Z C X is a subspace. More generally, we require that
for each commutative diagram below on the left, there exists A’ — Z such that the middle diagram
commutes and such that the two annular diagrams on the right are equivalent. (Note that d,A consists
of two boundary cycles, and we identify ,A" = d,A.)

A — Z A — Z Ao X

! ! 4 ,
A o X A Al—-Z->X
A prestidigitative use of Definition [10.4|shows that Z — X is mrj-injective on each component if it is
malnormal. Indeed, a disk diagram in X for a path P in Z can be reconsidered as an annular diagram
between P and the trivial path (which could be adjusted to a nontrivial path in Z to accommodate the
annular diagram definition). Homotoping the diagram into Z shows that P is already null-homotopic in
Z.
We now relate the geometric notion of malnormality with the notion from Definition [12.2| of a mal-
normal collection (of conjugacy classes) of subgroups:

Lemma 10.5 (Algebraic and geometric forms of malnormality). Suppose Z — X is a map where X
is connected, and Z is the disjoint union of its components: Z = Uic;Z;. Then {m1Z;} is a malnormal
collection in m X if and only if the map is malnormal.

Lemma 10.6. Let X be a nonpositively curved cube complex. Let {hy, ..., h} be a malnormal collection
of immersed 2-sided hyperplanes in X. Let {w1,...,w¢} be a collection of disjoint embedded 2-sided
hyperplanes. Let X’ = X — N°(Uw;). Let {h;;} be hyperplanes in X" mapping to {hy, ..., h}.

Then {h;;} is a malnormal collection of immersed hyperplanes in X'.

We note that when X’ is not connected, the algebraic version of malnormality must be suitably
reinterpreted.

Downstairs proof. An essential annular diagram A — X’ with boundary cycles mapping to the UN(h;)
determines an annulus in X with boundary cycles in UN(k;). By malnormality of UN(h;) — X,



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 115

|

|

|

|

[

I

|

l

J\

B

Ficure 147.

Lemma implies that A is homotopic to an annulus A — UN(#;), and in particular, into a sin-
gle N(h;). This is illustrated on the left in Figure

Suppose that A’ is chosen so that it intersects {wy, ..., w¢} in a minimal number of components. Note
that all w-dual curves in A” are closed since A’ Nw = 0, and therefore each of these components is a
dual w-circle that is either essential or null-homotopic.

By considering innermost null-homotopic w-circles first, each w-circle bounding a disc in A’ can
obviously be removed through a homotopy without introducing further w-circles. The essential w-
circles come in “facing pairs” as in the annulus A’ on the left of Figure that are joined by a dual
curve in a disk diagram C between the conjugators ¢, ¢’ of A, A’. This diagram C is illustrated between
the annuli A, A’ in the left diagram.

The combinatorial path p along the outside of this dual curve is homotopic to the subpath b’ of ¢’
whose initial and terminal edges are dual edges. Let E denote the disk diagram between p and &’. It is
illustrated as a subspace of the diagram C. Considering lifts E and A’ C N(h;), we see that P has the
same endpoints as »’. We can choose a path " in N(w ) NN (h;) that is homotopic to p and hence »’.
Let D be the disk diagram in N (h ) between b” and b”’. We illustrate D within the configuration of two
crossing hyperplane carriers in X in the middle of Flgure- 7} Note that since p doesn’t cross Ww; we can
assume that " has the same property. This simplifies our next step, for otherwise extra null-homotopic
w-circles would be introduced. Moreover, we can choose D to avoid w; circles by removing them as
above.

Finally we can drag A’ along b’ into D to obtain a new annular diagram A” — N(h;) as on the right
of Figure[I47] This turns the pair of essential circles into the single nonessential circle. We then remove
this as we did earlier. o

Upstairs proof. If there is an annulus (A, 0A) — (X', UN(h;;)), then the malnormality hypothesis gives
an equivalent annulus (A, A) — (UN(h;), UN(h;;)), so these maps restrict to the same map on A and
have equal conjugators, or equivalently, they have lifts to X that restrict to the same lifts of dA. Our
goal is to find another equivalent annulus of the form (A, dA) — (UN(h;;, UN(h;})).

We work in the universal cover N of the component N = N(h;) containing the image of A. Observe
that M = N — No(w) is a convex subcomplex of N. Identifying Z with 7, A, there is a Z-equivariant
retraction map N — M, which takes a point x € N to the unique point in M that is nearest to it.

The composition A>N->M yields the desired map A > N. O

We note that if we used the CAT(0) metric (and not the cubical metric) in the above proof, we would
produce a Z-equivariant homotopy, and this projects to a homotopy A — X to A — X’ fixing 0A.

Lemma 10.7. The B(6) and B(8) conditions persist.
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Proof. We verify the persistence of Condition [5.1](5) as the other properties are proven similarly. Let
X be obtained from X* by cutting along w and then along cone-points, and let ¥ be a cone of Xj
obtained in this way from a cone Y of X*. Let § be a path in Y; that starts and ends on a wall v| of Y}
and suppose Qy,(S) < m. Then § is a path in Y starting and ending on a wall v inducing v; such that
Qy(S) < m. Consequently, by Condition [5.1}(3)) we see that S is homotopic into the carrier of a single
hyperplane u of v.

Consider a minimal area square diagram D between S and a path P on N(u). Obviously, no 1-cell of
S is dual to w. Consequently, no 1-cell of P is dual to w for otherwise, we could reduce the complexity
of D. Indeed, a dual curve in D that is dual to w must start and end on 1-cells of P, and hence we could
push P past it to obtain a smaller diagram D’ between S and a new path P’ that is still on N(u). (This
is essentially an application of Lemma . Since D is disjoint from w, it is a diagram in Y| and we
are done as P’ lies on the carrier of a single hyperplane u; C u. O

We refer the reader to Definition for the notions here. I was unable to resolve the following
problem, but found that the stronger condition in Lemma|10.9|is a workable substitute.

Problem 10.8. Does the metric small-cancellation property of short innerpaths persist?

Lemma 10.9. The following properties persist and they together imply the short innerpath property.

(1) There is a bound By on diameters of pieces in each cone Y.

(2) An innerpaths S with Qy(S) < 1 is the concatenation of a uniformly bounded number of pieces
(For instance, is 5 enough in the split-angling?)

(3) Each essential path in a cone Y has length exceeding twice the sum of the maximal diameter
By of such pieces, and hence exceeding 2Vy(S) for any candidate innerpath S .

Proof. Lower bounds on systoles persist since each induced cone maps to its ancestral cone by a local
isometry. Similarly the upper bound on 2Vy(S') persists since pieces in the derived complex are pieces
in the ancestor. m]

Lemma 10.10 (Wall intersection persists). Suppose that X* satisfies Condition [5.64|(3). Let w be a
base-wall in X*, and let Xi (or Xj, X3 in the separating case) be the cubical presentation obtained by
cutting along w. Then X} (and also X in the separating case) also satisfies Condition [5.64(3).

Proof. Let Y be a cone of X7, and let iy, ki be hyperplanes in the same wall of Y}, and suppose that
hy and k; have dual 1-cells in the same cone-piece of Y;, say associated to a cone Y| along some
rectangular diagram between Y1, Y7.

By construction, Y; is a component of a cone Y obtained by cutting along N(w), so Y7 is either Y™ or
Y~. And likewise Y| arises from some Y’, and the piece between them Y7, Y7 arises from a cone-piece
between Y and Y’ accordingly. In particular, &, k; arise from hyperplanes 4,k in Y that are dual to
1-cells in this cone-piece. Since hy, k; lie hyperplanes in the same base-wall vy of X7, and vy is induced
from a base-wall v of X*, we see that A, k lie in hyperplanes in the same base-wall v.

Condition applied to A, k,v in X* implies that A, k are in the same hyperplane of Y. We refer
the reader to Figure On the left we illustrate that &, k actually lie in the same wall of Y, and
consequently, /4’, k" lie in the same (induced) wall of Y.

On the right of Figure [148|we illustrate that since pieces are CAT(0) and twice the injectivity radius
of hyperplanes exceeds the diameters of pieces, hyperplanes have connected intersection with pieces.

O

Remark 10.11 (Algebraic Splitting). Under appropriate small-cancellation conditions, the geometric
splitting of C,,((X | ¥;)) along w’ induces a splitting of 771 X* along the image of 7w w’.



THE STRUCTURE OF GROUPS WITH A QUASICONVEX HIERARCHY 117

N ()
FiGure 148. Persistence of Condition

Figure 149. Each T; X I added on the right connects the wall in a cone.

Adding Dummy Squares to form X*: It is inconvenient that w N ¥; might be disconnected for
some values of i. We remedy this by adding dummy squares as follows: Let wjy, ..., w;,, denote the
hyperplanes that are the components of w; = w N Y;. Choose 1-cells e;1, ..., e;p, in Y; that are dual to
these. Let T; be a p;-pod which is a tree consisting of a base-vertex v; of valence p;, whose edges end
at leaves v;1, ..., vip,. Consider the square complex T; X I, and now attach a copy of T; X I to ¥; with the
edge v X I attached to ej; (so that the orientations are consistent), and likewise attach a copy of T; X I
to X with the edge v X [ attached to the image of e;; under the map ¥; — X. We do not perform this
procedure when p; = 0 in which case w N Y; =