
CUBULATING MALNORMAL AMALGAMS

TIM HSU AND DANIEL T. WISE

A. We examine conditions on a group G splitting as a graph of groups which ensure that G acts properly
on a CAT(0) cube complex. The system of conditions include: hyperbolicity of G relative to abelian subgroups,
quasiconvexity of the vertex groups, and malnormality and subgroup separability properties of the edge groups.
An additional condition involves an extension property for codimension-1 subgroups.

1. I M R

Theorem A (Special case of Main Result). If G satisfies the following conditions then G acts properly and
cocompactly on a CAT(0) cube complex.

(1) G splits as A ∗C B [or A∗Ct ].
(2) G is hyperbolic relative to free-abelian subgroups.
(3) A, B [or A] act properly, cocompactly, and virtually specially on CAT(0) cube complexes.
(4) C is hyperbolic and C is quasiconvex and malnormal in G.

The lowest dimension nontrivial case of the main theorem yields the following result:

Corollary B. Let G = F1 ∗M F2 be an amalgamated product of two finitely generated free groups where M
is finitely generated and malnormal. Then G acts properly and cocompactly on a CAT(0) cube complex.

Corollary C. Let G = A ∗C B [or G = A∗Ct ] be hyperbolic and assume C is infinite cyclic and malnormal.
If A, B [or A] act properly and cocompactly on a CAT(0) cube complex then so does G.

There are many natural classes of relatively hyperbolic groups that can be built up by a sequence of free
constructions along cyclic subgroups which are thus cubulated as a consequence of this work. Perhaps the
simplest such class, generalizing free groups and surface groups, is the class of limit groups [13, 16].

In [2], Brady and Crisp proved a 2-dimensional rigidity property of a certain group G, and used this to
show that most HNN extensions G∗Z along a cyclic subgroup could not act properly and cocompactly on a
CAT(0) space. They speculated there that low-dimensional actions were hard to imagine. It follows from [19]
that G acts properly and cocompactly on a CAT(0) cube complex. Our results thus imply that their examples
G∗Z act properly and cocompactly on CAT(0) cube complexes.

There are several motivations for establishing these results. Firstly, in his original essay on hyperbolicity
[5], Gromov raised the possibility of whether every hyperbolic group acts properly and cocompactly on a
CAT(0) space. Our results can be interpreted as a very explicit geometrization of a large class of groups. Sec-
ondly, nonpositively curved cube complexes serve as a route towards understanding the subgroup structure,
residual finiteness properties, and linearity of groups. Together with [8] this work is a fundamental piece in a
program to show that many groups arising naturally in geometric group theory are linear and have separable
quasiconvex subgroups, because they embed in right-angled Artin groups. For instance, combining [8] and
[7] with Corollary B we see that each such group is linear.
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F 1.1. Producing sufficiently many immersed walls in a graph of spaces for A ∗C B

There is a growing literature on cubulations of groups and we refer to [11] for a survey. The results
markedly generalize our previous results in [12] where we cubulated hyperbolic groups that split as graphs
of free groups with cyclic edge groups.

Outline of Paper: In Section 2, we show that piecewise geodesics satisfying a certain divergence prop-
erties are quasigeodesics. This can be interpreted as implying that local-geodesics are quasigeodeics – a
well-known theme in the hyperbolic case. This enable us to prove that the “walls” we construct later in the
paper are quasiisometrically embedded.

In Section 5, we describe a method for “recubulating” a compact nonpositively curved cube complex by
amalgamating hyperplanes together along attached collars. This is the most innovative part of the paper
and contains a powerful and flexible construction of a new nonpositively curved cube complex {′ from
an old nonpositively curved cube complex { and certain data. In the subsequent application, { will be
the nonpositively curved cube complex corresponding to a vertex group, and the “data” will be prechosen
cubulations of one or more edge groups.

In Section 6 we first show how to cubulate a graph of cubulated groups with the property that the vertex
groups induce the same system of codimension-1 subgroups on the edge groups. Hyperplanes in the vertex
spaces are joined together along the edge spaces, to form walls in the tree of spaces. The main focus here is
the linear separation property for these walls.

A suggestive approach towards the main theorem could be: First cubulate A and B so that they induce the
same cubulation on C, and then glue the resulting cube complexes together. While it appears the theorem
could indeed be proven like this, there are technical reasons to avoid this approach. The main issue is that
one would have to redefine in an appropriately coarse way what it means for walls to cross each other, since
walls that don’t cross in A might cross in B. We have chosen not to follow this route, but to finesse the issue
by arranging for compatible wallspaces for A and B, and then using an additional cubulation in a graph of
groups. This is done in Section 8 where we prove our main result through a construction combining the
results of Sections 5 and 6.

We now heuristically sketch the overall process described in this paper in the case of a graph of spaces
X = XA ∪ XC × (−1, 1) ∪ XB corresponding to an amalgam A ∗C B. We describe the collection of immersed
walls that are produced in X. Their universal covers provide a system of embedded walls in X̃, and π1X
acts freely on the resulting dual CAT(0) cube complex. We refer the reader to Figure 1.1. [1]: Choose a
sufficient collection of immersed walls in XC and taking their products, we obtain a collection in XC × (−1, 1).
[2]: Extend these immersed walls into XA and XB, and note that some of these extensions might return to
the edge space. [3]: Add a sufficient collection of immersed walls in XA and XB as well as a wall XC × {0}
cutting through the edge space. [4]: Double the immersed walls constructed thus far. [5]: Each immersed
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wall entering an edge space is “turned” back to its double, by entering and wrapping around the edge space
several times.

2. T  

2.1. Background on nonpositively curved spaces with isolated flats. Let G be hyperbolic relative to a set
of virtually abelian subgroups. Suppose G acts properly and cocompactly on the complete CAT(0) space X.
Then X has the isolated flats property [9, 10], meaning:

(1) there are finitely many flats Fi consisting of isometrically embedded copies of Eni with ni ≥ 2;
(2) there exists r = r(X) such that every flat F ⊂ X lies in a translated neighborhood gNr(Fi) for some i

and some g ∈ G;
(3) there is a function f (s) such that for each s > 0, we have Ns(Fi) ∩ Ns(gF j) has diameter ≤ f (s),

unless i = j and g ∈ Stabilizer(Fi).
Let G act properly and cocompactly on the CAT(0) space with isolated flats X. The following relative thin

triangle property is a consequence of [4, Sec 8.1.3].

Proposition 2.1. There exists δ = δ(X) such that the following holds: Let ∆(a, b, c) be a geodesic triangle
in X. Then either ∆ is δ-thin or there exists a flat F in X such that ∆ is thin relative to F in the sense that
there are numbers r(a), r(b), r(c) such that pairs of points at distance s < r(a) from a along ab and ac lie at
distance ≤ δ from each other, and similarly for the b and c corners, and all other points lie in Nδ(F).

Lemma 2.2. Let X be a CAT(0) space with isolated flats such that geodesic triangles are δ-thin relative to
flats. Suppose that for distinct flat representatives Fi, F j we have Nδ(Fi) ∩ F j has diameter ≤ M.

Let γk = λ1σ2λ2 · · ·σkλk be a piecewise geodesic. Suppose there exists L with the following property:
(1) |λi| > 4L + 4M for each i;
(2) λi ∩ N2δ(F) has diameter ≤ M for each flat F;
(3) λi, λi+1 subpaths cannot 3δ fellowtravel for a distance of ≥ L;
(4) Consecutive paths λiσi+1 and σiλi cannot 2δ-fellowtravel for a distance of ≥ L.

Then
(1) |γk+1| ≥ |γk | + |σk+1| + |λk+1| − [6L + 6M + 6δ];
(2) The terminal subpaths of γk, λk δ-fellowtravel for a distance of at least |λk | − [2L + 2M] > 2L + 2M.

Proof. The proof is by induction, where the base case γ1 = λ1 is obvious. Let ωk denote the geodesic from
the initial point of γk to the endpoint of σk. Consider the two geodesic triangles formed by γk, ωk, γk−1, λk, σk,
and consider as well the tail of λk−1 which δ fellowtravels with the tail of γk−1. Each such geodesic triangle is
δ-thin relative to a flat, and its three tails are indicated, and the three complementary segments are δ close to
some flat.

There are six possible cases according to the positions of the tails on ωk, as illustrated in Figures 2.1–2.6.
Consideration of the various segments whose lengths are bounded by L,M, δ, because of our hypotheses, as
well as copious use of the triangle inequality, allows us to bound the difference between |γk−1|+ |σk |+ |λk | and
|γk |. In each picture, the maximum loss can be obtained by summing all letters that appear, so in cases 1,2,3,
there is a loss of at most 4L+4M+6δ; in cases 4,5, at most 4L+6M+6δ; and in case 6, at most 6L + 6M + 6δ.
Moreover, the tail ends of λk and γk δ-fellowtravel for all of λk, except the initial part of length L+M in
cases 1, 2, 3; length L+2M in cases 4, 5; and length 2L+2M in case 6. Thus statement (2) holds as well. �

Theorem 2.3. Let X be a CAT(0) space with isolated flats where geodesic triangles are δ-thin relative to
flats. Suppose that for distinct flat representatives Fi, F j we have Nδ(Fi) ∩ F j has diameter ≤ M.

Let γ be a geodesic with the same endpoints as the piecewise geodesic path σ1λ1 . . . λkσk+1, and suppose
that:

(1) 1
2 |λi| ≥ (6L + 6M + 6δ) for each i.
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F 2.1. F 2.2.

F 2.3. F 2.4.

F 2.5. F 2.6.

(2) λi ∩ N3δ(F) has diameter ≤ M for each flat F.
(3) λi, λi+1 do not have length L subpaths that 3δ-fellowtravel.
(4) Consecutive paths λiσi+1 and σiλi cannot 3δ-fellowtravel for a distance of ≥ L.

Then |γ| ≥ 1
2
(∑k

1 |λi| +
∑k+1

1 |σi|
)
.

Proof. Let γk = λ1σ2λ2 · · ·σkλk, and consider the quadrilateral bounded by γ, σ1, γk, σk, subdivided into
two triangles by the addition of a geodesic from the initial point of γ to the terminal point of γk. These two
triangles are relatively δ-thin. Five of the six cases to consider are illustrated in Figure 2.7. Note that by
Lemma 2.2, γk δ-fellowtravels λk for a distance of greater than 2L + 2M, and so various segments have length
bounded by L and M, as shown. But then we see that |γk | ≤ 2L + 2M in all five cases, which makes them
impossible. In the sixth case, illustrated in Figure 2.8, we find that

|γ| ≥ |σ1| + |γk | + |σk+1| −
(
4L + 2(M + 3δ) + 2M

)
.

By Lemma 2.2, |γk | ≥
∑k

1 |λi| +
∑k

2 |σi| − (k − 1)[6L + 6M + 6δ]. Consequently,

|γ| ≥

k∑
1

|λi| +

k+1∑
1

|σi| − (k)[6L + 6M + 6δ].
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F 2.7. F 2.8.

Now our hypothesis that 1
2 |λi| ≥ (6L + 6M + 6δ) implies that:

|γ| ≥

k∑
1

|λi| +

k+1∑
0

|σi| − k(6L + 6M + 6δ) ≥
k∑
1

[|λi| − (6L + 6M + 6δ)] +

k+1∑
0

|σi| ≥
1
2
[ k∑

1

|λi| +

k+1∑
0

|σi|
]
. �

3. B  C 

This section provides a quick review of results and definitions around Sageev’s construction [14]. We will
need the following material on the CAT(0) cube complex of a codimension-1 subgroup. For proofs, examples,
and context, and further references see [11].

Definition 3.1. A wall in X is a connected subspace Λ together with an associated pair of connected subspaces
{
←−
Λ,
−→
Λ} such that X =

←−
Λ ∪

−→
Λ and Λ =

←−
Λ ∩

−→
Λ. The subspaces

←−
Λ − Λ and

−→
Λ − Λ are the open halfspaces

associated to Λ. We will often refer to the wall Λ without mentioning its halfspaces. In particular, if X − Λ

has exactly two components
←−
Λ − Λ and

−→
Λ − Λ, we say that Λ is a geometric wall. All of our walls will be

geometric until Section 7.
A wall system for X̃ is a set of walls in X̃. A wall systemW is locally finite if every compact subset of

X̃ intersects only finitely many walls ofW. Finally, ifW is a locally finite wall system for X̃, we say that
(X̃,W) is a wallspace.

Definition 3.2. Let (X̃,W) be a wallspace. We say Λ ∈ W separates a, b ∈ X̃ if a and b lie in distinct open
halfspaces of Λ, and for a, b ∈ X̃, we let #(a, b) denote the number of walls in W that separate a, b. We
say W has the linear separation property if there is a constant K > 0 such that for all a, b ∈ X0, we have
#(a, b) ≥

⌊
1
k d(a, b)

⌋
.

Definition 3.3. A group G acts cosparsely on a CAT(0) cube complex C̃ if there is a compact subcomplex
K ⊂ C̃ and finitely many “quasiflats” (spaces quasi-isometric to Euclidean flats) F̃i in C̃ such that C̃ =

GK ∪
(⋃

i GF̃i

)
, and gF̃i ∩ hF̃i ⊂ GK for g, h ∈ G, unless i = j and g−1h ∈ Stabilizer(F̃i).

Proposition 3.4 (Sparse cubulation). Suppose (X̃,W) is a wallspace, X̃ is a geodesic metric space, G is
hyperbolic relative to virtually abelian subgroups, and G acts properly and cocompactly by isometries on X,
preservingW. There is a CAT(0) cube complex {(X̃), called the cube complex dual toW, such that:

(1) If every W ∈ W is quasi-isometrically embedded in X̃, then G acts cosparsely on {(X̃).
Moreover, if in addition, G is actually hyperbolic, then G acts cocompactly on {(X̃).

(2) If (X̃,W) satisfies the linear separation property, then G acts metrically properly on {(X̃).

Proof. This holds by [11, Thm 6.17]. �
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F 4.1.

A subgroup A of a relatively hyperbolic group G is full if P∩ A is either finite or finite index in P for each
parabolic subgroup P of G. The following is obtained in [6, 15]:

Proposition 3.5 (Sparse core). Let G be hyperbolic relative to f.g. virtually abelian subgroups and suppose
G acts properly and cosparsely on a cube complex C. Let H be a quasi-isometrically embedded subgroup
of G. There is a H-cosparse convex subcomplex D → C. Moreover, if H is full, and in particular, if G is
hyperbolic, we can assume D is H-compact.

Proposition 3.6 (Convex cocompact cores). Let G act properly and cosparsely on the CAT(0) cube complex
X. Then there is a convex subspace Y ⊂ X such that G stabilizes and acts cocompactly on Y.

Proof. This follows from [11, Cor. 7.4]. �

4. T   

Given a CAT(0) cube complex Ã and a collection of convex subcomplexes C̃i ↪→ Ã, we form the “collared
space” Ã+ corresponding to their mapping cylinder (see Figure 4.3). In this section, we construct immersed
walls in Ã+ by combining hyperplanes of Ã with certain codimension-1 subspaces of the “collars” C̃i × I. To
this end, after discussing codimension-1 subspaces in Section 4.1, we define “turns” in Section 4.2 and then
construct the immersed walls in Ã+ in Section 4.3. In Section 5, we show that under favorable circumstances,
we may choose turns to obtain sufficiently many genuine walls in Ã+.

4.1. Immersed codimension-1 subspaces. In this subsection we define certain (immersed) codimension-1
subspaces φ : Y ↪→ X which are (locally) injective maps having the property that Y (locally) separates X in
the sense that for each y ∈ Y , there is a neighborhood U of y such that there is a commutative diagram:

U → Y
↓ φ ↓

U × I → X

where I = [−1, 1], the top map is the inclusion, the map U → U × I is defined by u 7→ (u, 0), and the bottom
map is a topological embedding. We are especially interested in the cases where Y → X is an embedding or
is globally 2-sided.

For instance, C × {0} is a “vertical” codimension-1 subspace of C × I. If B is a codimension-1 subspace of
C, then B × I is a “horizontal” codimension-1 subspace of C × I.

Definition 4.1 (Turn). Let Ĉ → C be a connected covering space, and let B→ Ĉ be an embedded connected
2-sided codimension-1 subspace of Ĉ. We choose R′ ⊂ Ĉ such that R′ � B × [−2, 2] where the commutative
diagram below holds. Let R ⊂ R′ correspond to B × [−1, 1] and let B+ = B × {+1} and B− = B × {−1} be the
components of ∂R. Note that B± are themselves codimension-1 subspaces of Ĉ.

B → Ĉ
↓ ↓

B × {0} → B × [−2, 2]

The turn associated to (Ĉ, B) is the following codimension-1 subspace D ⊂ Ĉ × I:

D =

((
Ĉ × {0}

)
−

(
R × {0}

))
∪

(
B− × [−1, 0]

)
∪

(
B+ × [−1, 0]

)
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F 4.2.

The parts B± × [−1, 0] of a turn D are called the “beginning” and “end” of D, and it will often be more
natural to consider them as part of the hyperplanes to which they extend in Ã. The primary part of D is(
Ĉ × {0}

)
, so we will refer to paths within

(
Ĉ × {0}

)
as turn segments. We adopt similar language in the

universal cover.

4.2. High radius turns.

Definition 4.2. The radius of a turn associated to (Ĉ, B) is the infimum of lengths of turn segments starting
and ending on B± × [−1, 0] that are not path homotopic into B± × [−1, 0].

The following lemma will be used to help produce turns with large radius within the following framework:
Let D be an immersed hyperplane in a nonpositively curved cube complex A. Let C → A be a local isometry
with C compact, and let B be an immersed hyperplane of C that maps to D.

Lemma 4.3. Suppose π1C is π1B-separable. For each r ≥ 0, there is a finite cover Ĉ → C such that B lifts
to an embedding in Ĉ, and such that the turn associated to (Ĉ, B) has the property that any length ≤ r local
geodesic turn segment λ with endpoints on B± × [−1, 0] is path-homotopic into B± × [−1, 0].

Proof. A path with endpoints on B± × [−1, 0] corresponds canonically to a path with endpoints on B by
precomposing and postcomposing with a very short path in R. The path homotopy property is preserved
mutatis mutandis. Compactness of C and hence B guarantees that for each r there are finitely many double
cosets π1Bgπ1B in π1C with representatives of length ≤ r. Now, a straightforward use of separability allows
us to separate π1B from the finitely many homotopy classes represented by paths of length ≤ r. �

4.3. New walls in Ã+. Let A be a nonpositively curved cube complex. Let φi : Ci → A be continuous maps
such that φ̃i : C̃i → Ã is an embedding for each i, and consider the mapping cylinder:

A+ = A ∪i (Ci × [0, 1]) / (ci, 1) ∼ φi(ci) : ci ∈ Ci.

For each i, we identify a fixed lift of C̃i with its φ̃i image in Ã. We also identify C̃i with C̃i × {1} ⊂ C̃i × [0, 1].

Remark 4.4. On the level of the base space, we endow A+ with immersed walls, by extending immersed
hyperplanes of A to the Ci × [0, 1]. There are prechosen immersed walls in each Ci × [0, 1] that arise from
turns in Ĉi. The process creates new immersed walls by joining various immersed codimension-1 subspaces
in the Ci × [0, 1] together with various immersed hyperplanes in A.

We assume that each Ci × [0, 1] has a prechosen collection of immersed walls (arising from turns in some
Ĉ × I) that lift to embedded walls {W j} in C̃i × [0, 1] with the following matching property: For hyperplanes
D̃ ⊂ Ã, the intersection D̃ ∩ φ̃i(C̃i) equals a component of W j ∩ (C̃i × {1}) for a unique W j.

This property is an elementary equivalence that generates an equivalence relation among the set consisting
of the union of all hyperplanes in Ã together with the set of walls in the translates of the C̃i × [0, 1] by π1A.
For each equivalence class, we define a new wall W in Ã+ to consist of the union of all hyperplanes and walls
in the equivalence class amalgamated along the intersections between hyperplanes and walls that have an
elementary equivalence.
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F 4.3. New walls in a collared space

For each new wall W there is a map W → Ã+, but without further hypotheses this map is unlikely to be an
embedding. However, since it is locally codimension-1, and Ã+ is simply-connected, we see that W will be
a wall if it embeds.

Subdivision: To facilitate the construction, it will be convenient to pass to the first cubical subdivision of
the cube complexes in the graph of spaces. This has the effect of replacing each hyperplane with a pair of
parallel hyperplanes so that the hyperplanes incident with an edge space C now come in pairs, each corre-
sponding to a single original hyperplane.

Remark 4.5 (Handling Torsion). The construction of new walls in Ã+ generalizes as follows: Let Ã be a
wallspace with a G-equivariant system of walls, and for each i, let C̃i × [0, 1] be a wallspace with a Gi-
equivariant system of walls for some Gi ⊂ G. Let φ̃i : C̃i → Ã be a Gi-equivariant embedding. The space Ã+

is the union of Ã together with the G-translates of mapping cylinders of the φ̃i. Finally, we assume the walls
of Ã and C̃i × [0, 1] match.

The construction of turns using an intermediate cover Ĉi is facilitated by the assumption that each Gi has
a finite index torsion-free subgroup G′i , for then we can define Ci = G′i\C̃i, and proceed as before (using the
additional separability properties of B).

4.4. New walls coming from turns. We now assume that the horizontal walls in Ci × I are sufficient, in
the sense that π1Ci has linear separation with respect to horizontal walls in C̃i × I. It follows that π1Ci acts
properly on the corresponding dual cube complex.

Moreover, we assume that each non-horizontal wall of C̃i× I is a high radius turn associated to some (Ĉi →

Ci, B), where B was an original hyperplane (i.e., before subdividing). The two boundary components B± of
the regular neighborhood of B correspond to new hyperplanes of Ĉi, and hence, C̃i (i.e., after subdividing).

Note that each new wall is a nonpositively curved cube complex that is a graph of CAT(0) cube complexes
glued together along convex subcomplexes. Thus each new wall is a geodesic metric space.

5. R 

Lemma 5.1 (Malnormal Divergence). Let G be hyperbolic relative to abelian subgroups. Let {Hi} be a finite
collection of quasi-isometrically embedded subgroups of G. Suppose {Hi} is an almost malnormal collection
in the sense that Hi ∩ Hg

j is finite unless i = j and g ∈ Hi. Then there exists a function f such that for each r,
we have Nr(Hi) ∩ gH j has diameter < f (r) unless i = j and g ∈ H j.

Sketch. An infinite diameter overlap would yield an infinite intersection of corresponding conjugates. �

Theorem 5.2. Let A be a compact nonpositively curved cube complex such that π1A is hyperbolic relative to
virtually abelian subgroups.

Let φi : Ci → A be a collection of maps such that {π1Ci} is almost malnormal, where each Ci is compact,
π1Ci is word-hyperbolic, and φ̃i : C̃i → Ã is a quasi-isometric embedding.

Suppose each C̃i × I is a wallspace, each of whose walls is either a horizontal wall (i.e., genuine hyper-
plane) or a turn. Suppose the walls of Ã and C̃i × [0, 1] match along C̃i × {1}. Suppose the horizontal walls
are sufficient in the sense that π1Ci acts properly on the associated dual cube complex. Suppose each turn
has sufficiently large radius.
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Let Ã+ = Ã ∪
⋃

i,g gC̃i × I with new walls defined as in the construction of Section 4.3.
Then the new walls in Ã+:

(1) quasi-isometrically embed
(2) embed
(3) are sufficient, in the sense that the linear separation property holds with respect to G.

Remark 5.3 (Torsion). Theorem 5.2 holds in the following context: G acts properly and cocompactly on a
CAT(0) cube complex Ã whose walls are hyperplanes and where each C̃i is a convex subspace whose stabilizer
Gi acts cocompactly on it. In this case, the virtual torsion-freeness of each Gi together with separability of
hyperplane stabilizers will be used to apply Lemma 4.3. Indeed, letting G′i denote a finite index subgroup of
Gi, we let Ci = G′i\C̃i and proceed from there using the separability of hyperplanes.

Remark 5.4 (Sparseness). Theorem 5.2 will be applicable when G is hyperbolic relative to virtually abelian
subgroups and G acts properly on a CAT(0) cube complex with finitely many orbits of hyperplanes each of
which has a quasi-isometrically embedded stabilizer. Indeed, in this case, G acts properly and cosparsely
on a CAT(0) cube complex X̃ (possibly different from the original action). Moreover, by Proposition 3.6, X̃
contains a convex G-invariant cocompact subspace Ã.

For a finite collection of convex subcomplexes D̃i in X̃ whose stabilizers are quasi-isometrically embedded,
Ã can be chosen so that C̃i = Ã ∩ D̃i have the same stabilizers, but they now act cocompactly.

Finally, the hyperplanes of X̃ determine hyperplanes of Ã, and in a suitable sense Ã can be treated as if it
were a cocompact cube cube complex for our purposes. One minor discrepancy is that the walls in Ã∗ are only
CAT(0) spaces instead of cubical complexes. For the application of Lemma 5.9 in the proof of Theorem 5.2,
one notes that C̃ lies in Ã by construction, and hence pC̃ lies in Ã, and thus lies in the “hyperplane” H ∩ Ã.

Proof of Theorem 5.2. Letting Gi denote the stabilizer of C̃i in G we have: Ã+ = Ã ∪
⋃

i,g∈G/Gi
gC̃i × [0, 1].

New walls are unions of hyperplanes of Ã together with turns and horizontal walls in copies of gC̃i × [0, 1],
and we shall examine the map from a new wall to Ã+ without presupposing that it embeds.

Consider a geodesic path in a new wall expressed as an alternating concatenationσ1λ1σ2 · · · λkσk+1, where
each hyperplane segment σi lies in a hyperplane Hi of Ã+ used to build the new wall and each turn segment
λi lies in a turn in C̃i × [0, 1] that starts on Hi and ends on Hi+1. (Note that horizontal walls in C̃i × [0, 1] are
parts of hyperplanes of Ã+.)

By choosing the decomposition of this path so that k is minimal, we can assume that Hi , Hi+1, for
otherwise λi “backtracks”, in the sense that it is path-homotopic into Hi = Hi+1 and we may reduce k by
replacing σiλiσi+1 with a single geodesic σ′i lying in Hi = Hi+1. Since each λi does not backtrack, Lemma 4.3
allows us to construct the turns so that each λi is long enough to satisfy the hypothesis of Theorem 2.3.

Claim: λi and λi+1 must lie in distinct collars C̃i and C̃i+1. Indeed, if C̃i = C̃i+1, then since the turn
begins at C̃i ∩ Hi+1 = C̃i+1 ∩ Hi+1, we see that λiσi+1λi+1 can be replaced with a single turn segment λ′i with
|λ′i | ≤ |λiσi+1λi+1|.

There is thus an upper bound K1 on diam
(
Nδ(λi)∩ λi+1

)
since Lemma 5.1 and the almost malnormality of

{π1C j} imply an upper bound K1 on the diameters of Nδ(C̃ j) ∩ gC̃k when j , k or j = k, g < π1C j.
There is an upper bound K2 = 1

2 + 9
2δ on the 3δ-fellowtraveling between a hyperplane segment and a turn

segment σi, λi or λi, σi+1. To see this, let σ = ab and λ = bc, so λ and σ meet at the point b. Let p be a point
on σ that is 3δ-close to its comparison point p′ on λ. See Figure 5.1. Let p denote the projection of p onto C̃.
Since H is a hyperplane, and C̃ is convex, by Lemma 5.9, we see that the geodesic pp lies in H. Of course
d(p′, p) ≤ d(p′, p) + d(p, p) ≤ 2d(p, p′) ≤ 6δ.

Let σ′ = ap and let λ′ = pc. If λ, σ would 3δ-fellowtravel for ≥ K2 then these replacements for λ, σ will
yield a shorter minimal path. Indeed, the following two equations hold by the triangle inequality:

|σ′| = d(a, p) ≤ d(a, p) + d(p, p) = |σ| − d(p, b) + d(p, p)

|λ′| = d(c, p) ≤ d(c, p′) + d(p′, p) = |λ| − d(p′, b) + d(p′, p)
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F 5.1.

Since d(p, b) = d(p′, b) and d(p, p) ≤ d(p, p′) and d(p′, p) ≤ 2d(p′, p) we have:

|λ′| + |σ′| ≤ |λ| + |σ| − 2d(p, b) + 3d(p, p′).

So the λ′, σ′ replacement shows that minimality is violated when d(p, b) ≥ K2 = 1
2 + 9

2δ ≥
1
2 + 3

2 d(p, p′).
By Lemma 5.1, the almost malnormality of {π1Ci} implies that there is an upper bound K1 on the diameters

of Nδ(C̃i) ∩ gC̃ j when i , j or i = j, g < π1Ci. By Lemma 5.1, there is an M upper bound on the diameter of
a 3δ overlap between a flat, and a path λ in a turn.

The three conclusions of the theorem are proven in Theorem 5.5, 5.6, and 5.12. �

We now use that each new wall W is a nonpositively curved cube complex, and we let dW be the associated
metric. Note that the inclusion W ⊂ Ã+ is an embedding of nonpositively curved cube complexes (after we
subdivide Ã+) but W is not a convex subcomplex. We now use the geodesic metric dW to understand the
geometry of W → Ã+.

Theorem 5.5 (Quasi-isometry). Let Ro = 2(6L + 6M + 6δ). If each turn in Ã+ has radius ≥ Ro, then
dÃ(ψ(p), ψ(q)) ≥ 1

2 dW (p, q) − 4Ro and the map ψ : W → Ã+ is a ( 1
2 , 4Ro)-quasi-isometric embedding.

Proof. Since each turn has radius ≥ Ro, each |λi| ≥ Ro, and by Theorem 2.3, the distance between the
endpoints of σ1λ1 · · · λkσk+1 in Ã is ≥ 1

2 (
∑
|σi| + |λi|). In particular, this holds when σ1 or σk+1 is trivial.

Next, consider a path λ′1σ2 · · ·σkλ
′
k between p, q. If both |λ′1| > Ro and |λ′k | > Ro, Theorem 2.3 still applies,

and dÃ(ψ(p), ψ(q)) ≥ 1
2 dW (p, q). If both |λ′1| ≤ Ro and |λ′2| ≤ Ro, then the endpoints ψ(p), ψ(q) of the image

path are within Ro of the endpoints ψ(p′), ψ(q′) of the image subpath σ2λ2 · · ·σk−1, and

dÃ(ψ(p), ψ(q)) ≥ dÃ(ψ(p′), ψ(q′)) − 2Ro ≥
1
2

(|σ2| + |λ2| + · · · + |λk−1| + |σk |) − 2Ro

≥
1
2

dW (p, q) − |λ′1| − |λ
′
k | − 2Ro ≥

1
2

dW (p, q) − 4Ro.

If only one of |λ′1|, |λ
′
k | ≤ Ro, a stronger statement holds for similar reasons. Finally, by the definition of dW

and the triangle inequality, dW (p, q) ≥ dÃ(ψ(p), ψ(q)). �

Theorem 5.6 (Embed). If all turns have radius R > 8Ro then the new walls embed in Ã+.

Proof. A geodesic γ in W from p to q decomposes as a concatenation of hyperplane segments and turn
segments, and |γ| is the sum of their lengths, so if γ contains a complete turn segment, then |γ| > 8Ro, and by
Theorem 5.5, dÃ(ψ(p), ψ(q)) ≥ 1

2 dW (p, q)−4Ro > 0. It therfore suffices to consider the case where γ contains
no complete turn segments.

The remaining cases of γ have the form λ1, σ1, σ1λ1, λ1σ2, and λ1σ1λ2. Individual hyperplanes and turns
of Ã+ clearly embed. The intersection of a hyperplane and a turn is a convex subset, and so the “concatena-
tion” of a hyperplane segment and a turn segment embeds. Finally, a path of the form λ1σ1λ2 embeds by the
Claim in the proof of Theorem 5.2. �
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F 5.2.

F 5.3.

5.1. Preliminaries to support linear separation. We employ the following statements in the proof of the
linear separation property for the recubulation. By [10, Prop 4.1.6] we have:

Proposition 5.7 (Fellow Travelling Relative to Flats). Let X be a cocompact CAT(0) space with isolated
flats. For each ε, there exists µ = µ(X, ε) with the following property: Let ω be an ε-quasigeodesic and let
γ be a geodesic with the same endpoints. Then there exist flats F1, . . . , Fm such that ω is a concatenation
ω1ω

′
1ω2ω

′
2 · · ·ωmω

′
m and γ is a concatenation γ1γ

′
1γ2γ

′
2 · · · γmγ

′
m, and for each i, we have ωi, γi lie in a µ

neighborhood of each other, and ω′i , γ
′
i lie in a µ neighborhood of Fi.

The angle between a geodesic γ and a hyperplane Λ in a CAT(0) cube complex, is the CAT(0) angle [3]
between γ and γ where γ is the projection of γ on Λ. It follows from the CAT(0) inequality, that a lower
bound on the angle θ between Λ and γ gives a lower bound on the divergence between rays in the directions
of Λ and γ. Indeed, the divergence is bounded by that of rays in E2 meeting at θ.

We refer to [15] for a proof of the following:

Lemma 5.8. Let X be a finite-dimensional CAT(0) cube complex. There exists a constant M = M(dim(X))
and a real number θ = θ(dim(X)) > 0 such that for any length M geodesic γ, there exists a hyperplane Λ

crossed by γ such that ^(Λ, γ) ≥ θ.

Lemma 5.10 will support the proof of linear separation. Note that Lemma 5.8 affirms (both the hypothesis
and) the conclusion of Lemma 5.10 when Ui is the full set of hyperplanes. We first require the following
easily verified property of hyperplanes in CAT(0) cube complexes.

Lemma 5.9. Let H be a hyperplane and let B be a convex subcomplex of the CAT(0) cube complex X̃.
Suppose that H ∩ B , ∅. Let p ∈ H and let pB denote the geodesic from p to B. Then pB lies in H. �

We will also need the following monstrous variation of Lemma 5.8.

Lemma 5.10. Let X be a finite dimensional CAT(0) cube complex. Suppose there is a collection U of
hyperplanes and a number M > 0 such that for any length M geodesic γ in X, there exists U ∈ U such that
γ crosses U. Then there exists L such that, for each geodesic γ of length at least L and endpoints p, q, there
exists U ∈ U such that γ crosses U and p, q < N1(U).

Proof. Let N = dim(X). We define a sequence of constants LN , LN−1, . . . , L2, L1, L0 recursively by declaring
that LN = 1 and Ln = 2Ln+1 + 4n+1 + M for 0 ≤ n < N.

Let γ be a geodesic with endpoints p, q such that |γ| ≥ L = L0, and consider the following condition
indexed by n (0 ≤ n ≤ N), as illustrated in Figure 5.3.
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F 5.4. F 5.5.

Condition(n): There exist hyperplanes U1, . . . ,Un ∈ U, a geodesic γn with endpoints
pn, qn, and points pn, qn on γ such that:
(1) ∩n

i=1Ui is a codimension-n hyperplane; (a codimension-0 hyperplane is X itself)
(2) γn lies inside ∩n

i=1Ui;
(3) d(pn, pn) ≤ 3n and d(qn, qn) ≤ 3n;
(4) |γn| ≥ Ln.

Let n be the largest integer such that Condition(n) holds. Note that Condition(0) holds by taking γ0 = γ,
p0 = p0 = p, and q0 = q0 = q, and note that Condition(N) cannot hold, as a geodesic of length at least LN = 1
cannot be contained in a codimension-N hyperplane (a point). Therefore, 0 ≤ n < N.

Let c denote the midpoint of γn and, since Ln ≥ M, consider the length M subgeodesic γ′n centered at c.
By hypothesis, there is a hyperplane Un+1 crossing γ′n. Note that since Un+1 crosses a nontrivial geodesic in
∩n

i=1Ui, the hyperplane ∩n+1
i=1 Ui is codimension-(n + 1). We will show that Un+1 crosses γ separating p, q and

that p, q < N1(Un+1).
We first show that Un+1 crosses γ in the subgeodesic pn qn. This follows by showing that it crosses neither

the geodesic pn pn nor qnqn. We exclude the first case, as the arguments are identical. Suppose Un+1 crosses
pn pn. This will contradict the maximality of n by a construction illustrated in Figure 5.4. Observe that pn lies
at a distance at most 3n from a point in Un+1, which means that if we let pn+1 be the projection of pn to Un+1,
then d(pn+1, pn) ≤ 3n. Furthermore, Lemma 5.9 implies that the geodesic pn pn+1 lies in ∩n

i=1Ui so pn+1 lies
in ∩n+1

i=1 Ui. If we then let pn+1 = pn, by Condition(n) we see that:

d(pn+1, pn+1) = d(pn+1, pn) ≤ d(pn+1, pn) + d(pn, pn) ≤ 3n + 3n < 3n+1.

Letting qn+1 = Un+1 ∩ γ
′
n, and noting that qn+1 lies within 3n from a point qn+1 in γ by the CAT(0) inequality,

we now claim that the hyperplanes U1, . . . ,Un,Un+1, the geodesic γn+1 = pn+1qn+1, and the points pn+1, qn+1
(Figure 5.4) satisfy Condition(n + 1), contradicting the maximality of n. Indeed, the last thing to check is that
|γn+1| ≥ Ln+1, but

|γn+1| = d(pn+1, qn+1) ≥ d(pn, c) − d(c, qn+1) − d(pn+1, pn)

≥
1
2

Ln −
1
2

M − 3n ≥
1
2
(
[2Ln+1 + 4n+1 + M] − M

)
− 3n ≥ Ln+1.

We now show that p, q < N1(Un+1) by means of another construction that would violate the maximality
of n (Figure 5.4). Since the argument for q is identical, we will focus on showing that p < N1(Un+1). Let
b = pn qn ∩Un+1, and suppose there exists a point p′ in Un+1 with d(p, p′) ≤ 1. Since pn lies on the geodesic
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pb and the geodesic p′b lies in Un+1, applying the CAT(0) inequality, we see that there is a point pn
′ in Un+1

such that d(pn, pn
′) < 1.

Applying Lemma 5.9 again, as above, we see that the projection pn+1 of pn in Un+1 lies in ∩n+1
i=1 Ui. Further-

more, as pn+1 is the point of Un+1 closest to pn, we see that d(pn, pn+1) ≤ d(pn, pn
′) ≤ d(pn, pn) + d(pn, pn

′) ≤
3n + 1, by Condition(n). Let pn+1 = pn, and applying Condition(n) again we have:

d(pn+1, pn+1) = d(pn+1, pn) ≤ d(pn+1, pn) + d(pn, pn) ≤ (3n + 1) + 3n ≤ 3n+1.

Finally, letting qn+1 = Un+1 ∩ γ
′
n, and noting that qn+1 lies within 3n from a point qn+1 in γ by the CAT(0)

inequality, we again claim that the hyperplanes U1, . . . ,Un,Un+1, the geodesic γn+1 = pn+1qn+1, and the points
pn+1, qn+1 (Figure 5.5) satisfy Condition(n + 1), contradicting the maximality of n. Again, the last thing to
check is that |γn+1| ≥ Ln+1, but
|γn+1| = d(pn+1, qn+1) ≥ d(pn, c) − d(c, qn+1) − d(pn+1, pn)

≥
1
2

Ln −
1
2

M − (3n + 1) ≥
1
2
(
[2Ln+1 + 4n+1 + M] − M

)
− 3n − 1 ≥ Ln+1. �

5.2. Linear Separation.

Lemma 5.11. Let γ be a geodesic and let ω = σ1λ1σ2λ2 . . . σm be an ε-quasigeodesic with the same end-
points such that each σi and λi is a geodesic. By Proposition 5.7, γ and ω must µ-fellowtravel relative to
flats; let V be a uniform upper bound on diam(λi ∩ Nµ(F)) for any flat F, and suppose each |λi| > V. Then
there exists κ such that γ and ω lie in κ-neighborhoods of each other.

Proof. Let γ = γ1γ
′
1γ2γ

′
2 · · · and ω = ω1ω

′
1ω2ω

′
2 · · · be the decompositions from Proposition 5.7. Note that

we may assume that no λ j contains an entire ω′i . Indeed, if ω′i ⊆ λ j, CAT(0) convexity implies that the entire
geodesic ω′i lies within µ of γ, as its endpoints are within µ of γ. We may then shorten the decomposition by
treating γiγ

′
iγi+1 and ωiω

′
iωi+1 as single corresponding subpaths within µ of each other.

Each λ j is thus a subpath of a ω′i−1ωiω
′
i that intersects ωi (since |λ j| > V). The part of λ j that is contained

in each of ω′i−1 and ω′i is bounded by V , so each λ j lies inNµ+V (γ). Then, since each σ j begins and ends with
a λi segment or endpoint, CAT(0) convexity implies that σ j ⊂ Nµ+V (γ). �

Let #(p, q) denote the number of walls in Ã+ separating p and q.

Theorem 5.12 (Linear Separation). If all turns are sufficiently large, there exist K1,K2 s.t. #(p, q) ≥
K1dÃ+ (p, q) − K2 for all p, q ∈ Ã+.

Proof. Since Ã+ ⊆ N1(Ã), it suffices to prove the theorem for p, q ∈ Ã. We will do so by verifying the
following claim: There exists a constant J such that for each length J subsegment γ′ of a geodesic γ in Ã,
there exists a hyperplane Λ of Ã such that Λ separates the endpoints of γ′ and Λ extends to a new wall Λ+

that crosses γ at a single point p of γ′.
Let M be the constant from Lemma 5.8. If J ≥ M +2S (where S is declared below), we have a hyperplane

Λ1 crossed by γ′ at a point p1 with ^(Λ1, γ) ≥ θ. Moreover we can choose Λ1 such that p1 is within the
central length M part of γ′. Let Λ+

1 denote the wall of Ã+ containing Λ1.
If γ ∩ Λ+

1 = {p1} then we are done. So let us suppose that γ ∩ Λ+
1 contains a second point q1. Let ω1 be

a geodesic in Λ+
1 between p1, q1. As usual, we express ω1 as σ1λ1 · · · , where σ1 is a geodesic hyperplane

segment contained in Λ1, and λ1 is a geodesic turn segment in a collar C̃1, and so forth.
Note that ω1 cannot equal σ1 since ^ ≥ θ > 0. By Theorem 5.5, ω1 is a ( 1

2 , 4Ro)-quasigeodesic in Ã.
By Proposition 5.7, ω1 and the geodesic p1q1 must µ-fellowtravel relative to flats. By cocompactness and
aparabolicity, let V be a uniform upper bound on diam(C̃i ∩ Nµ(F)) for any flat F; we assume all turns have
radius > V . By Lemma 5.11, the endpoints of λ1 lie within κ of the endpoints s1, t1 of a subpath γ1 of γ.
Since it is the initial point of λ1, the terminal point of σ1 is within κ of γ1, and hence, since ^ ≥ θ, we find that
|σ1| is uniformly bounded, and therefore, the initial point s1 of γ1 is a uniformly bounded distance ξ1 from
p1. We refer the reader to Figure 5.6.



14 T. HSU AND D.T. WISE

F 5.6.

Assume all turns have radius ≥ 2κL+2S (where L is the constant from Lemma 5.10, S = [Q+ξ2 +2κ] and
Q, ξ2 are identified below). Let λ1 denote the length 2κL part of λ1 appearing after the initial length S part.
Let λ1 denote the subsegment of γ1 whose endpoints s1, t1 are within κ of the endpoints s1, t1 of λ1. Note that
d(s1, s1) ≥ Q + ξ2 and d(t1, t1) ≥ Q + ξ2.

Consider the finitely many G-orbits of collars attached along convex subcomplexes C̃i. By hypothesis,
each has a sufficient collection of horizontal hyperplanes to separate geodesics, and each is finite dimensional.
By Lemma 5.10, for any geodesic of length ≥ L in C̃i, there is a horizontal hyperplane cutting through this
geodesic but not coming within 1 of either of its endpoints. From the CAT(0) inequality, we see that for any
geodesic of length 2κL there exists a horizontal hyperplane passing through it such that neither endpoint of
the geodesic comes within 2κ of this hyperplane. We thus have a horizontal hyperplane Λ2 of C̃1 that crosses
λ1 but does not come within 2κ of its endpoints. Observe that Λ2 must also cross γ1 at a point p2 in γ1, as it
is impossible to “slip out” since the distances between the endpoints of γ1 and λ1 are bounded by κ. We note
that p2 is within κ of a point s2 of λ1. Since λ1 and γ1 have length ≤ 2κL + 2κ, and κ-fellow travel, there is a
uniform lower bound θ2 on the angle between Λ2 and γ at p2.

The hyperplane Λ2 extends to a wall Λ+
2 that only crosses γ at p2. Indeed, if Λ+

2 crosses γ at a second point
q2, then as before, let ω2 = σ2λ2 · · · be a geodesic in Λ+

2 from p2 to q2, and note that ω2 must µ-fellowtravel γ
relative to flats. We show this is impossible. By Lemma 5.11, the endpoints of λ2 lie within κ of a subpath γ2
of γ. The initial point s2 of γ2 lies within κ of the endpoint r2 ofσ2, and the lower bound θ2 on ∠(σ2, γ) ensures
that d(p2, r2) is uniformly bounded, and hence d(p2, s2) is bounded by a uniform constant ξ2. By Lemma 5.1,
almost malnormality implies that there is a uniform bound Q = Q(2κ) on diam

(
Nκ(C̃1)∩Nκ(C̃2)

)
. However,

since γ1 ∩ γ2 lies within κ of both C̃1 and C̃2, and since d(s2, t2) ≥ 2κL + 2[Q + ξ2 + 2κ] − 2κ ≥ Q, we see
that diam(γ1 ∩ γ2) ≥ Q, which is impossible.

Since d(p1, p2) ≤ ξ1 + S + 2κ, the result follows for J = M + 2[ξ1 + S + 2κ]. �

The following will be used later in the proof of the main theorem, but it is of independent interest.

Theorem 5.13. Let {(Ã+) denote the cube complex dual to the system of walls in Ã+. The action of G on {
is metrically proper. Furthermore, { is cocompact when G is hyperbolic, and cosparse when G is hyperbolic
relative to abelian subgroups.

Proof. This follows from Proposition 3.4, since G is relatively hyperbolic and acts cocompactly, the system
of walls is locally finite, the walls are quasi-isometrically embedded by Theorem 5.5, and the linear separation
property holds by Theorem 5.12. �

5.3. No Backtracking. We will need the following lemma in the proof of Theorem 8.1.

Lemma 5.14 (No Backtracking into Collars). If each turn has radius > max(8Ro,Q), where Q = Q(κ) bounds
the diameter of the κ-overlap between distinct collars, then the following holds:

Let W be a wall of Ã+, and let C̃ × [0, 1] be a collar. Then W ∩ (C̃ × [0, 1]) is either empty, or consists of a
single horizontal hyperplane of C̃ × [0, 1], or consists of a single turn of C̃ × [0, 1].
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Proof. If this is false, then there is a wall W of Ã+ containing two hyperplanes H1,Hm+1 that intersect C̃ × {0}
but are not the beginning and end of a turn of C̃ × [0, 1] in W.

Let ω denote a geodesic in W that starts on H1 ∩ (C̃ × {0}) and ends on Hm+1 ∩ (C̃ × {0}). As usual,
we express ω = σ1λ1 · · · λmσm+1 as an alternating concatenation of hyperplane segments and turn segments,
where σ1, σm+1 lie in H1,Hm+1. We also assume that m is minimal.

Let γ be a geodesic in Ã with the same endpoints as ω and note that γ lies in the convex subspace C̃ × {0}.
By Lemma 5.11, the paths γ and ω must κ-fellow travel in Ã+. Since the turn radii exceed the diameter
of κ-overlap of distinct collars, we see that each λi actually lies in C̃ × 0. Therefore, as claimed in the
proof of Theorem 5.2, any subpath λ1σ2λ2 could be subsumed by a single turn segment λ′, contradicting the
minimality of m. We conclude that ω = σ1λ1σ2, which is contained in a single turn. �

6. A        

We now create and examine a wallspace structure on a tree of wallspaces satisfying certain properties.

Definition 6.1 (Embedding of geometric wallspace). We say φ : A → B is an embedding of geometric
wallspaces if φ is a topological embedding, and there is a chosen inclusion Φ : WA → WB such that
φ−1(Φ(W)) = W for each W ∈ WA. When there are group actions involved, we insist that the relevant maps
are equivariant. For simplicity we assume that the walls of A are the nonempty intersections A ∩ W where
W ∈ WB, and that distinct walls of B cannot intersect A in the same nonempty subset, and that A−W consists
of exactly two components and these map to the corresponding two components of B − Φ(W).

Definition 6.2 (Tree of geometric wallspaces). Let T be a directed tree, with a geometric wallspace Xv

associated to each vertex, and two embeddings of geometric wallspaces φ−e : Xe → Xι(v) and φ+e : Xe → Xτ(v)
associated to an edge e directed from ι(e) to τ(e). The associated tree of wallspaces is the union

X =
⋃

Xv ∪
⋃

(Xe × [−1, 1])
/ {

(x,±1) ∼ φ±e(x)
}
.

We will be interested in the setting where there is a G action on X and on T , and the natural map X → T
is G-equivariant, and that for each v the stabilizer Gv acts on the wallspace Xv, and likewise Ge acts on the
wallspace Xe, and the attaching maps φ±e are Ge equivariant.

Definition 6.3 (The walls of X). There are two types of walls in a tree of wallspaces X. Each edge e of T
is dual to a wall Xe × {0}. The other walls are unions of a collection of walls in vertex spaces and walls in
Xe × [−1, 1] of the form W × [−1, 1] where W ∈ WXe . Declare a wall W × [−1, 1] in Xe × [−1, 1] to be simply
equivalent to the image walls of W in Xι(e) and Xτ(e). This generates an equivalence relation on walls in the
spaces Xv and Xe × [−1, 1]. We define a wall of X to be the union of the subspaces corresponding to walls in
an equivalence class.

New-walls embed in X since by hypothesis each is embedded within each vertex space and they do not
“backtrack” because each Φ : WXe →WXv is a monomorphism. New-walls are 2-sided in X since they are
locally 2-sided (in vertex and edge spaces) and globally embed. The collection of walls in X is locally finite
because of the local finiteness of walls in vertex spaces and that finitely many vertex spaces intersect any
finite ball in X.

We supplement the condition in Proposition 3.4.(2) for properness of the G action on{(X̃) with Lemma 6.4,
which is a variant of a properness criterion examined in [11].

Let g be an automorphism of a wallspace X. A wall W cuts the element g provided that there is a g-invariant
subspace Rg that is a copy of R such that gnW ∩ Rg = {n} for each n ∈ Z.

Lemma 6.4. Suppose each torsion subgroup of G is finite. If each infinite order element g ∈ G is cut by a
wall W ∈ W, then G acts with torsion-stabilizers on the cube complex C dual to (X,W).

Walls cutting elements exist when X is a CAT(0) cube complex whose walls are the hyperplanes:



16 T. HSU AND D.T. WISE

Lemma 6.5. Let g be a fixed-point free automorphism of a finite dimensional CAT(0) cube complex X. Then
g is cut by some hyperplane.

Proof. Let Rg be a geodesic axis for g. Then each hyperplane H passing through Rg provides a cut, since if
H intersects Rg in more than one point, then Rg is not a geodesic. �

The following is used to show that new walls are quasiconvex.

Proposition 6.6 (Quasiconvexity Criterion [1]). Let G be a relatively hyperbolic group that splits as a finite
graph of groups with each edge group almost malnormal and quasiconvex. Let T be the Bass-Serre tree. Let
H be a f.g. subgroup with finitely many H-orbits of nontrivial H-stabilizers in T , and such that each of these
is a quasiconvex subgroup of its vertex group. Then H is quasiconvex in G.

The following target will guide us in arranging the proof of our main theorem.

Theorem 6.7. Suppose X is a tree of geometric wallspaces with a cocompact G-action satisfying:
(1.1) Walls in vertex spaces do not backtrack into edge spaces;
(1.2) The stabilizer Gv of each vertex space Xv acts properly on its dual cube complex {(Xv).
(2.1) G is hyperbolic relative to f.g. virtually abelian subgroups;
(2.2) Each edge group Ge is almost malnormal in G;
(2.3) Each edge group Ge is quasiconvex in G;
(2.4) Each vertex space Xv is a wallspace with κ-quasiconvex walls.

Then X has an induced G-invariant wallspace structure with the following properties:
(1) Every infinite order element g ∈ G is cut by a wall of X;
(2) Each wall of X is κ′-quasiisometrically embedded;
(3) And so G acts properly and cosparsely on the cube complex {(X) dual to this wallspace.

Proof. Claim (3) follows from (2.1) and Claims (1) and (2) by Lemma 6.4 and Theorem 3.4.
To prove Claim (1), first note that g is either hyperbolic or elliptic with respect to the tree of spaces. In the

hyperbolic case, a horizontal wall dual to an edge of the underlying tree of X cuts g. In the elliptic case, a
vertex space Xv is stabilized by g. Since g has infinite order and Gv acts properly on Xv, Lemma 6.5 ensures
that Xv has a wall Wv that cuts g, and hence Wv extends to a new wall W that still cuts v.

Each new wall is quasi-isometrically embedded in X by Proposition 6.6. (Only this last point requires
relative hyperbolicity.) �

The following construction will facilitate building our tree of wallspaces in the proof of Theorem 8.1:

Definition 6.8 (Hybrids). Let φ : C → D be a J-equivariant map, and form the hybrid space:
−−→
CD = C × [−1, 0] t D × [0, 1] / {(c, 0) ∼ (φ(c), 0) : c ∈ C}

Note that
−−→
CD has an induced J-action, and that it is J-cocompact if C,D are both J-cocompact, and the action

on
−−→
CD is proper if the actions on the factors are proper. (The motivating case arises from the universal cover

of the analogous space formed from a homotopy equivalence C → D where J = π1C, but our more general
framework allows torsion.)

Suppose there are geometric walls U ⊂ C and V ⊂ D that are stabilized by a subgroup H ⊂ J, and let
N = Nr(V) be a neighborhood so that φ(U) ⊂ N. The hybrid wall associated to this data is the subspace:

−−→
UV = U × [−1, 0] ∪ N × {0} ∪ V × [0, 1].

See Figure 6.1 for an example of a hybrid space with a single illustrated hybrid wall. Assume that the positive
and negative sides (i.e. halfspaces) U± of U in C have been declared, and likewise the sides V± of V in D,
and the sides N± of N in D have been declared. Moreover assume these declarations are compatible in the
sense that N± ⊂ V± and φ−1(N±) ⊂ U±. There are then induced positive and negative sides of U × [−1, 0) in
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F 6.1. The wall
−−→
UV within a hybrid

−−→
CD

C × [−1, 0) and of V × [0,−1] in D × [0, 1]. We accordingly declare the positive and negative sides of
−−→
UV in

−−→
CD to be U± × [−1, 0] ∪ N± × {0} ∪ V± × [0, 1].

Using that the complements of U,N,V consist of exactly two path components, one verifies that
−−→
UV has

the same property. We imagine a map
−−→
CD→ R such that

−−→
UV maps to 0 and its positive and negative sides in

−−→
CD are path connected and map to the positive and negative real numbers.

Assuming that C and D are geometric wallspaces with proper cocompact J-actions and a one-to-one
correspondence between geometric walls (with agreeing stabilizers), we make

−−→
CD into a wallspace with a

J-action by equivariantly producing a hybrid wall
−−→
UV for each associated pair of walls U,V .

7. T  

Definition 7.1. An A-wall in a group B is a finite neighborhoodNr(A) of A in Γ = Γ(B) and a decomposition
of Γ as the union of two A-invariant subspaces Γ =

←−
A ∪
−→
A with

←−
A ∩
−→
A = Nr(A). An A-wall in B extends to an

H-wall in G if A = B ∩ H and
←−
A ⊂ Ns(

←−
H) and

−→
A ⊂ Ns(

−→
H) for some s. We use the term quasiconvex A-wall

to additionally indicate that A is a quasiconvex subgroup. G has the extension property for quasiconvex walls
if it has a finite index subgroup G′ such that for any quasiconvex A ⊂ G′, each A-wall in a quasiconvex
subgroup B extends to a quasiconvex H-wall in G.

For instance, when G acts properly on a CAT(0) cube complex, each infinite cyclic subgroup H of G has
the extension property. If G is hyperbolic and contains a finite index subgroup G′ that is the fundamental
group of a compact special cube complex, then G has the quasiconvex wall extension property. The following
slightly more general statement is obtained in [18]:

Proposition 7.2. Let G act cosparsely on a CAT(0) cube complex X, and suppose there is a finite index
subgroup G′ such that G′\X is special. Let H be a quasiconvex subgroup of G, and let A ⊂ H be a quasiconvex
full subgroup of G′. Then any A-wall of H extends to a quasiconvex B-wall of G.

8. M T

Main Theorem 8.1. G acts properly and cosparsely on a CAT(0) cube complex provided:
(1) G is hyperbolic relative to virtually abelian subgroups;
(2) G splits as a finite directed graph Γ of groups with quasiconvex, almost malnormal, edge groups;
(3) The collection of edge groups {Ge} at Gv is almost malnormal, and each Ge is hyperbolic;
(4) Each vertex group acts properly and cosparsely on a CAT(0) cube complex;
(5) Each vertex group has the quasiconvex extension property with respect to its edge subgroups;
(6) For each embedding of an (incoming) edge group Ge ⊂ Gv, and each quasiconvex subgroup H of Gv,

the subgroup Ge ∩ H is separable in Ge.

A collection of walls is sufficient if the resulting action on the dual cube complex is proper. The proof
works if we can extend sufficiently many quasiconvex walls of each edge group into its vertex groups.

Proof. For each e, let G′e = φ−1
−e(G′ι(e)) ∩ φ

−1
+e(G′τ(e)) be the intersection of the extension-assuring finite index

subgroups of its vertex groups. Choose a sufficient collection of quasiconvex walls for G′e, and extend each
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wall into Gι(e) and Gτ(e). Thus for each Gv, we obtain a collection of immigrant quasiconvex walls from
its edge groups. By hypothesis, each Gv acts properly and cosparsely on a CAT(0) cube complex, from
which we obtain a sufficient collection of native quasiconvex walls for Gv. Combining native and immigrant
quasiconvex walls, we obtain a proper cosparse action of Gv on a CAT(0) cube complex Zv.

By Proposition 3.5, for each e at v, let Ce denote a Ge-cocompact convex subcomplex of Zv. By Proposi-
tion 3.6, let Av denote a Gv-cocompact convex subspace of Zv that contains each Ce. At this point, for each
Ge, there are systems of walls coming from Gι(e) and Gτ(e), and they may not agree with each other. We now
resolve this by turning them.

Consider the collared space A+
v associated to the mapping cylinder of the union of local isometries {Ce →

Av} representing edge groups. We apply Theorem 5.2 to obtain a wallspace structure on A+
v , which we denote

by (Xv,Wv). That construction produces quasiconvex walls on A+
v , and duplicates each wall of each Ce. The

inclusion Ce = Ce × {1} ⊂ A+
v is an embedding of geometric wallspaces by Lemma 5.14.

For each edge e, we have produced above two Ge-wallspaces associated to the distinct inclusions of Ge →

Gι(e) and Ge → Gτ(e). To indicate the orientation of the edge e, we denote these by Ce and De. Let Ce → De

be a Ge-equivariant map, and following Definition 6.8, let
−−−−→
CeDe denote the hybrid wallspace.

Let T be the barycentric subdivision of the Bass-Serre tree To of Γ. The original vertices of T are primary
and the new vertices are hybrid. We now produce a tree X of geometric wallspaces over T . Its primary vertex
spaces are appropriate copies of the Xv for primary vertices v ∈ T . Its hybrid vertex spaces are appropriate
copies of

−−−−→
CeDe for hybrid vertices of v ∈ T . The edge spaces Xe are copies of Ce × I and De × I equivariantly

attached to hybrid and primary vertex spaces by geometric embeddings of wallspaces.
Finally, G acts cosparsely on the cube complex dual to the wallspace X by Theorem 6.7. �

Remark 8.2 (Ensuring Cocompactness). When G is hyperbolic, the dual cube complex {(X) of Theorem 8.1
is G-cocompact. More generally, Proposition 3.4 yields a cocompact cubulation precisely when each para-
bolic subgroup P of G is not “overcubulated”. This means that the number of slopes i.e. distinct parallelism
classes of walls crossing a maximal parabolic subgroup P, equals d where P is virtually Zd. Let us therefore
assume that each Gv acts cocompactly on a CAT(0) cube complex, and examine the steps in the proof of
Theorem 8.1 to see when extra slopes are added.

Doubling of hyperplanes in the proof of Theorem 5.2 does not produce new slopes, and turns do not
produce new slopes. Taken together, we note that the recubulation procedure of Theorem 5.2 has cocompact
output {(A+) when it is given a cocompact input {(A).

The extension result in [18] is obtained using a combinatorial retraction map, and therefore does not
produce any new slopes. The only way that a new slope can arise for a parabolic subgroup P in a vertex
group Gv, is when an immigrant wall arrives in Gv through some edge group. One way to exclude this
possibility is to assume that the edge groups are hyperbolic.

We conclude that {(X) is G-cocompact when each Gv acts cocompactly on a CAT(0) cube complex and
each edge group is malnormal quasiconvex and hyperbolic.

Remark 8.3. There is a G-equivariant quotient {(X) → T where T is the Bass-Serre tree of Γ, and cubes
are quotiented to vertices or projectively to 1-cubes of T . In particular, for each edge group Ge there is a
hyperplane H of {(X) such that Ge = Stabilizer(H) and the action of Ge on H preserves its halfspaces, and
gH ∩ H = ∅ unless g ∈ Stabilizer(H). This holds because of our choice of walls for the edge groups of G.
The analogous remark holds for Theorem 8.4 below.

For an amalgamated product, we relax almost malnormality and aparabolicity on one side as follows:

Theorem 8.4. Suppose G = L ∗E R is hyperbolic relative to virtually abelian subgroups, where L,R are
quasiconvex and act properly and cosparsely on CAT(0) cube complexes, E ⊂ L is almost malnormal, each
quasiconvex subgroup of E is separable in L, and finally, there exists a finite index normal subgroup R′ ⊂ R
such that each quasiconvex wall of E ∩ R′ extends to a quasiconvex wall of L. Then G acts properly on a
cosparse CAT(0) cube complex.
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F 8.1. The 1st figure illustrates the immersed walls for an HNN extension A∗Ct=D with {C,D}
malnormal in A. (We do not illustrated the doubling step or the wall cutting through the edge space.)
The 2nd figure illustrates the case of A ∗C B where C is malnormal and has the extension property in
A. For A∗Ct=D, when only C ⊂ A is malnormal and has the extension property in A, we need to be
sure that extensions of walls in C do not produce new walls in D as in the 3rd figure. Otherwise a
feedback loop could develop as in the 4th figure.

Remark 8.5. If we only assume E is quasiconvex in L, and we assume that all walls in E are extendible into
L, then we see that G is properly cubulated, but cannot draw any cocompactness conclusions.

Proof of Theorem 8.4. The cubulation of R′ provides a sufficient collection of quasiconvex walls in E. Each
of these extends to a quasiconvex wall in L. These immigrant walls are combined together with a hypothesized
native collection, and all excess walls are turned.

R acts properly and cosparsely on a CAT(0) cube complex, and we apply Proposition 3.6 to choose a
R-cocompact convex subspace AR whose walls are the intersections with hyperplanes. Section 5 provides a
wallspace structure on a cocompact CAT(0) spaces AL and an E-cocompact subspace C ⊂ AL representing
E → L. While CL is actually a subcomplex of the original CAT(0) cube complex containing AL, since
E is not full on the R-side, we can only obtain a convex subspace D ⊂ AR arising from an application of
Propositions 3.6 and 3.5 to D and AR. We then form the hybrid space

−−→
CD and proceed as before.

Quasiconvexity of the new walls follows from a variant of Proposition 6.6 in [1] that only requires almost
malnormality on one side in the amalgamated free product case. �

Remark 8.6 (Avoiding feedback loops). Lack of malnormality of the edge groups is harder to compensate
for in the HNN case. This is because the extension property can generate a “feedback loop”. Consider
G = A∗Ct=D. If we assume that G has the extension property with respect to C, and that {C,D} is almost
malnormal, then the proof proceeds as follows: A cubulation of A yields native walls of A that are sufficient
in D. These extend into A through C to produce a further collection of immigrant walls. Now the excess
immigrant walls and native walls of A are turned in C and D. However, if we assume that only one of C or D
is malnormal, then we need further control of the extension property to avoid a feedback loop.

In the case where the extension property holds for C and where C is almost malnormal, we need to know
that no further (induced) walls in D are created when a wall in C is extended into A. For we can start with a
cubulation of A, and then extend the walls in the edge group that are induced by C ⊂ D, and finally turn all
excess on the almost malnormal C side.

Example 8.7. The simplest examples where “feedback loops” prevent cubulation are the infamous Baumslag-
Solitar HNN extensions: 〈a, t | (an)t = am〉 where n,m , 0 and n , ±m. But there are more subtle examples.
For a group G splitting as a graph of Z2 groups with Z vertex groups, it is determined exactly when G can be
cubulated in [17]. One group described there that cannot be cubulated is: 〈a, b, s, t | [a, b], (ab)s = a3b, (ab)t =

ab3〉. Using c = ab, d = a3b, it can be re-presented as: 〈c, d, s, t | [c, d], csds−1, ct = c4d−1〉. This is an HNN
extension whose stable letter is t and where the presentation of the base group provides a npc square complex
with a special double cover.
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