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Classification of geometric structures:
A source of interesting dynamical systems

I Lie and Klein (1872): A geometry in the classical sense
consists of the properties of a space X invariant under the
transitive action of a Lie group G .

I Ehresmann (1936): Manifolds locally modeled on (G ,X ).

I Fix a topological manifold ⌃.

I Classifying such (G ,X )-structures on ⌃ leads to an action of
the mapping class group Mod(⌃) := ⇡

0

�
Homeo(⌃)

�
on a

deformation space Def
(G ,X )

(⌃) of (G ,X )-structures.

I Def
(G ,X )

(⌃) itself is locally modeled on Rep
�
⇡
1

(⌃),G
�

I The Mod(⌃)-action on Def
(G ,X )

(⌃) corresponds to the
Out(⇡)-action on Rep

�
⇡
1

(⌃),G
�
.

I This provides a source of interesting dynamical systems.



Coordinate atlases and development

I Geometry: Homogeneous space X = G/H.

I Topology: Topological manifold ⌃ with universal covering
e⌃ �! ⌃ and fundamental group ⇡.

I Marking: Homeomorphism ⌃
f��! M; the geometry on M will

vary, but the topology of ⌃ remains fixed.
I Patches U ⇢ M; Coordinate atlas of charts U �! X defining

local coordinates on U modeled on X .
I On overlapping patches the change of coordinates are

restrictions of transformations of X lying in G .
I Charts globalize to immersion e⌃! X , equivariant respecting

the holonomy homomorphism ⇡ �! G .
I Holonomy globalizes coordinate changes.

I M (G ,X )-manifold, (M, f ) marked (G ,X )-structure on ⌃.



Ehresmann-Weil-Thurston principle

I Construct a deformation space of marked (G ,X )-structures
on ⌃ up to appropriate equivalence relation.

I Holonomy defines a mapping

Def
(G ,X )

(⌃)
H��! Hom

�
⇡
1

(⌃),G
�
/Inn(G )

I Best cases (e.g. hyperbolic manifolds): stratify into smooth
manifolds and H local di↵eomorphism.

I Changing the marking corresponds to an action of the
mapping class group

Mod(⌃) := ⇡
0

�
Homeo(⌃)

�

on Rep(⇡,G ) whose orbit structure defines the moduli space
of (G ,X )-structures on ⌃.



Example of trivial dynamics: Hyperbolic surfaces

I Suppose X = H2 and G = Isom(H2) ⇠= PGL(2,R).
I Then Def

(G ,X )

(⌃) is the Fricke space F(⌃), which identifies
with the Teichmüller space by the uniformization theorem.

I H embeds F(⌃) as a connected component of Rep(⇡,G ):
I Open: Weil (1960).
I Closed: Chuckrow(1968), Kazhdan-Margulis (1968)
I Connected: F(⌃) is a cell:

I
Teichmüller (1943)+ uniformization;

I
direct hyperbolic-geometry proofs: Fenchel-Nielsen (⇠ 1940?),

Fricke-Klein (⇠ 1900?).

I Trivial dynamics: Action of Mod on F(⌃) is proper (Fricke ?).
Its quotient is the Riemann moduli space of smooth Riemann
surfaces of fixed topology.

I For ⌃ = T 2, the deformation space of unit-area Euclidean
structures is the upper half-plane H2 with action the modular
group Mod(⌃) ⇠= GL(2,Z) acting properly by linear fractional
transformations.



Examples of nontrivial dynamics

I In contrast, the deformation space of complete a�ne
structures on T 2 is homeomorphic to R2, with the Euclidean
structures corresponding to the origin. (O. Baues 2000)

I Mod(T 2)-action is usual linear action of GL(2,Z) on R2.
I This chaotic action admits no reasonable quotient.

I Therefore, the classification of geometric structures is a
dynamical system, since the moduli space (its quotient) is
often intractable.



Symplectic/Poisson structure

I When G = SL(2), then the character variety Rep(⇡,G )
admits a symplectic structure extending:

I Weil-Petersson Kähler form on Teichmüller component for
G = SL(2,R);

I Narasimhan-Atiyah-Bott Kähler form for G = SU(2).

I When @⌃ 6= ;, then Rep(⇡,G ) inherits a Poisson structure
with restriction mapping

Rep(⇡,G ) �! Rep
�
⇡
1

(@⌃),G
�

as universal Casimir. The level sets (relative character
varieties) are its symplectic leaves.



Ergodicity for compact groups

I Let G be a compact Lie group with Levi factor K and ⌃ a
compact orientable surface. If @⌃ = ;, then
� := Mod(⌃) = Out(⇡) (Nielsen).

I Components of Rep(⇡,G ) parametrized by ⇡
1

(K ).
I � acts ergodically on each compoenent of Rep(⇡,G )

(Pickrell-Xia).
I Also known for all surfaces of genus > 1.
I Case of local products of U(1) and SU(2), and all surfaces

ealier (Goldman).



Character functions and Hamiltonian twist flows

I Elements � 2 ⇡
1

(⌃) define character functions on Rep(⇡,G ):

Rep(⇡,G )
f���! R

[⇢] 7! <
�
Tr⇢(�)

�

with Hamiltonian vector fields Ham(f�).
I For the Fricke-Teichmüller component when G = PSL(2,R),

and � corresponding to a simple loop, Ham(f�) generates the
Fenchel-Nielsen twist flows, reparametrized (Wolpert 1982).

I � determines an oriented cycle on ⌃ and the Killing vector
field generating the holonomy ⇢(�) defines a coe�cient in the
Lie algebra sl(2,R), giving a infinitesimal deformation of ⇢ in

T
[⇢]Hom

�
⇡
1

(⌃),G )/G
� ⇠= H

1

(⌃, sl(2,R)
Ad⇢

�

I This deformation is supported on the cycle �.



Hamiltonian flows and Dehn twists

I Dehn twist Tw� generates lattice inside R-action
corresponding to Ham(f�)-orbits.

I ⇢(�) elliptic element of G = SL(2,R) =)
Integral curves of Ham(f�) are circles S�

⇢ .

I For almost every value of f� , the Dehn twist Tw� defines an
ergodic translation of S�

⇢ ;
I Ergodic decomposition: Every Tw�-invariant function is a a.e.

Ham(f�)-invariant.
I For SL(2), a family of simple curves exist so that f� generate

the coordinate ring of Rep(⇡,G )
I Flows of Ham(f�) generate transitive action on each connected

component of where the vector fields span.

I Mod(⌃)-action ergodic on regions where simple loops have
elliptic holonomy.



Surfaces with ⇡ ⇠= F2



Vogt-Fricke theorem and F2

I Let F
2

= hX ,Y i be free of rank two. Then

Hom(F
2

, SL(2)) ⇠= SL(2)⇥ SL(2)

and Rep(F
2

, SL(2)) is its quotient under Inn
�
SL(2)

�
.

I The Inn
�
SL(2)

�
-invariant mapping

Hom(F
2

, SL(2)) �! C3

⇢ 7�!

2

4
⇠ := Tr

�
⇢(X )

�

⌘ := Tr
�
⇢(Y )

�

⇣ := Tr
�
⇢(XY )

�

3

5

defines an isomorphism

Rep(F
2

, SL(2))
⇠
=���! C3.



Polynomial automorphisms

I Out(F
2

)-invariant commutator trace function:

Rep(F
2

, SL(2)) ⇠= C3

��! C
(⇠, ⌘, ⇣) 7�! ⇠2 + ⌘2 + ⇣2 � ⇠⌘⇣ � 2

= Tr[⇢(X ), ⇢(Y )]

I Casimir (@-trace) for one-holed torus ⌃
1,1.

I (Nielsen): Out(F
2

) ⇠= GL(2,Z) = Mod(⌃
1,1).

I Nonlinear automorphisms generated by Vieta involutions:

2

4
⇠
⌘
⇣

3

5 7�!

2

4
⌘⇣ � ⇠

⌘
⇣

3

5 ,

2

4
⇠
⌘
⇣

3

5 7�!

2

4
⇠

⇠⇣ � ⌘
⇣

3

5 ,

2

4
⇠
⌘
⇣

3

5 7�!

2

4
⇠
⌘

⇠⌘ � ⇣

3

5

I Coordinate projections are double Galois coverings
I Vieta involutions are deck transformations.



Cayley cubic ⇠2 + ⌘2 + ⇣2 � ⇠⌘⇣ = 4
I Reducible representations correspond precisely to �1(2).

I Quotient of C⇤ ⇥ C⇤ by the involution

(a, b) 7�! (a�1, b�1).

⇠ = a+ a�1, ⌘ = b + b�1, ⇣ = ab + (ab)�1

I Homogeneous dynamics: GL(2,Z)-action on (C⇤ ⇥C⇤)/(Z/2).



R-points: Unitary representations
I R-points correspond to representations into R-forms of SL(2):

either SL(2,R) or SU(2).
I Characters in [�2, 2]3 with   2  ! SU(2)-representations.



R-points: Hyperbolic structures on one-holed tori

I Hyperbolic structures on ⌃
1,1 correspond to real characters

(⇠, ⌘, ⇣) 2 R3 with commutator trace k := (⇠, ⌘, ⇣) < �2
corresponding to the boundary length:

k = �2 cosh
�
`@⌃/2)

�

I The level set R3 \ �1(�2) corresponds to hyperbolic
structures on a once-punctured torus, that is, the end of ⌃
corresponding to @⌃ is a cusp.

I Level sets R3 \ �1(k) where �2 < k < 2 correspond to
hyperbolic tori with one cone point of angle ✓:

k = �2 cos
�
✓/2)

�
,

I Generalized Fricke space F0(⌃) comprises hyperbolic structures
on ⌃ with funnels, cusps or discs containing cone points.



Example: The Marko↵ surface x

2 + y

2 + z

2 = xyz

R3 \ �1(�2) parametrizes hyperbolic structures on the punctured
torus. The origin (0, 0, 0) corresponds to the unique
SU(2)-representation with k = �2. The famous Marko↵ triples
correspond to triply symmetric hyperbolic punctured tori.



Fricke orbits define wandering domains for k > 2
I Homotopy equivalences ⌃

1,1 ! ⌃
0,3 define embeddings of

Fricke spaces F(⌃
0,3) in �1(k) for k > 18;

I For k  18, action is ergodic.
I For k > 18, action is ergodic on complement of Fricke orbit



Relative character variety for one-holed Klein bottle C1,1

Let k > 2 be the commutator trace. The relative character variety
is defined by:

�x2 � y2 + z2 + xyz = k + 2

Each component projects di↵eomorphically to the (x , y)-plane.



Structures on C1,1

I The Generalized Fricke space F0(C
1,1) of C1,1 identifies with

the subset defined by z > 2 and

Qz(x , y) = x2 + y2 � zxy < 0.

I Trace function z corresponding to two-sided interior curve Z .

I The boundary trace is:

� := Qz(x , y) + 2 = z2 � k =
8
><

>:

�2 cosh(`/2) for a funnel with closed geodesic of length `;

�2 for a cusp;

�2 cos(✓/2) for a point with cone angle ✓;

I Goldman – McShane – Stantchev – Ser Peow Tan
Automorphisms of two-generator free groups and spaces of
isometric actions on the hyperbolic plane, DG.1509.03790



The level set �1(k) for k > 2
I Generalized Fricke space F0(C

1,1) of C1,1 projects to a linear
sector in R2 invariant under

Mod(C
1,1) ⇠= Z/2⇥

�
Z/2 ? Z/2

⌘
⇠ hTwZ i ⇠= Z.

I Wandering domain under � whose orbit is open and dense.
What is the Hausdor↵ dimension of its complement?

2

filled K=3.pdf

Figure 1. Part of the orbit of W for  = 3.

1.2. Two remarks. The following two observation allow one to completely deter-
mine the dynamics solving Goldman’s problem.
Observation 1: The first of these is that one can find a linearization of the

dynamics at a “global fixed point” for �11: for any k the point (0, 0,
�

k + 2) 2
�1(k) is a fixed point of every element of �11. The linearization is a homomorphism

�K : �11 ! GL(T(0,0,
�

k+2)
�1(k)),

f⇤ 7! D(0,0,
�

k+2)f
⇤

.

Since the �11 action preserves an area form on the level set �1(k)) the image of
�K is actually contained in SL.

One might hope that the linearization determines the dynamics on the whole
level set. In fact, we shall use the action of this linearization on the tangent plane
and the associated projective line to serve as a model for the dynamics on the rest
of the level set.
Observation 2: Let Z denote the infinite cyclic subgroup of �11 generated by
QxQy; note that (QxQy)�1 = QyQx.



HAPPY BIRTHDAY, GRISHA!
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