The deterministic chaotic behavior of an invertible map T is appropriately described by the existence of expanding and contracting directions of the differential of T. A special class of such maps consist in Anosov diffeomorphisms. Every 2-by-2 hyperbolic matrix M with integer entries induces such a diffeomorphism on the 2-torus. For all pairs of real-analytic functions on the 2-torus, one defines a correlation function for T which captures the asymptotic independence of such a pair under the evolution T^n as n tends to infinity. What is the rate of convergence of the correlation as n tends to infinity, for instance what is its decay rate? The resonances for T are the poles of the Z-transform of the meromorphic continued correlation function. The decay rate is well-understood if T=M. There are no non-trivial resonances of M. In this talk, I consider small real-analytic perturbations T of M where at least one non-trivial resonance of T appears. This affects the decay rate of the correlation.