Graded Assignment on Dynamical Systems - Due December 2

The quality of the writing will be an integral part of the grading.

Exercice 1 Let X be a compact space, and $\phi : X \to X$ a continuous map. A topological factor of the topological dynamical system (X, ϕ) is a topological dynamical system (Y, ψ) equipped with a semi-conjugation (surjective and continuous) $h : (X, \phi) \to (Y, \psi)$. It is said to be trivial if h is a homeomorphism or if Y is reduced to a single point.

- (1) Give an example of a minimal dynamical system that has a non-trivial topological factor.
- (2) A system (X, ϕ) is said to be 2-minimal if for every $x \neq y \in X$, the orbit of (x, y) in X^2 under $\phi \times \phi$ is dense in X^2 .

Prove that if (X, ϕ) is 2-minimal, then every Hausdorff topological factor of (X, ϕ) is trivial.

Exercice 2 Let G be a group acting by orientation-preserving homeomorphisms on the circle $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$. Denote by $\pi : \mathbb{R} \to \mathbb{T}^1$ the canonical projection, and we may denote $\dot{x} = \pi(x)$ for $x \in \mathbb{R}$.

The goal of this exercise is to understand under what conditions there exists a G-invariant probability measure μ on \mathbb{T}^1 .

(1) In this question, let $G = \text{PSL}_2(\mathbb{R})$, acting on the Alexandrov compactification $\mathbb{R} \cup \{\infty\}$ of \mathbb{R} by the usual formula

$$\rho_0(g)(x) = \frac{ax+b}{cx+d}$$

if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$. Fix a homeomorphism $h : \mathbb{R} \cup \{\infty\} \to \mathbb{T}^1$ and let G act on \mathbb{T}^1 via the action $\rho = h\rho_0 h^{-1}$.

- (a) For $g \in G$, what are the α -limit and ω -limit sets of a point $x \in \mathbb{T}^1$ under $\rho(g)$? When does $\rho(g)$ exhibit north-south dynamics on \mathbb{T}^1 ?¹
- (b) What is, as a function of Tr(g) = a + d, the rotation number $\tau(\rho(g))$?
- (c) Assume a homeomorphism g of \mathbb{T}^1 has north-south dynamics on \mathbb{T}^1 . What are the invariant measures under g?
- (d) Prove that there is no measure invariant under all elements of $\rho(G)$ on \mathbb{T}^1 .
- (2) Now consider G arbitrary, and fix an action $\rho : G \to \text{Homeo}^+(\mathbb{T}^1)$ assuming $\rho(G)$ preserves $\mu \in \text{Prob}(\mathbb{T}^1)$. If μ has at least one atom, show that G has a finite orbit on \mathbb{T}^1 .
- (3) Assume G preserves a measure μ that has no atoms and whose support is \mathbb{T}^1 .
 - (a) Equip \mathbb{T}^1 with the usual distance d_0 , defined by $d_0(\dot{x}, \dot{y}) = \min_{k \in \mathbb{Z}} |x y + k|$ for $x, y \in \mathbb{R}$ (where \dot{x} (resp. \dot{y}) is the projection of x (resp. y) in \mathbb{T}^1). Show that if $\phi \in \text{Homeo}^+(\mathbb{T}^1)$ is an isometry, then ϕ is a rotation.
 - (b) Define $d(x, y) = \mu([x, y])$ for $x, y \in \mathbb{T}^1$, where [x, y] is a connected component of $\mathbb{T}^1 \setminus \{x, y\}$ minimizing $\mu([x, y])$. Show that d is a distance, and that (\mathbb{T}^1, d) is isometric to (\mathbb{T}^1, d_0) .

^{1.} Recall that a matrix $g \in SL_2(\mathbb{R})$ falls into one of three types :

[—] *elliptic* if it is conjugate to a rotation matrix,

[—] parabolic if it is conjugate to a matrix of the form $\begin{pmatrix} 1 & x & 0 & 1 \end{pmatrix}$ for some $x \in \mathbb{R}^*$,

[—] hyperbolic if it is conjugate to a matrix of the form $\begin{pmatrix} \lambda & 0 & 0 & \lambda^{-1} \end{pmatrix}$ for some $\lambda \in \mathbb{R}^*$.

(c) Prove that the action of $\rho(G)$ on \mathbb{T}^1 is conjugate to an action by rotations.

- (4) Assume G preserves a measure $\mu \in \operatorname{Prob}(\mathbb{T}^1)$ that has no atoms. For $t \in [0, 1[$, let $f(\dot{t}) = \mu(\pi([0, t]))$. Show that f is a continuous surjective map $f : \mathbb{T}^1 \to \mathbb{T}^1$, and that we can define an action $\rho' : G \to \operatorname{Homeo}^+(\mathbb{T}^1)$ such that $f \circ \rho(g) = \rho'(g) \circ f$ for all $g \in G$.
- (5) Show that if every group homomorphism from G to an abelian group has finite image, and if G preserves a measure $\mu \in \operatorname{Prob}(\mathbb{T}^1)$, then G has a finite orbit on \mathbb{T}^1 .