TD 1 : Topological dynamical systems, circle homeomorphisms

Exercise 1 Let (X, ϕ) and (X', ϕ') be two topological dynamical systems, and let $h : X \to X'$ be a semi-conjugacy between (X, ϕ) and (X', ϕ') . Among the following properties, which are satisfied by (X', ϕ') if they are satisfied by (X, ϕ) ? Give counterexamples when this is not the case.

- having its periodic points dense,
- having a positively recurrent point,
- having no wandering point,
- being positively transitive (and transitive in the invertible case),
- being topologically mixing,
- being positively minimal (and minimal in the invertible case).

Exercice 2 Let X be a topological space with a countable base of open sets, $\mu \in \operatorname{Prob}(X)$ with support equal to X, and $\phi : X \to X$ a continuous map that preserves μ . Show that if ϕ is μ -ergodic, then μ -almost every positive orbit is dense in X, i.e.,

$$\overline{\{\phi^n(x) \mid n \in \mathbb{N}\}} = X$$

for μ -almost every x.

Exercice 3 Let $p \in \mathbb{Z} - \{-1, 0, 1\}$, $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$, and $\phi_p : \mathbb{T}^1 \to \mathbb{T}^1$ the continuous map defined by $x \mapsto p x$.

- (1) Show that the discrete-time topological dynamical system (\mathbb{T}^1, ϕ_p) is non-invertible, that it is conjugate to the topological dynamical system $(\mathbb{S}_1, z \mapsto z^p)$, that the set $per(\phi_p)$ of periodic points of ϕ_p is dense in the circle \mathbb{T}^1 , that the topological dynamical system (\mathbb{T}^1, ϕ_p) is non-wandering, positively transitive, and topologically mixing.
- (2) Assume $p \ge 2$. Let $\Theta : \{0, \ldots, p-1\}^{\mathbb{N}} \to \mathbb{T}^1$ be the map defined by

$$(x_i)_{i\in\mathbb{N}}\mapsto\sum_{i\in\mathbb{N}}\frac{x_i}{p^{i+1}}\mod\mathbb{Z}$$
.

Show that Θ is a semi-conjugacy between the one-sided Bernoulli shift with alphabet $\{0, \ldots, p-1\}$ and the topological dynamical system (\mathbb{T}^1, ϕ_p) , which is called a coding of (\mathbb{T}^1, ϕ_p) . Retrieve the previous properties.

Exercice 4 Let (X, d) be a metric space. A continuous map $f : X \to X$ is said to be *strictly* expanding with factor $\lambda > 1$ if there exists $\epsilon > 0$ such that for all $x, y \in X$, if $d(x, y) \leq \epsilon$, then

$$d(f(x), f(y)) \ge \lambda d(x, y)$$
.

A continuous map $f: X \to X$ is said to be *strictly expanding* if there exists $\lambda > 1$ such that f is strictly expanding with factor λ .

The goal of the exercise is to classify, up to conjugacy, strictly expanding maps on the circle. We consider the circle as the metric space $\mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$, with the induced distance¹ from \mathbb{R} .

(1) Let $p \in \mathbb{Z} - \{-1, 0, 1\}$. Show that the map $\phi_p : \mathbb{T}^1 \to \mathbb{T}^1$ defined by $x \mapsto p x$ is strictly expanding.

^{1.} Letting $\dot{x} \in \mathbb{T}^1 = \mathbb{R}/\mathbb{Z}$ be the image of $x \in \mathbb{R}$ under the canonical projection, the induced distance is defined by $d(\dot{x}, \dot{y}) = \min_{k \in \mathbb{Z}} |x - y + k|$ for all $x, y \in \mathbb{R}$. Note that if $x, y \in \mathbb{R}$ satisfy $|x - y| < \frac{1}{2}$, then $d(\dot{x}, \dot{y}) = |x - y|$.

(2) Show that the degree p of a strictly expanding map $f : \mathbb{T}^1 \to \mathbb{T}^1$ is different from -1, 0, 1.

From now on, we fix a strictly expanding map $f : \mathbb{T}^1 \to \mathbb{T}^1$ of degree $p \geq 2$, and we want to show that f is topologically conjugate to ϕ_p .

- (3) Show that f has a fixed point. Show that we can assume that f admits a lift \tilde{f} (which we fix for the rest of the exercise) such that $\tilde{f}(0) = 0$. Show that there exists a finite, strictly increasing sequence of points $a_0 = 0 < a_1 < \cdots < a_{p-1} < a_p = 1$ such that $\tilde{f}(a_i) = i$ for $i = 0, \ldots, p$.
- (4) Let E be the set of increasing continuous maps $h: [0,1] \to [0,1]$ such that h(0) = 0 and h(1) = 1, equipped with the distance induced by the uniform norm

$$d(h_1, h_2) = \max_{t \in [0,1]} |h_1(t) - h_2(t)|$$
.

Show that E is complete. Let $L: E \to E$ be the map $h \mapsto Lh$ defined by setting, for all $h \in E$ and $t \in [0, 1]$,

$$Lh: t \mapsto \begin{cases} \frac{1}{p} h(\tilde{f}(t) - i) + \frac{i}{p} \mod 1 & \text{if } a_i \le t < a_{i+1} \text{ and } i = 0, \dots, p-1 \\ 1 & \text{if } t = 1 \end{cases}$$

Show that L is a $\frac{1}{n}$ -contracting map² on E.

(5) Conclude.

Exercice 5 Let $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ be an orientation-preserving homeomorphism with a rational rotation number α .

- (1) Show that all periodic orbits have the same period.
- (2) Show that all periodic orbits have the same cyclic order on the circle as any orbit of the rotation R_{α} .
- (3) If the rotation number of f is p/q with p and q being coprime integers, show that f is topologically conjugate to the rotation $R_{p/q}$ if and only if there exists a lift \tilde{f} of f such that \tilde{f}^{q} is the map $t \mapsto t + p$.

^{2.} Let $c \in [0,1[$. A map $f: X \to Y$ between two metric spaces is *c*-contracting if for all $x, y \in X$, we have $d(f(x), f(y)) \leq c d(x, y)$.