TD 1 : Measure-preserving transformations

Exercice 1 Let X be a metrizable compact space. Let $\varphi_1, \varphi_2 : X \to X$ to continuous maps that commute.

Prove that there exists a Borel probability measure on X which is invariant by both φ_1 and φ_2 .

Exercice 2 Let \mathcal{A} be a finite alphabet of cardinal at least 2, and μ a probability measure on \mathcal{A} . For a in the support of μ , calculate the laws of the first return times on the initial cylinder [a] for both the two-sided and one-sided Bernoulli shift, for the measures $\mu^{\mathbb{Z}}$ and μ^{N} respectively. Check that Kac's theorem holds.

Exercice 3 Let $\alpha \in \mathbb{R}$ be an irrationnal number and T the translation of the circle \mathbb{R}/\mathbb{Z} defined by $T(x) = x + \alpha$. Let $\beta \in]0, 1[$ and $I = [0, \beta]$ be a closed interval (in \mathbb{R} , identified to its image in \mathbb{R}/\mathbb{Z}).

- (1) Let $0 \le a \le b < 1$. Show that if $x \in [a, b] \subset I$ and n are such that $T^n x \in I$ then either $T^n a \in I$ or $T^n b \in I$.
- (2) Prove that the first return time on I takes at most 3 distinct values.

Exercise 4 (INDUCED TRANSFORMATION) Let $(X, \mathscr{B}, \mu, \varphi)$ be a probabilized dynamical system with discrete time. Let $A \subset X$ be measurable, with positive measure, and let $\tau_A : X \to (\mathbb{N} \setminus \{0\} \cup \{\infty\})$ be the first return time on A. Note μ_A the induced measure on A: recall that it is defined by $\mu_A(B) = \frac{\mu(B)}{\mu(A)}$ for every B in the induced σ -algebra $\mathscr{B}_A = \{B \cap A \mid B \in \mathscr{B}\}$. The *induced transformation of* φ *in* A is the map

$$\varphi_A : x \mapsto \begin{cases} \varphi^{\tau_A(x)}(x) & \text{si } \tau_A(x) \neq \infty \\ x & \text{sinon} \end{cases}$$

- (1) Prove that φ_A is \mathscr{B}_A -mesurable and preserves the induced measure μ_A .
- (2) Prove that if $(X, \mathscr{B}, \mu, \varphi)$ is ergodic then $(A, \mathscr{B}_A, \mu_A, \varphi_A)$ also is.
- (3) We assume that $X = \bigcup_{n \in \mathbb{N}} \varphi^{-n}(A)$. Prove that if $(A, \mathscr{B}_A, \mu_A, \varphi_A)$ is ergodic then $(X, \mathscr{B}, \mu, \varphi)$ is ergodic.

Exercise 5 (KAKUTANI TRANSFORMATION) Let $(X, \mathscr{B}, \mu, \varphi)$ be a probabilized dynamical system with discrete time, with φ invertible. Let $\tau : X \to (\mathbb{N} \setminus \{0\} \cup \{\infty\})$ be a measurable map such that $\int_X \tau d\mu < \infty$ (it will be called *height function*). Let

$$X_{\tau} = \{ (x, n) \in X \times \mathbb{N} \mid n < \tau(x) \}$$

endowed with the σ -algebra \mathscr{B}_{τ} induced from the product σ -algebra on $X \times \mathbb{N}$. Let $\varphi_{\tau} : X_{\tau} \to X_{\tau}$ defined by

$$(x,n) \mapsto \begin{cases} (x,n+1) & \text{si } n+1 < \tau(x) \\ (\varphi(x),0) & \text{sinon} \end{cases}$$

(called the *Kakutani transformation* on X of height τ).

- (1) Prove that the Kakutani transformation φ_{τ} is \mathscr{B}_{τ} -measurable.
- (2) Prove that there exists on the measurable space X_{τ} a unique probability measure μ_{τ} , invariant by φ_{τ} , such that the measure on $X \times \{0\}$ induced from μ_{τ} is the measure μ .

The space X_{τ} is called the *Kakutani tower* on X of height τ . The dynamical system $(X_{\tau}, \mathscr{B}_{\tau}, \mu_{\tau}, \varphi_{\tau})$ is called the *suspension* of X of height τ .

- (3) Make a picture.
- (4) Prove that if $(X, \mathscr{B}, \mu, \varphi)$ is ergodic then $(X_{\tau}, \mathscr{B}_{\tau}, \mu_{\tau}, \varphi_{\tau})$ also is.
- (5) Let $(Y, \mathscr{C}, \nu, \psi)$ be a probabilized invertible dynamical system with discrete time, with ν ergodic, and A be a positive measure subset of Y.

Prove that the measured dynamical system $(Y, \mathscr{C}, \nu, \psi)$ is conjugated to the system obtained as a suspension of the induced dynamical system $(A, \mathscr{C}_A, \nu_A, \psi_A)$ for the height function equal to the first return time τ_A .