TD 2 : Ergodicity, Birkhoff's Theorem, Kingman and Oseledets' Theorems

Exercise 1 Let $(X, \mathcal{B}, \mu, \varphi)$ be a probabilized dynamical system. Prove that φ is ergodic if and only if for every $A, B \in \mathcal{B}$ we have

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \mu(\varphi^{-k}(A) \cap B) = \mu(A)\mu(B)$$

Exercise 2 Let $x \in \{1, ..., 9\}$. What is the frequence of x as a first digit in the decimal representation of 2^n ?

Exercise 3 Let $(X, \mathscr{B}, \varphi)$ be a measurable dynamical system, and μ and ν be two invariant probability measures.

- (1) Prove that if ν is ergodic and μ is absolutely continuous with respect to ν then $\nu = \mu$.
- (2) Prove that if μ and ν are ergodic then they are either equal or mutually singular.

Exercise 4 A probabilized, discrete-time dynamical system $(X, \mathscr{B}, \mu, \varphi)$ is called *totally ergodic* if for every $n \in \mathbb{N} \setminus \{0\}$ the dynamical system $(X, \mathscr{B}, \mu, \varphi^n)$ is ergodic.

- (1) Give an example of a probabilized, discrete-time dynamical system which is ergodic but not totally ergodic.
- (2) Prove that the dynamical system $(X, \mathcal{B}, \mu, \varphi)$ is totally ergodic if and only if it doesn't admit any non-trivial finite factor (i.e such that the support of the measure is not a singleton).

Exercise 5 (SKEW PRODUCTS) Let $(X, \mathscr{B}, \mu, \varphi)$ be a discrete-time measured dynamical system. Let G be a locally compact abelian topological group (whose operation is written additively), \mathscr{B}_G its Borel σ -algebra, and μ_G a Haar measure on G. Let $f: X \to G$ be a measurable map. Consider the map $\varphi_f: X \times G \to X \times G$ defined by

$$\varphi_f : (x,g) \mapsto (\varphi(x), g + f(x))$$

- (1) Show that φ_f is measurable with respect to the product σ -algebra $\mathscr{B} \times \mathscr{B}_G$ and preserves the product measure $\mu \otimes \mu_G$. The quadruple $(X \times G, \mathscr{B} \times \mathscr{B}_G, \mu \otimes \mu_G, \varphi_f)$ is called the *skew product dynamical system* of $(X, \mathscr{B}, \mu, \varphi)$ by f.
- (2) (Anzai's Theorem) If φ is ergodic and G is the circle \mathbb{R}/\mathbb{Z} , show, for instance by using Fourier expansion with respect to the second variable, that the skew product dynamical system is not ergodic if and only if there exists $p \in \mathbb{Z} \setminus \{0\}$ such that the function $pf: X \to G$ is a *coboundary*, i.e., there exists a measurable function $\theta: X \to G$ such that almost everywhere

$$pf = \theta \circ \varphi - \theta.$$

Exercise 6 (LOWER BOUND FOR LYAPUNOV EXPONENTS) Let $X = \mathbb{R}/(2\pi\mathbb{Z})$ be equipped with the (normalized) Lebesgue measure, and $\varphi : X \to X$ defined by $\varphi(x) = x + 2\pi\alpha$ with $\alpha \notin \mathbb{Q}$. For $x \in X$, we denote by $R_x = \begin{pmatrix} \cos(x) & -\sin(x) \\ \sin(x) & \cos(x) \end{pmatrix}$ the rotation by angle x.

Let c > 1, and define $H = \begin{pmatrix} c & 0 \\ 0 & c^{-1} \end{pmatrix}$. We then define $M : X \to \mathrm{SL}_2(\mathbb{R})$ by $M(x) = HR_x$. Let $M_n(x) = M(\varphi^{n-1}(x))M(\varphi^{n-2}(x))\dots M(\varphi(x))M(x)$

be the associated cocycle; we denote by
$$\lambda_{\max}$$
 its largest Lyapunov exponent. The goal of this exercise is to show that

$$\lambda_{\max} \ge \ln\left(\frac{c+c^{-1}}{2}\right).$$

(1) Explain why

$$\lambda_{\max} = \lim_{n \to +\infty} \frac{1}{2\pi n} \int_0^{2\pi} \ln \|HR_{x+2\pi(n-1)\alpha} \cdots HR_x\|_{\infty} dx$$

(where $||A||_{\infty}$ denotes the maximum of the absolute values of the coefficients of the matrix A).

(2) For $z \in \mathbb{C}$, we define

$$\widetilde{R}(z) = \begin{pmatrix} (z^2+1)/2 & (-z^2+1)/2i \\ (z^2-1)/2i & (z^2+1)/2 \end{pmatrix}.$$

Express R_x in terms of $\widetilde{R}(e^{ix})$. Deduce that

$$\lambda_{\max} = \lim_{n \to +\infty} \frac{1}{2\pi n} \int_0^{2\pi} f_n(e^{ix}) dx,$$

where the functions $f_n : \mathbb{C} \to \mathbb{R}$ are subharmonic functions to be made explicit.¹

(3) Deduce that

$$\lambda_{\max} \ge \lim_{n \to +\infty} \frac{1}{n} \ln \| (H\widetilde{R}(0))^n \|_{\infty}$$

and conclude.

$$f(z_0) \le \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{ix}) dx$$

for any r.

^{1.} Recall that a function $f : \mathbb{C} \to \mathbb{R}$ is *subharmonic* if it is upper semicontinuous and the value of the function at any point z_0 is less than or equal to the average of f over circles around z_0 : in other words,

You may use the following two results :

[—] If $u : \mathbb{C} \to \mathbb{C}$ is holomorphic and non-zero, then $z \mapsto \ln |u(z)|$ is subharmonic.

[—] A maximum of subharmonic functions is subharmonic.