TD 3 : Mixing

Exercice 1 Let $(X, \mathcal{B}, \mu, \phi)$ and $(X', \mathcal{B}', \mu', \phi')$ be two discrete-time measured dynamical systems, with μ and μ' being probability measures. Let $h: X \to X'$ be a semi-conjugacy between (X, ϕ) and (X', ϕ') . Among the following properties, which are satisfied by (X', ϕ') if they are satisfied by (X, ϕ) , possibly adding assumptions on h?

- being ergodic,
- being mixing,
- being mixing of order k for a given $k \in \mathbb{N} \{0, 1\}$ (see the exercise below for the definition),
- being ψ -mixing on a dense vector subspace.

Exercise 2 Let $(X, \mathscr{A}, \mu, \phi)$ be a discrete-time measured dynamical system, with μ being a probability measure. For $k \in \mathbb{N} - \{0, 1\}$, we say that $(X, \mathscr{A}, \mu, \phi)$ is *mixing of order* k if for all measurable sets A_1, \ldots, A_k in X, and for all functions τ_1, \ldots, τ_k from \mathbb{N} to \mathbb{N} such that $\lim_{k \to \infty} \tau_{i+1}(n) - \tau_i(n) = +\infty$ for $i = 1, \ldots, k - 1$, we have

$$\mu\left(\bigcap_{i=1}^{k}\phi^{-\tau_i(n)}(A_i)\right) \xrightarrow[n\to\infty]{} \prod_{i=1}^{k}\mu(A_i) .$$

We say that $(X, \mathscr{A}, \mu, \phi)$ satisfies the property of *multiple mixing* if it is mixing of order k for all $k \in \mathbb{N} - \{0, 1\}$.

(1) Show that $(X, \mathscr{A}, \mu, \phi)$ is mixing of order k if and only if for all $f_1, \ldots, f_k \in \mathbb{L}^k(X, \mu)$ and all functions τ_1, \ldots, τ_k as above, we have

$$\int_X \left(\prod_{i=1}^k f_i \circ \phi^{\tau_i(t)}\right) d\mu \quad \xrightarrow[t \to \infty]{} \prod_{i=1}^k \int_X f_i \, d\mu \, .$$

- (2) Let \mathscr{A} be a finite alphabet with at least 2 symbols, endowed with a probability measure μ . Show that the Bernoulli system on \mathscr{A} , endowed with the product measure $\mu^{\mathbb{N}}$ in the unilateral case and the product measure $\mu^{\mathbb{Z}}$ in the bilateral case, satisfies the property of multiple mixing.
- (3) Let p be in $\mathbb{N} \{0, 1\}$. Show that the function $\phi_p : x \mapsto p x$ from the circle \mathbb{R}/\mathbb{Z} to itself satisfies the property of multiple mixing for the Lebesgue measure on the circle.
- (4) Let N in $\mathbb{N} \{0\}$ and M an invertible $N \times N$ matrix with integer coefficients, all of whose eigenvalues have modulus greater than 1. Show that the function $\phi_M : x \mod \mathbb{Z}^N \mapsto Mx \mod \mathbb{Z}^N$ from the torus $\mathbb{R}^N/\mathbb{Z}^N$ to itself satisfies the property of multiple mixing for the Haar measure on the torus.

Exercise 3 Let $N \in \mathbb{N} - \{0\}$ and $M \in \mathcal{M}_N(\mathbb{Z})$ be an integer $N \times N$ matrix that does not have any complex eigenvalue with modulus less than or equal to 1. Let $\pi : y \mapsto \dot{y}$ be the canonical projection from \mathbb{R}^N onto the torus \mathbb{T}^N . Let $\phi_M : \mathbb{T}^N \to \mathbb{T}^N$ be the smooth application $\theta = (\theta_i)_{1 \leq i \leq N} \mapsto (\sum_{1 \leq j \leq N} m_{ij} \theta_j)_{1 \leq i \leq N}$, defined by taking the quotient modulo \mathbb{Z}^N of the linear function $M : \mathbb{R}^N \to \mathbb{R}^N$.

Let $C^0(\mathbb{T}^N)$ be the Banach space of continuous real functions on \mathbb{T}^N , equipped with the uniform norm $\| \|_{\infty}$. Let $L_M : C^0(\mathbb{T}^N) \to C^0(\mathbb{T}^N)$ be the continuous linear operator (with norm at most 1), called the *transfer operator*, defined for all $f \in C^0(\mathbb{T}^N)$ and $x \in \mathbb{T}^N$ by

$$L_M f: x \mapsto \frac{1}{\operatorname{card}(\phi_M^{-1}(x))} \sum_{z \in \phi_M^{-1}(x)} f(z)$$

- (1) Show that $M\mathbb{Z}^N$ is a subgroup of \mathbb{Z}^N of index $|\det(M)|$. What is the cardinality of $\phi_M^{-1}(x)$?
- (2) For all $f \in C^0(\mathbb{T}^N)$ and $\dot{y} \in \mathbb{T}^N$, show that

$$Lf(\dot{y}) = \frac{1}{|\det M|} \sum_{[i] \in \mathbb{Z}^N / M \mathbb{Z}^N} f \circ \pi(M^{-1}(y+i)).$$

(3) Show that if we denote $\lambda = d\theta$ the Haar measure on \mathbb{T}^N , we have, for all $f, g \in C^0(\mathbb{T}^N)$,

$$\int_{\mathbb{T}^N} (f \circ \phi_M) g \, d\lambda = \int_{\mathbb{T}^N} f \, (L_M g) \, d\lambda \, .$$

(4) We equip $\mathcal{L}(\mathbb{R}^N)$ with the usual operator norm. Show that there exist c > 0 and $\lambda > 1$ such that for all $f \in C^1(\mathbb{T}^N)$ and $n \in \mathbb{N}$, we have

$$\left| L_{M}^{n}f(x) - \int_{\mathbb{T}^{N}} f \ d\lambda \right| \leq \frac{c}{\lambda^{n}} \sup_{x \in \mathbb{T}^{N}} \left\| d_{x}f \right\|$$

- (5) Deduce a new proof of the mixing property of ϕ_M for the Haar measure on the torus.
- (6) Deduce that the transformation ϕ_M is exponentially mixing for the Haar measure on the torus, in the vector space $C^1(\mathbb{T}^N)$ equipped with the Sobolev norm $W^{1,\infty}$, defined by $\|f\|_{1,\infty} = \max\{\|f\|_{\infty}, \|df\|_{\infty}\}$, where $\|df\|_{\infty} = \sup_{x \in \mathbb{T}^N} \|d_x f\|$.

Exercice 4 Let \mathscr{A} be a finite alphabet with cardinality at least 2, equipped with a probability measure ν , and let $(X = \mathscr{A}^{\mathbb{Z}}, \mu = \nu^{\mathbb{Z}}, \phi)$ be the associated (bilateral) Bernoulli shift.

- (1) For $a \in \mathscr{A}$, we denote [a] the cylinder of sequences $(x_n)_{n \in \mathbb{Z}}$ such that $x_0 = a$. Let $f = \mathbb{1}_{[a]} \mu([a])$ (so that $f \in \mathbb{L}_0^2(\mu)$). Show that the spectral measure of the function f is a multiple of the Haar measure on the circle.
- (2) For $b \neq a \in \mathscr{A}$, let C = [a, b] be the cylinder of sequences $(x_n)_{n \in \mathbb{Z}}$ such that $x_0 = a$ and $x_1 = b$. Let $f = \mathbb{1}_C - \mu(C)$. Show that there exist reals α, β such that the spectral measure of the function f is of the form $(\alpha \cos(2\pi\theta) + \beta)d\theta$. Determine these values.