TD4: Hyperbolic Dynamics (2)

Exercise 1 Let k, N be positive integers and M a compact differential manifold of dimension N. Recall that a fixed point x_0 of a C^1 -diffeomorphism ϕ of M is hyperbolic if its tangent map $T_{x_0}\phi \in \mathscr{L}(T_{x_0}M)$ has no (complex) eigenvalue of modulus 1. Let $\text{Diff}^k(M)$ be the Baire space¹ of C^k -diffeomorphisms of M equipped with uniform convergence on the compacts of the maps and their tangent maps up to order k.

- (1) For all $p, q \in \mathbb{N}$, construct a C^1 -diffeomorphism of the circle preserving orientation having exactly 2p fixed points, all hyperbolic, and, if $q \ge 1$, a C^1 -diffeomorphism of the circle preserving orientation having exactly p + q fixed points, with p hyperbolic and qnon-hyperbolic.
- (2) Let ϕ be a C^1 -diffeomorphism of the circle preserving orientation having a finite non-zero number of fixed points, all hyperbolic.

• Show that ϕ admits an even number of fixed points, denoted p_1, \ldots, p_{2k} in trigonometric order.

• Show that there exists $\varepsilon > 0$ small enough such that the open arcs of the circle A_i of length 2ε centered at p_i are pairwise disjoint, and that if ψ is sufficiently C^1 -close to ϕ , then ψ has exactly one fixed point p'_i in each arc of the circle of length 2ε centered at p_i and has no fixed point outside the A_i .

• By fixing a point a_i of the arc of the circle between p_i and p_{i+1} that does not belong to $A_i \cup A_{i+1}$, show that there exists a continuous map $h : \mathbb{S}_1 \to \mathbb{S}_1$ such that, for all $i = 1, \ldots, 2k$, we have $h(p_i) = p'_i$, $h(a_i) = a_i$, $h(\phi(a_i)) = \psi(a_i)$, h is affine on the arc of the circle between a_i and $\phi(a_i)$, and $h \circ \phi = \psi \circ h$.

• Deduce that ϕ is structurally stable.²

- (3) We return to the general framework. Let $\phi \in \text{Diff}^k(M)$ and U an open subset of M with compact closure in which ϕ admits a unique fixed point x_{ϕ} such that $x_{\phi} \in U$ and the tangent map of ϕ at this point has no eigenvalue equal to 1 (respectively is hyperbolic). Show that there exists a neighborhood V of ϕ in $\text{Diff}^k(M)$ such that every $\psi \in V$ admits a unique fixed point x_{ψ} in \overline{U} , and such that the tangent map of ψ at this point has no eigenvalue equal to 1 (respectively no eigenvalue of modulus equal to 1). We can successively, if 1 is not an eigenvalue of $d_{x_{\phi}}\phi$, and if ψ is C^1 -close to ϕ :
 - reduce to the case where $M = \mathbb{R}^N$ and $x_{\phi} = 0$;
 - show that the map $\widetilde{\psi}: x \mapsto \psi(x) x$ is a diffeomorphism of an open neighborhood
 - of 0 onto an open neighborhood of 0, and deduce that ψ admits a fixed point x_{ψ} ;
 - show that ψ admits at most one fixed point in a neighborhood of 0;

¹Recall that every smooth differential manifold is assumed to be metrizable and separable (hence σ -compact and with a countable base of neighborhoods), and equipped with a distance inducing its topology. For all smooth differential manifolds M, N and maps $f, g: M \to N$ of class C^k , we define by recursion the iterated tangent spaces by $T^0M = M$ and $T^nM = T(T^{n-1}M)$ if $n \ge 1$, and the iterated tangent maps by $T^0f = f$ and $T^nf = T(T^{n-1}f): T^nM \to T^nN$ if $1 \le n \le k$. By denoting K_i a compact subset of T^iM for all $i = 0, \ldots, k$, and $\mathcal{K} = (K_i)_{0 \le i \le k}$, let $d_{\mathcal{K}}(f,g) = \sum_{i=0}^k \sup_{x \in K_i} d(T^if(x), T^ig(x))$. The C^k topology (weak) on the set $C^k(M, N)$ of C^k maps from M to N is the metrizable topology defined by the family of pseudo-distances $(d_{\mathcal{K}})_{\mathcal{K}}$. We show that Diff^k(M) is open in $C^k(M, M)$, that it is a Baire space, and that the composition of C^k maps is continuous for the C^k topology. In practice, to work with the C^k topology, we look at the uniform convergence, in the compacts of local charts, of the maps and all their partial derivatives up to order k. The same definition applies if $k = \infty$, except that the topology is not necessarily metrizable, and the manifold is not Banach but Fréchet.

²For all $k \in (\mathbb{N} - \{0\}) \cup \{\infty\}$, a differentiable dynamical system (X, ϕ) of class C^k is said to be *structurally stable* if there exists a neighborhood V of ϕ in $C^k(X, X)$ for the C^k topology such that every element $\psi \in V$ is topologically conjugate to ϕ . In general, the conjugation is not of class C^k .

• show that if moreover $d_{x_{\phi}}\phi$ has no eigenvalue of modulus equal to 1, and if ψ is C^1 -close to ϕ , then $d_{x_{\psi}}\psi$ also has no eigenvalue of modulus equal to 1, by considering the maps $x \mapsto \psi(x) - \lambda x$ for all $\lambda \in \mathbb{S}_1$.

(4) Show that the subspace E_1 (respectively E_2) of $\text{Diff}^k(M)$ of C^k -diffeomorphisms of M having a finite number of fixed points and at which the tangent map of ϕ has no eigenvalue equal to 1 (respectively is hyperbolic) is an open dense set. To show density, we can successively

• by applying Sard's theorem³ to the map $f: x \mapsto x - \psi(x)$, show that for every map $\psi: \Omega \to \mathbb{R}^N$ of class C^1 , where we assume that $M = \Omega$ is an open subset of \mathbb{R}^N , there exist y arbitrarily close to 0 such that the map $\psi_y: x \mapsto \phi(x) + y$ has, in every compact subset of Ω , a finite number of fixed points, at which the differential of ψ does not have the eigenvalue 1;

• show that every point of M admits a neighborhood U with compact closure such that the set E_U of C^k -diffeomorphisms of M that have only a finite number of fixed points in \overline{U} , these belonging to U, and at which the differential of ϕ does not have the eigenvalue 1, is an open dense subset of $\text{Diff}^k(M)$;

• deduce the desired density, using after verification, in the case of hyperbolic fixed points, that for every $\varepsilon > 0$, there exists a function $\varphi_{\varepsilon} : \mathbb{R}^N \to \mathbb{R}^N$ equal to x outside $B(0, 2\varepsilon)$, equal to $(1 - \varepsilon)x$ on $B(0, \varepsilon)$ and converging in C^k topology to the identity as ε tends to 0.

- (5) Show that there exists a dense G_{δ} subset of $\text{Diff}^k(M)$ consisting of elements having, for all $n \in \mathbb{N}$, a finite number of periodic points of period n, all hyperbolic.
- (6) Show that if ϕ is a structurally stable C^k -diffeomorphism of M, then ϕ admits, for all $n \in \mathbb{N}$, a finite number of periodic points of period n.

Exercice 2 Let $\mathcal{M} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ and $\phi = \phi_M : x \mod \mathbb{Z}^2 \mapsto \mathcal{M}x \mod \mathbb{Z}^2$ be the diffeomorphism of the torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$ defined by \mathcal{M} .

- (1) Show that $0 \in \mathbb{T}^2$ is a hyperbolic fixed point of ϕ , and determine the stable space E_0^s and unstable space E_0^u in $T_0\mathbb{T}^2 = \mathbb{R}^2$.
- (2) Compute the stable manifold $W^{s}(0)$ and unstable manifold $W^{u}(0)$ of 0, and show that they are dense.

³If $f: M \to N$ is a C^1 map between two smooth differential manifolds, a *critical value* of f is a point $y \in N$ such that there exists a point $x \in M$ such that f(x) = y and $T_x f: T_x M \to T_y N$ is not surjective. A *regular value* is a point of N which is not a critical value. The *Sard's theorem* states that if M and N are two manifolds of dimensions m and n, and if $f: M \to N$ is a map of class C^k where $k > \max\{0, m-n\}$, then the set of regular values of f is dense in N (in fact of full measure for any measure on N absolutely continuous with respect to the Lebesgue measure in each chart.)