TD 4 : Entropy, subshifts

Exercice 1 Let $(X, \mathcal{B}, \mu, \phi)$ and $(Y, \mathcal{C}, \nu, \psi)$ be two probability measure-preserving dynamical systems at discrete time.

(1) Consider the product dynamical system $(X \times Y, \mathcal{B} \otimes \mathcal{C}, \mu \otimes \nu, \phi \times \psi)$. Prove that

$$h_{\mu\otimes\nu}(\phi\times\psi) = h_{\mu}(\phi) + h_{\nu}(\psi).$$

(2) Now assume that Y is a factor of X. Prove that $h_{\nu}(\psi) \leq h_{\mu}(\phi)$.

Exercice 2 (PINSKER FACTOR) Let $(X, \mathcal{B}, \mu, \phi)$ be a probability measure-preserving dynamical system. Denote $\Pi(\phi) = \{B \in \mathscr{B} \mid h_{\mu}(\phi, \{B, B^c\}) = 0\}$ (where by convention if $B = \emptyset$ or B = X we set $\{B, B^c\} = \{X\}$).

- (1) Prove that $\Pi(\phi)$ is a ϕ -invariant σ -algebra.
- (2) Prove that $(X, \Pi(\phi), \mu, \phi)$ is a factor of X with zero entropy, and it is maximal for this property (in the sense that if $(Y, \mathscr{C}, \nu, \psi)$ is a factor of X with zero entropy, and $h: X \to Y$ is a semi-conjugation, then h is $\Pi(\phi)$ -measurable).

Exercice 3 Let $X = \mathbb{S}^1$ be the unit circle equipped with the Lebesgue measure μ , and let ϕ be the translation $x \mapsto x + \theta$ for some $\theta \in \mathbb{S}^1$. Compute the entropy $h_{\mu}(\phi)$.

Exercice 4 Let $\mathscr{A} = \{a, 1, 2, b\}$. Consider the subshift Σ defined as the set of sequences $(x_n) \in \mathscr{A}^{\mathbb{Z}}$ such that for all $n \in \mathbb{Z}$:

- if $x_n = a$ then $x_{n+1} = 1$,
- if $x_n = 1$ then $x_{n+1} = 1$ or $x_{n+1} = b$,
- if $x_n = b$ then $x_{n+1} = 2$,
- if $x_n = 2$ then $x_{n+1} = a$.

Equip Σ with the σ -algebra \mathscr{B} generated by cylinders, a Markov measure μ , and the shift map φ.

- (1) Verify that $(\Sigma, \mathcal{B}, \mu, \phi)$ is mixing.
- (2) Let $A \subset \Sigma$ be the set $\{(x_n) \mid x_0 = a \text{ or } b\}$. Prove that the induced dynamical system $(A, \mathscr{B}_A, \mu_A, \phi_A)$ is not mixing.

Exercice 5 Let $\Omega \subset \{0,1\}^{\mathbb{N}}$ be the set of sequences $(\omega_i)_{i\geq 0}$ such that $\omega_i \omega_{i+1} = 0$ for all *i*. We equip Ω with the shift θ .

- (1) For $p \in (0, 1)$, show that there exists a Markov measure ν_p with support equal to Ω , and whose associated incidence matrix gives probability p to remain in state 0 from state 0. Then compute the entropy $h_{\nu_p}(\theta)$.
- (2) Show that there exists p_0 such that $h_{\nu_{p_0}}(\theta)$ is maximal, and calculate this maximum. From now on, we denote $\nu = \nu_{p_0}$.
- (3) Let I = [0, 1], and let β be the golden ratio (satisfying $\beta > 1$ and $\beta^2 = \beta + 1$). Define the map $\psi: \Omega \to I$ by

$$\psi((\omega_k)_{k\geq 0}) = \sum_{k=0}^{\infty} \frac{\omega_k}{\beta^{k+1}}$$

and let $T: I \to I$ be the map $x \mapsto \{\beta x\}$ (where $\{z\}$ is the fractional part of z).

- (a) Show that $\psi : \Omega \to I$ is well-defined, then that it is surjective and continuous. Describe the image measure $\mu = \psi_* \nu$.
- (b) Verify that the dynamical systems (Ω, θ, ν) and (I, T, μ) are conjugate. What is the value of $h_{\mu}(T)$?